Who buys new energy vehicles in China? Assessing social-psychological predictors of purchasing awareness, intention, and policy

Article (Accepted Version)

This version is available from Sussex Research Online: http://sro.sussex.ac.uk/id/eprint/75909/

This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher's version. Please see the URL above for details on accessing the published version.

Copyright and reuse:
Sussex Research Online is a digital repository of the research output of the University.

Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available.

Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

http://sro.sussex.ac.uk

Huibin Du*a, Diyi Liu*a, Benjamin K. Sovacoolb, YuruWanga, Shoufeng Ma*a, Rita Yi Man Lid

College of Management and Economics, Tianjin University, Tianjin 300072, China

Center for Energy & Environmental Policy Research, Institute of Policy and Management, Chinese Academy of Sciences, Beijing 100190, China

Center for Energy Technologies, Department of Business and Technology, Aarhus University, Birk Center park 15, DK-7400 Herning, Denmark

Sustainable Real Estate Research Center / Department of Economics and Finance, Hong Kong Shue Yan University, North Point, Hong Kong

Science Policy Research Unit (SPRU), School of Business, Management, and Economics, University of Sussex, United Kingdom

Abstract: This paper investigates the salience of social-psychological factors in explaining why drivers purchase (or fail to purchase) New Energy Vehicles (NEVs)—including hybrid electric vehicles, battery electric vehicles, and fuel cell electric vehicles—in China. A questionnaire measuring six dimensions (including attitudes, subjective norms, perceived behavioral control, personal norms, low-carbon awareness and policy) was distributed in Tianjin, where aggressive policy incentives for NEVs exist yet adoption rates remain low. Correlation analysis and hierarchical multiple regression analyses are applied data collected through 811 valid questionnaires. We present three main findings. First, there is an “awareness-behavior gap” whereby low-carbon awareness has a moderating effect on purchasing behavior via psychological factors. Second, subjective norms has a stronger influence on intention to purchase New Energy Vehicles than other social-psychological factors. Third, acceptability of government policies has positive significant impact on adoption of New Energy Vehicles, which can provide reference potential template for other countries whose market for New Energy Vehicles is also in an early stage.

*a Corresponding author. Tel.: +86 2227404446	
E-mail addresses: duhuibin@tju.edu.cn (H. Du), liudiyi@tju.edu.cn (D. Liu), BenjaminSo@hih.au.dk (B.K. Sovacool), wangyr@tju.edu.cn (Y. Wang), ymli@hksyu.edu (R.Y. M. Li).
1. Introduction

There has been a growing interest concerning the relationship between climate change and transportation in China (Schwanen et al., 2011). There, transportation has the fastest annual growth rates of both energy use and resulting greenhouse gas emissions (Tyfield et al, 2014). For instance, transportation accounted for about 365 million tons of national Chinese CO\textsubscript{2} emissions in 2010, an amount more than twice that of 20051. This doubling of emissions was mainly due to a rapid growth of vehicle ownership. China’s private vehicle population has expanded rapidly with an average annual growth rate of 14.7\% over the past two decades. Since 2009, China has been the world's largest car market, and car ownership per thousand persons escalated beyond 100 for the first time in 2014. Thus, vehicle emissions have become a major source of Chinese air pollution (Peng et al., 2015). According to national statistics2, personal light duty vehicles emitted 34.39 million tons of carbon monoxide (CO) in 2013, 4.31 million tons of hydrocarbons (HC), 6.40 million tons of nitrogen oxides

(NOx), and 0.59 million tons of particulate matter (PM) in 2013.

To lessen greenhouse emissions, the Chinese government has announced its intention to reduce carbon emission intensity per unit GDP in 2020 by 45% compared to 2005 levels. To achieve this goal, planners have begun to endorse and incentivize New Energy Vehicles (NEVs) in China, a term that includes hybrid electric vehicles, battery electric vehicles, and fuel cell electric vehicles. Fig. 1 shows the sales volume of automobiles and NEVs in China between 2009 and 2014. As it indicates, 2014 saw a significant spike in the total sales of NEVs (about 75,000), but these numbers still pale in comparison to conventional automobiles (about 2.5 million in 2014).

These low uptake rates are unfortunate, to say the least, given that China has attempted to accelerate NEVs adoption through a variety of tools including demonstration projects, city development and transport planning policies, advanced research, and tax credits. However, these tools taken should be based on a thorough understanding of the drivers’ social-psychological factors on purchasing NEVs. Moreover, psychological factors aimed at influencing intention have not yet been considered by policymakers in China (Wan et al., 2015). Therefore, prior to developing policies, it is necessary to analyze the current relationship between the people’s perceptions of NEVs and social low carbon behavior.

Figure 1
Previous literature has suggested that several psychological factors can affect purchasing patterns and behavior for NEVs. Some studies narrowly argue that intention is a major predictor of actual behavior (Bamberg and Schmidt, 2001; Schuitema et al., 2013). But we take a more complex view, proposing that purchasing behavior will be conditioned by a series of social-psychological factors such as attitudes towards NEVs, subjective norms, perceived behavioral control and personal norms (Kim and Rasouli, 2014; Ajzen, 1991). Also, we argue that symbols and notions of self-identity that emerge from low-carbon awareness can also considerably influence pro-environmental behavior such as purchasing NEVs or favoring mass transit (Skippon and Garwood, 2011; Egbue and Long, 2012; Lane and Potter, 2007; Carley et al., 2013; Krupa et al., 2014; Nielsen et al., 2015; Geels et al. 2018).

Moreover, this paper further explains whether environmental awareness is necessarily related to intention or behaviors, which has been an ongoing debate by previous literature (Abrahamse et al., 2005; Ozaki and Sevastyanova, 2011). Most of the existing research explains this debate by comparing levels of awareness and behavior (Owens and Driffill, 2008; Van Raaij and Verhallen, 1983), Bai and Liu (2013) even argue that a low-carbon awareness-behavior gap exists between motivation and barriers. Although such an awareness-behavior gap has been found in numerous previous studies, less literature exists which explains how the gap is formed or relates to low-carbon awareness. Therefore, we regard low-carbon
awareness as a moderating variable (Lianying Zhang, 2016) and explain how it influences behavioral intention via social-psychological factors in the field of NEVs. Low-carbon value, low-carbon subjective knowledge and low-carbon objective knowledge are presented to measure moderating effect of low-carbon awareness on the intention to purchase NEVs in this paper.

In proceeding on this path, our study makes at least two contributions to the literature. First, we show how social-psychological factors can exert both direct and indirect influence on purchasing patterns. We find that extended TPB variables have significant direct influence on intentions to purchase NEVs. And low-carbon awareness has a moderating effect on purchasing behavior via psychological factors. Also, our study illustrates how the attitudes towards NEVs, subjective norms, and perceived behavioral control will be different among consumers based on varying levels of low-carbon awareness. The relationship between attitude or personal norms and behavioral intention is strengthened with higher low-carbon awareness. On the contrary, higher low-carbon awareness weakens the relationship between subjective norms/perceived behavioral control. Many studies ignore these dimensions and interactions altogether, including those that analyze the relationship between government policies and NEVs purchasing intention (Stern et al., 1999). Such studies generally focus on the intersection between awareness and adoption of vehicles, and thus they either ignore China or focus on only one class of vehicle, such as Kang and Park’s (2011) work on fuel cell vehicles, Chandra et al.’s (2010) study on hybrid
flex-fuel vehicles, or Lin et al.’s (2017, 2018) work on e-bikes, rather than NEVs in a comparative and holistic manner.

Second, drawn from previous psychological theories (Thøgersen, 2006; Helveston et al., 2015), we posit that subjective norms are strongly correlated with pro-environmental behavior. We propose and test an extended Theory of Planned Behavior (TPB) research model which includes personal norms and government policies to examine NEV purchasing intentions. Thus, we shed light on two central research questions: (1) what are the major factors affecting intentions to purchase NEVs, and (2) how does low-carbon awareness affect those factors?

2. Theoretical Framework

The theory of planned behavior are representative theories in the study of pro-environmental behavior. The following paragraphs summarize recent literature on each influential variables in the context of behavioral intentions towards environmentally choices. The theoretical framework of this paper is based on this discussion of relationships among influential variables.

2.1 Theory of Planned Behavior

The Theory of Planned Behavior (TPB) offers a model about the determinants of an individual’s behavior (Ajzen, 1991). According to the TPB model, an individual’s behavior is dictated by his or her behavioral intention, which in turn is antecedeed by three factors. The first of social-psychological factors is attitudes towards the behavior
(AB), which is the individual’s positive or negative evaluation of the behavior. Second is subjective norms (SN), which refer to an individual’s estimation of the social pressure to act or not to act the behavior. In addition, we include personal norms (PN) (Schwartz, 1977), defined as feelings of an obligation to perform certain specific behavior. Thøgersen (2006) differentiated personal norms and subjective norms, and noted that personal norms were more relevant to actual behavior. Third is perceived behavioral control (PBC), a person’s personal perception on the difficulty of performing the behavior.

TPB predicts that, generally speaking, a more positive attitude, stronger subjective norms, and greater perceived behavioral control will strengthen an individual’s intention to adopt more environmentally conscientious behavior (Kaiser and Gutscher, 2003; Steg and Vlek, 2009). Many studies have therefore utilized TPB to explain energy conservation (Harland et al., 1999), travel mode choice (Bamberg and Schmidt, 2001), the recycling of waste (Kaiser and Gutscher, 2003), purchasing green products (Yazdanpanah and Forouzani, 2015), and purchasing new automobiles (Lane and Potter, 2007). Nayum and Klöckner (2014) have combined the TPB with a concept known as the norm activation model to explain consumer purchases of fuel-efficient cars; Van Der Werff and Steg (2015) similarly used TPB and the norm activation model to explain why consumers purchase energy efficient devices. Onwezen et al. (2013) have also showed that attitudes, subjective norms, and perceived behavior...
control alongside personal norms play an important role in environmentally friendly lifestyles overall.

Therefore, our study draws on the TPB model and notions of personal norms to test hypotheses about NEV purchases in China. More specifically, we argue that H1: (H1a) attitudes (AT) toward NEVs, (H1b) subjective norms (SN), (H1c) perceived behavior control (PBC), and (H1d) personal norms (PN) will have a positive direct effect on NEVs purchasing behavior intentions (INT).

2.2 Government policy and regulation

Behaviors and norms do not exist in a vacuum. Instead, they can be influenced by a variety of policy mechanisms or government regulations, some of which attempt to stimulate desire for a technology by lowering its price (a “supply push” strategy); others by making a technology more desirable by increasing its desirability or affordability (a “demand pull” strategy) (Sovacool, 2010). In other words, preference for a new vehicle can be affected not only by a TPB but also government policies which can create an external environment conducive, or corrosive, to NEVs (Gallagher and Muehlegger, 2011; Stern et al., 1999). NEVs not only face challenges due to rapid technological breakthrough but also changes in government policies.

In particular, we hypothesize that government incentives for buyers and charging infrastructure support will have a positive impact on preferences for a NEVs (Berensteau and Li, 2009), though Zhang et al.(2013)and Kang and Park(2011)
suggest that such an impact may dissipate and may not be as strong as other TPB factors. Still, we hold that H2: Policy factors (POL) will have a positive direct effect on NEV purchasing behavior intentions (INT).

2.3 Low-carbon awareness

The last set of literature we incorporate into our hypotheses center on low-carbon awareness. Studies have shown, for instance, that sometimes large gap exist between stated preferences or awareness and actual behavior (Department for Transport, 2004). The impact of low-carbon awareness on behavior of purchasing New Energy Vehicles should not be ignored, although few measurement of low-carbon awareness was taken (Nemcsicsné Zsóka 2008). Most existing literatures consider that low-carbon awareness should be defined from multidimensional level (Maloney and Ward, 1973; Abdul-Wahab, 2010). Environmental value and knowledge are the most frequently mentioned components of awareness in the relevant literature (Goldblatt et al., 2005; Abdul-Wahab, 2010).

The low-carbon value refers to opinions about low-carbon issues given based on individual philosophy of life (Dunlap et al., 2000), which usually has a slight indirect influence on present behavioral intention (Bai and Liu 2013). Low-carbon knowledge is a kind of ability to identify relevant symbol, concept and behavior of environmental protection (Laroche et al., 2001). Moreover, the literatures have highlighted the impact of knowledge on low carbon behavior (Abrahamse et al., 2005; Goldblatt et al.,
2005; Wright et al., 2008). It is well accepted that low-carbon behavioral intention or behavior would increase with the improvement of people’s knowledge (Thondhlana and Kua 2016).

That said, the effect of low-carbon awareness has often been studied as a direct attribute of people’s NEVs purchasing behavior or intention (Graham-Rowe et al., 2012, Axsen and Kurani, 2013). We seek to explore, instead, the moderating effect of low-carbon awareness on the relationship between people’s perception of NEVs (behavioral attitude, subjective norms, perceived behavior control, personal norms) and purchasing behavior intention.

Previous studies have used different dimensions to assess mechanisms that can overcome awareness gaps. Some research has suggested that as environmental problems increase, antecedent motivation of people’s pro-environmental behavior can change (Maloney and Ward, 1973; Walton et a. 2004). Heffner et al. (2007) found that individuals who showed higher levels of environmental awareness stated that they had a preference for NEVs as symbols of “ethical” or “altruistic” behavior. Kahn (2007) found that environmentalists are more likely to purchase hybrid vehicles than non-environmentalists in Los Angeles County. Egbue and Long (2012) have found that other values such as mobility or luxury can trump environmental values centered on climate change. Other studies have explored the impact of environmental knowledge as an antecedent for low-carbon behavior (Abrahamse et al., 2005; Barr, 2007; Bamberg 2003).
Environmental values or knowledge are presented as the most frequently mentioned components of awareness in the relevant literature (Goldwater et al., 2005; Abdul-Wahab, 2010). Especially in the domain of low-carbon behavior or practice, low-carbon awareness has been defined as the state of values, attitudes and knowledge about decreasing greenhouse gas emissions to mitigate the impacts of climate change (Bai Y., 2013). Hence, we propose in this paper that low-carbon awareness can be encapsulated and measured mainly via low-carbon values and low-carbon knowledge.

Specially, low-carbon knowledge was broken down into subjective knowledge and objective knowledge in order to identify the different influencing mechanism between how much a person thinks he/she knows (subjective knowledge) and how much a person actually knows (objective knowledge). Differentiation between subjective and objective knowledge occurs when residents do not recognize how much or how little their actually know (Barber et al., 2009).

Low-carbon awareness can act as a moderating variable which can strengthen or weaken NEVs purchasing intentions. We propose that if an individual has a high level of low-carbon awareness, their attitude towards NEVs, subjective norms, perceived behavior control, and personal norms will strengthen their purchasing behavioral intention. Thus, we state that H3: Low-carbon value (LV) has a positive moderating effect on the relationship between the extended TPB variables and NEVs purchasing intention. H4: Low-carbon subjective knowledge (LSK) has a positive moderating
effect on the relationship between the extended TPB variables and NEVs purchasing
intention. H5: Low-carbon objective knowledge (LOK) has a positive moderating
effect on the relationship between the extended TPB variables and NEVs purchasing
intention.

Overall, many studies focus on psychological factors which influence consumers’
low-carbon transport behaviors, such as purchasing green products (Lane and Potter,
2007; Ozaki and Sevastyanova, 2011), and travel mode choice (Kahn and Morris,
2009). Rather than rely on one concept or set of literature in isolation, we decided to
draw upon three at once: the theory of planned behavior, the effects of government
policy, and the concept of low carbon awareness. Figure 2 depicts the synthesized
conceptual framework that results.

3. Materials and methods
3.1 Study site and sample
To assess purchasing preferences for NEVs, our empirical study was conducted in
Tianjin, which is one of four municipalities directly under the control of central
government in China. In order to alleviate environmental problems brought by the
traffic department, Tianjin has become a central component of national efforts to
promote NEVs—it thus represents what methods scholars would call an “extreme” rather than a “representative” case since it looks at a policy exemplar, a part of China more committed than most to low-carbon energy and transport planning. Table 1 lists major NEVs demonstration programs and development progress in China. The municipal government of Tianjin took part in both of them. As described in the “Embodiments of promotion and application of new energy vehicles in Tianjin (2013-2015)”, it was expected that the sales volume of NEVs would reach 12,000 between 2013 and 2015. To incentivize this switch in Tianjin, consumers could get cash subsidies of 31,500-54,000 RMB by selecting some of the NEV models, plus free private vehicle registration plates. However, only a few consumers ever expressed interest, and a meager 1,726 NEVs were sold, accounting for 0.34% of total sales in Tianjin by September 2014. Moreover, a majority of the NEVs were used for the public service sector such as urban buses rather than the private vehicle market.

3.2 Survey questionnaire

To enable us to assess these hypotheses, our primary tool was survey questionnaire that we used to collect original data and verify our hypotheses about NEV purchasing
intentions. The questionnaire included three parts, and respondents were not given any technical information with regards to the performance of NEVs during or before they filled in the questionnaire. The first part attempted to survey public social-psychological perception towards NEV in Tianjin. The second part consisted of ten items to gauge low-carbon awareness. The third part asked for demographic information. In order to establish the content validity of the items, the questionnaire was adopted and modified from an extensive literature survey. It was fine-tuned through a focus group with academic experts in University.

To provide a bit more detail, the first part of the survey attempted to evaluate social-psychological factors influencing NEVs purchasing intention behavior among Tianjin drivers. It was measured by the TPB instructions (Cronbach α=0.896) proposed by Ajzen (1991). Factors were measured on a 5-point Likert scale, ranging from 1 (strongly disagree) to 5 (strongly agree), with 3 serving as neutral. We used 4 questions to measure their attitudes (AB) (Cronbach α=0.789) with regards to NEV purchases (Knez, et al., 2014): (1) Compared to an internal combustion engine vehicle (ICEV), purchasing a NEVs would be more expensive; (2) Compared to an ICEV, purchasing a NEVs would be safer; (3) Compared to an ICEV, purchasing a NEVs would be more fashionable; and (4) Compared to an ICEV, NEVs have better performance. Subjective Norms (SN) (Cronbach α=0.863)were measured by another 3 questions (Ajzen, 1991; Bamberg et al., 2007): (1) My family members’ perceptions are important factors which affect my decision on whether I should purchase a NEV;
(2) My colleagues would approve of me to purchasing a NEV; and (3) The 4S shop\(^3\) will advise me to purchase a NEV. Perceived Behavioral Control (PBC) (Cronbach \(\alpha=0.853\)) was measured by 2 questions (Ajzen, 1991; Klöckner et al., 2013): (1) I could afford to purchase a NEV if I want to; and (2) Whether or not I purchase a NEV is entirely decided by me. Personal norms (PN) (Cronbach \(\alpha=0.861\)) were measured by 2 questions based on previous literatures (Klöckner et al., 2013; Nordlund and Garvill, 2003). (1) I think purchase a NEV is what I should do; (2) No matter what the others think, I feel that I purchase a NEV.

We used the term “acceptability of government policies (POL) (Cronbach \(\alpha=0.866\))” to connote a measurement of public knowledge and awareness of relevant government policies related to NEVs (Zhang et al., 2013, Kang and Park, 2011). What’s more, we added to some new items considering China’s context in the rewording process. It includes two policies in Tianjin, and two scenario policies. We have included four questions here: (1) after the implementation of vehicle license limit in Tianjin, it’s efficient to give NEV purchases free vehicle licenses; (2) I have a strong willingness to purchase a NEV because of government subsidies; (3) I will purchase a NEV if charging infrastructure becomes more comprehensive; and (4) I will purchase a NEV if the tolls and fees are reduced or remitted. Lastly, behavior intention was measured by a single question (1): I intend to purchase a NEV when I buy a new car.

\(^3\) A 4S shop similar to a car dealership in Europe or North America. In China, 4S shops offer both sales and maintenance services for consumers. The “4S’s” relate to sales, spare parts, service and satisfaction.
The second part of the survey consisted of ten items to acquire basic information on Tianjin drivers’ low-carbon awareness (Cronbach α=0.751). The low-carbon value was measured by the New Ecological Paradigm (NEP) Scale (Dunlap, 2008). The NEP is based on five items: (1) The current population is approaching the limitation which the earth can withstand. (2) Disastrous consequences will happen since human destroy nature. (3) Human are abusing and destroying the environment. (4) The balance of nature is easy to be disturbed. (5) We will suffer serious natural disasters if we don’t take measures to protect environment. Low-carbon knowledge was measured from two dimensions: subjective knowledge and objective knowledge (Barber et al., 2009). The subjective knowledge was measured by two items (Sudarmadi et al., 2001). Participants were asked: (1) I know what a low-carbon product is; (2) I know a NEV is better as it has lower lifecycle greenhouse gas emissions. And objective knowledge was assessed by three questions (Nemcsicsné Zsóka, 2008; Barber et al., 2009): (1) The carbon emission can be reduced by taking public transportation than by driving car. (2) Buying low-emission cars is conducive to energy conservation. (3) To supply tire with air inflation timely can improve energy efficiency of vehicle and reduce carbon emission.

4. Results

The participants of this study were residents who had been living in Tianjin for at least one year. The survey data were collected from July to October of 2015, with the survey consisting of online random sampling via the Star Customer Questionnaire
platform4, and a cluster sampling following the approach by Bai and Liu (2013). We divided Tianjin region into six urban districts (Nankai, Heping, Hexi, Hedong, Hebei and Hongqiao) and 30 collection blocks. Then we sent 25 trained postgraduate student interviews to these blocks. Each group of three students was responsible for 50 street-intercept interviews in each collection block. A total of 811 questionnaires were returned with a response rate of 87.2\%. Table 2 shows the detailed demographic characteristics of this sample. In terms of representativeness, the sample has a similar number of male (42.5\%) and female (57.5\%) respondents. Most respondents were 26-35 years of age (48.7\%) followed by 18-25 years of age (20.3\%). The majority of the respondents held an undergraduate degree (49.8\%) and 20.0\% were postgraduate degree holders. Moreover, 54.0\% respondents’ reported a household size of three people. Almost two-thirds (66.3\%) of respondents had a car, and 80.4\% of the respondents had an IC bus card (a stored value card for bus passengers). Basically, the sample is in line with the demographical characteristics in Tianjin5, which guarantee the representativeness of survey sample.

\begin{table}
\centering
\caption{Table2}
\end{table}

4 The Star Customer Questionnaire platform is a kind of platform of providing online random sampling for users. It can be accessed from website: https://www.sojump.com/.

4.1 Raw Data and Pearson Correlations

To analyze our data, we relied on Pearson's correlation coefficient, a measure of the strength of the association between the two variables (Altiok et al., 2007). A correlation of less than 0.2 is considered a slight correlation, 0.2-0.4 is considered low, 0.4-0.7 is moderate, 0.70-0.90 is high and more than 0.9 is considered very highly correlated (Nunnally, 1978).

Table 3 presents the mean, standard deviation, and inter-correlation between various variables. All social-psychological factors have positive correlation with NEVs purchasing intentions. The acceptability of government policies (POL) ($r=0.695$, p<0.01) has stronger correlation with NEVs purchasing intentions than others. The extended TPB variables, including AB, SN and PN exhibited moderate correlation with intentions. Attitude towards NEVs ($r=0.449$, p<0.01), subjective norms ($r=0.666$, p<0.01), personal norms ($r=0.583$, p<0.01) and perceived behavior control ($r=0.364$, p<0.01) showed positive correlation with NEV purchasing intention.

Table 3
4.2 Hierarchical Regression Analyses

To further analyze the purchasing intention of NEVs, main two additional steps were taken. First, the extended TPB framework was tested by hierarchical multiple regression analysis. Second, we more carefully analyzed the moderating effect of low-carbon awareness (i.e. low-carbon value, low-carbon subjective knowledge, and low-carbon objective knowledge) with other variables. Moderator variable (Cohen et al., 2003) is a third variable that affects the direction and strength of the relation between dependent and independent variables. In this study low-carbon awareness was placed into the model as a moderator variable.

For the first task, we created a series of models to test our results. Model (1) is a control model, which used to test for the effects of several control variables, which the subjects’ demography (i.e. gender, household size, age and income). The equation of the Model (1) is expressed as follows:

\[\text{INT} = \beta_0 + \beta_1 \text{CONTROL} + \varepsilon \] \hspace{1cm} (1)

Model (2) is an extended TPB model, which included attitudes towards behavior (AB), subjective norms (SN), perceived behavioral control (PBC) and personal norms (PN) as independent variables. In previous literature, it has been suggested that the demographic characteristics of the respondents may be associated with the intention to purchase NEVs (Wolf and Seebauer, 2014; Sovacool et al. 2018). Hence, gender (0=male, 1=female), age, income, and household size were incorporated as control
variables. Age and income were treated as categorical variable. And household size was treated as numerical variables. The equation of the Model (2) is expressed as follows:

$$\text{INT} = \beta_0 + \beta_1 \text{CONTROL} + \beta_2 \text{AB} + \beta_3 \text{SN} + \beta_4 \text{PBC} + \beta_5 \text{PN} + \varepsilon$$ \hspace{1cm} (2)$$

In Model (3), we tested whether the inclusion of policy factors will increase the explained variance of NEVs purchasing intentions. The equation of Model (3) is expressed as follows:

$$\text{INT} = \beta_0 + \beta_1 \text{CONTROL} + \beta_2 \text{AB} + \beta_3 \text{SN} + \beta_4 \text{PBC} + \beta_5 \text{PN} + \beta_6 \text{POL} + \varepsilon$$ \hspace{1cm} (3)$$

In Model (4), the total moderating effect of low-carbon awareness has been tested. The aim was to explore whether low-carbon awareness has a moderating effect among extended TPB variables and behavioral intention. TPB variable stands for AB, SN, PBC and PN. LCA stands for LV, LSK, LOK, respectively.

$$\text{INT} = \beta_0 + \beta_1 \text{CONTROL} + \beta_2 \text{POL} + \beta_3 \text{TPB variable} + \beta_4 \text{LCA} + \beta_5 \text{TPB variable} \times \text{LCA} + \varepsilon$$ \hspace{1cm} (4)$$

Table 4 shows the regression results for four models. In Model (1), none of these demography variables was found to be significant, except for income. Therefore, the hypotheses were robust across variations in the control variables. In Model (2), the relationships among the variables within the extended TPB theory were assessed (H1). As expected, attitude ($\beta=0.203$, p<0.001), subjective norms ($\beta=0.496$, p<0.001), perceived behavior control ($\beta=0.160$, p<0.001) and personal norms ($\beta=0.214$, p<0.001) have a positive impact on NEV purchasing intentions. Therefore, hypotheses 1a, 1b,
1c and 1d were supported. The results of Model (3) revealed that government policies also have a significant impact on intention (H2). Model (3) constructs significantly increased the variance of explanation with an additional 2.9% of variance in intention explained. Hence, H2 was supported. Model (4) shows that there is an “awareness-behavior gap” whereby low-carbon awareness has a moderating effect on purchasing behavior via psychological factors with statistical significance.

| Table4 |

To further test the individual moderating effects of low-carbon values, low-carbon subjective knowledge and low-carbon objective knowledge on the relationship between perception towards NEVs and purchasing intentions, a similar type of hierarchical multiple regression analysis was used. Following the methodology proposed by Cohen et al. (2003), we mean-centered each variable to ensure that multicollinearity between predictors and the interaction terms, which would prevent results from being affected. If the interaction term explains a significant proportion of variance in the outcome variable, then the change in R^2 (squared multiple correlation) for the interaction term added model was statistically significant with a moderating effect. Model (5), Model (6), and Model (7) tested the effect of low-carbon value, low-carbon subjective knowledge, and low-carbon objective knowledge respectively.
The equations of the Model (5), Model (6), and Model (7) are expressed as follows:

\[\text{INT}=\beta_0+\beta_1 \text{CONTROL}+\beta_2 \text{AB}+\beta_3 \text{SN}+\beta_4 \text{PBC}+\beta_5 \text{PN}+\beta_6 \text{LV}+\beta_7 \text{LV} \times \text{AB}+\beta_8 \text{LV} \times \text{SN}+\epsilon \]

(5)

\[\beta_9 \text{LV} \times \text{PBC}+\beta_{10} \text{LV} \times \text{PN}+\epsilon \]

(6)

\[\beta_9 \text{LSK} \times \text{PBC}+\beta_{10} \text{LSK} \times \text{PN}+\epsilon \]

(7)

Where \(\beta_i \) (i=1, 2, 3, \ldots, 10) indicates the path coefficient between the independent variables and purchasing intention; INT, AB, SN, PBC, SN, POL, LV, LSK, LOK refer to behavioral intention, attitude, subjective norms, perceived behavior control, personal norms, policies, low-carbon value, low-carbon subjective knowledge and low-carbon objective knowledge respectively; and \(\epsilon \) indicates the error term.

Table 5 summarizes the results of our hierarchical regression analyses. Model (5a), Model (6a), and Model (7a) assessed the independent variables and moderating effects of NEV purchasing intentions, while Model (5b), Model (6b), and Model (7b) measured interaction variables to test moderating impacts on NEVs purchasing intentions. Model (5b) showed that low-carbon value has not significant moderating effects of social-psychological factors (AB, SN, PBC and PN) and the intention of purchasing NEVs (Sig.F.Change=0.465) (\(\beta=-0.021, \ p>0.05; \ \beta=0.082, \ p>0.05; \ \beta=-0.042, \ p>0.05; \ \beta=-0.048, \ p>0.05 \)). This suggests that low-carbon value does not
provide effective driving force to purchase NEV via relative psychological factors. Hence, H3 was not supported.

Table 5

Interestingly, Model (6a) accounted for 51.8% of variance in NEV purchasing intention that could be explained by AB ($\beta=0.206$, $p<0.001$), SN ($\beta=0.498$, $p<0.001$) and PBC ($\beta=0.161$, $p<0.001$), PN($\beta=0.215$, $p<0.001$). Model (6b) accounted for 52.9% of variance in NEVs purchasing intention after the variable of low-carbon subjective knowledge was included. Moreover, the interaction of attitude and low-carbon subjective knowledge is significant ($\beta=0.138$, $p<0.05$). The more low-carbon subjective knowledge people grasp, the more impact of attitude on purchasing NEVs would be strengthened. However, the interaction of subjective norm and low-carbon subjective knowledge is negative significantly with the coefficients of -0.217 ($p<0.001$). This implies that the effect of subjective norm on NEV purchasing intention would decrease with any increase in low-carbon subjective knowledge. Therefore, H4 was supported partially.

Model (7a) accounted for 51.8% of variance in NEVs purchasing intention that could be explained by AB ($\beta=0.208$, $p<0.01$), SN ($\beta=0.501$, $p<0.001$), PBC ($\beta=0.161$, $p<0.001$) and PN ($\beta=0.216$, $p<0.01$). Model (7b) accounted for 52.3% of variance in
NEV purchasing intention when low-carbon objective knowledge was added into the model. The results revealed that the interaction of perceived behavioral control and low-carbon objective knowledge is significant with the coefficients of -0.092 (p<0.05), indicating that low-carbon objective knowledge weakens the influence of perceived behavioral control on intention of purchasing NEV. Therefore, H5 was not supported.

5. Discussion

The results of our analyses suggest at least five important points. Firstly, the results of our direct effects model indicate that all psychological factors including attitude, subjective norms, perceived behavioral control and personal norms were significantly related to the behavioral intention in terms of purchasing new energy vehicles. This further confirms the hypothesis that attitude, subjective norm and perceived behavioral control may be predictors of behavioral intention, as expressed in the theory of planned behavior (Ajzen, 1991). More importantly, subjective norms (β=0.496, p<0.001) has the strongest influence among all psychological variables on NEVs purchasing intention. In line with Ozaki and Sevastyanova (2011), it confirms that subjective norms have stronger positive impacts on NEVs purchasing intention than the attitude, perceived behavior control, and personal norms, a finding vital for promotional efforts for VEVs around the world, wherever in Asia or even Europe. People are willing to purchase NEVs if they were advised by other people or if they previously had a NEV (Lane and Potter, 2007). Household members, colleagues, and friends are all more likely to purchase a NEV if
they personally know someone who owns one. Apart from individual judgment about
NEVs, positive or negative evaluations from households, colleagues, and friends are
also important. This implies that NEVs purchasing behavior is socially influenced (He
et al., 2014), which is consistent with Thøgersen (2006)’s research as well as research
on the so-called Chinese herd mentality⁶. The peer pressure and following trends may
impact NEVs purchasing behavior in significant ways (Larson et al. 2014).

Secondly, we ascertain that the acceptability of government policies has
significantly positive effect on NEVs purchasing intention, and the explanatory power
of model has been improved when policy was added into the expanded TPB. The
results are consistent with previous literature (Diamond, 2009) that government
policies play an important role on influencing the intention of purchasing NEVs. At
present, the policies were taken to deal with complicated demand in the new energy
vehicles market. Such complicated demand need to focus not only on empowering
individuals, but also on influencing neighborhoods, families, colleagues, and 4S shops.

Current incentives, most about lowering the cost of NEVs, are undoubtedly important,
but subsidy policy is not just the efficient ones (Wang, Liu et al. 2014). In previous
studies, consumers have focused on the costs of purchasing, driving and maintenance
of electric vehicles (EVs) (Larson et al., 2014). However, in our study, more than half
(55%) of respondents were interested in purchasing a NEV because of cost, and only

⁶ Herd mentality (Rafat et al., 2009) is a form of convergent social behavior that can be broadly defined as the
alignment of the thoughts or behaviors of individuals in a group (herd) through local interaction and without
centralized coordination. It is a well-documented feature of human behavior in a number of domains.
31.5% of respondents expressed a preference or interest in receiving a free code-plate lottery system when their cars were registered. Surprisingly, almost two thirds of respondents (68%) indicated that they were willing to buy a NEV if the government improved the construction of infrastructure such as hydrogen fueling stations or charging facilities. What’s more, more than half people who belong to these respondents have high income, and they prefer to pay more attention on environmental technology and the improvement of public facilities than cost. Therefore, relative policies should focus not only on subsidy but also on improvement of NEV technology and infrastructure, which are also mentioned in previous literature (Åhman 2006).

Thirdly, there is a gap between awareness and behavior because low-carbon awareness has slight moderating effect on purchasing intentions according to model 4. The measurement of low-carbon awareness involves low-carbon values, low-carbon subjective knowledge and low-carbon objective knowledge, which are explained in section 2.3. Consequently, the results of model 5 show that low-carbon value didn’t have significant moderating effect on the relationship between psychological factors and intention of purchasing NEV (Sig.F.Change>0.05; p>0.05), which corresponds to Van Raaij and Verhallen’s (1983) value-action gap. The presence of a value-action gap weaken the moderating effect on behavior via psychological factors, which might

7 The code-plate lottery policy is taken in megacities of China such as Tianjin, Beijing, Shanghai and etc, which is a kind of auxiliary policy to prevent the number of vehicles from rising quickly.

8 It refers to people who were willing to buy a NEV if the government improved the construction of infrastructure.
be caused by the motivators and barriers of purchasing behavior (Bai, Y. and Y. Liu, 2013).

Fourthly, low-carbon subjective knowledge has a significant moderating effect on behavior via attitude and subjective norms. Also, according to the results of model 6 and 7, explanatory power has been improved with the addition of low carbon knowledge. Model 6 suggests that high low-carbon subjective knowledge strengthens the relationship between attitudes and behavioral intentions ($\beta=0.138$, $p<0.05$). This finding clearly verifies that of Bamberg (2003), who suggested that individuals with high levels of environmental knowledge would pay more attention to low-carbon automobiles with positive attitude such as NEVs. In China, people who have more low-carbon subjective knowledge also possess positive attitudes towards NEV attributes such as energy conservation and environmental protection, which enhance the probability of purchasing NEVs. Also, and surprisingly, we find that low-carbon subjective knowledge exerts a negative influence on relationship between subjective norms and intention of purchasing NEVs ($\beta=0.217$, $p<0.001$). People who have low-carbon subjective knowledge always have more confidence to make evaluations of purchasing NEVs by themselves, compared to others who are perhaps influenced blindly. As discussed above, most people are influenced by family members, friends or colleagues when considering whether to purchase a NEV. Our findings suggest that the motivation of purchasing NEVs for groups who grasp low-carbon subjective knowledge might be their environmental attributes, and they are more likely to make
reasonable determinations of whether to purchase an NEV or reject it. Thus, the probability of purchasing NEVs in a so-called herd mentality would (paradoxically) decrease as people grasp more low-carbon subjective knowledge.

Finally, we surmise that low-carbon objective knowledge exerts a negative influence on the relationship between perceived behavioral control and the intention of purchasing NEVs. This finding might be explained by some barriers existing in the market of New Energy Vehicles in China (Ying Li, 2016). People who with low-carbon objective knowledge may consider more detailed barriers of NEVs such as inconvenience, immature technology and undeveloped infrastructure. This can decrease intentions of purchasing NEVs since people feel more obstacles and doubts towards NEVs technology. Some respondents even suggested that electricity generation and distribution to NEVs would have a negative environmental impact, especially given the emergent nature of the technology itself (Yuan et al. 2015). In this manner, improving the environmental performance of NEVs can also serve to positively moderate and increase consumer confidence in the technology.

6. Conclusion and policy implication

This paper has tested social-psychological factors based on an extended TPB model (Chen and Tung 2014) Siu Hing Lo, 2016), with low-carbon awareness added as a moderating variable to explain an “awareness-behavior” gap. Our investigation yields several policy implications.
To summarize, attitudes towards behavior, subjective norms, perceived behavioral control and personal norms are strong determinants of intentions to purchase NEVs. The moderating effect of low-carbon awareness on the relationship between psychological factors and the intention of purchasing NEV is slight. The awareness-behavior gap can be explained partially for low-carbon awareness exerts slight moderating impact on the intention of purchasing NEVs. We develop the dimensions of measuring low-carbon awareness by analyzing low-carbon values and low-carbon knowledge. Low-carbon values does not have a significant moderating effect in social-psychological model due to value-action gap (Van, 1983). Low-carbon knowledge, however, has a positive significant moderating impact on behavioral intention via attitude, while has a negative significant moderating effect on behavioral intention via subjective norms and perceived behavioral control. Finally, the acceptability of policy has a positive significant influence on the intention of purchasing NEVs.

Better understanding these cognitive and emotional factors can enable marketing specialists and policymakers to calibrate their ongoing research, demonstration, outreach, and regulatory activities and to take more effective motivational measures throughout China (Egbue and Long, 2012). The self-perceived ability and psychological profile of potential adopters intersect deeply with the decision-making processes surrounding new energy vehicles. Government should encourage potential adopters and users to strengthen their own awareness of green consumption and
consumption concepts, and guide them playing a leading role in promoting the
development of low-carbon transport infrastructure as well as various information and
marketing channels. For example, broadening the channels of public participation in
learning about the latest performance attributes (and costs) of the latest NEVs can
increase awareness and knowledge. In addition, policymakers can promote
low-carbon education and awareness and action related skills, which are
comparatively low according to our research findings. Over time, consumer
preferences and and the strength of NEV brands will undoubtedly increase or improve
as well. Last but not the least, forms of social media and digital interaction can be
utilized be used to build a platform in which consumers can continuously offer
feedback about their needs, concepts, and suggestions for NEVs to manufacturers as
well as dealerships, a potentially strong barrier to NEV adoption (Zarazua et al. 2018),
so that the development of NEVs is consistent with the needs of consumers. This
could motivate incumbents to further innovate NEV technologies and related
innovations.

In presenting our findings, a few limitations deserve to be mentioned. First,
although the demographics of respondents were not fully analyzed in this study, such
factors may explain the heterogeneity among residents in terms of low-carbon
awareness and purchasing intentions. Moreover, our study does not distinguish
between adopters, potential consumers and reluctant adopters, and how these groups
differ with respect to their psychological factors of NEV purchasing behavior. Future
work is needed to explore how consumers can be grouped into various psychological factors or demographical factors, and their NEV purchase decision processes, especially as some potential users may even resist new low-carbon innovations entirely (Kahma and Matschoss 2017). In addition, this study was based upon on voluntary and self-reported data concerning purchasing intentions for NEV rather than direct observation. Such data may not entirely reflect truthful purchasing intentions. Notwithstanding such limitations, our study has yielded important insight into the various social and psychological mechanisms of affecting perceptions and possible adoption patterns of NEVs in China.

Acknowledgements

This study was supported by the National Natural Sciences Foundation of China under Grants 71431005, 71273185 and 71561137003, the Key Project of National Social Science Foundation of China under Grant 12&ZD208, and the National Science & Technology Pillar Program under Grant 2014BAC26B00.
References

Journal of research in personality 25(3), 285-301.

Browne, D., O'Mahony, M., Caulfield, B., 2012. How should barriers to alternative fuels and vehicles be classified and potential policies to promote innovative technologies be evaluated? Journal of Cleaner Production 35(17), 140–151.

Kim, J., Rasouli, S., Timmermans, H., 2014. Expanding scope of hybrid choice models allowing for mixture of social influences and latent attitudes: Application to intended purchase of
electric cars. Transportation research part A 69, 71-85.

Werff, E. V. D., Steg, L., 2015. One model to predict them all: predicting energy behaviours with the norm activation model. Energy Research & Social Science 6, 8–14.

Fig. 1. Sales volume of automobile and NEVs in China between 2009 and 2014

Fig. 2. Synthetic Conceptual Framework Drawing from TPB, Government Policy, and Low-Carbon Awareness

Source: Authors
Table 1: NEV demonstration programs and development progress in China

<table>
<thead>
<tr>
<th>Timeline</th>
<th>New Energy Vehicle Pilot Program</th>
<th>New Energy Vehicle Promotion And Application Program</th>
</tr>
</thead>
</table>
| 2009-2012| ● Notice on promotion and demonstration of energy-saving and new energy vehicle
 ● Notice on implementing NEV private buyer subsidy pilot project | ● Notice on work of continuous promotion and application of new energy vehicles
 ● Notice on further improving the work of promotion and application of new energy vehicles
 ● Options on Accelerating the Development of Energy-saving and Environmental Protection Industry |

<table>
<thead>
<tr>
<th>Subsidy (thousand RMB/vehicle)</th>
<th>Public service</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Public sector</td>
<td>HV: 50 (maximum)</td>
<td>BEV: 60 (maximum)</td>
</tr>
<tr>
<td></td>
<td>BEV: 60</td>
<td>PHV: 35</td>
</tr>
<tr>
<td></td>
<td>FCV: 250</td>
<td></td>
</tr>
<tr>
<td>Bus longer than 10 m</td>
<td>HV: 42 (maximum)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEV: 500</td>
<td>BEV: 500</td>
</tr>
<tr>
<td></td>
<td>FCV: 600</td>
<td>PHV: 250</td>
</tr>
<tr>
<td>Private sector</td>
<td>0.3 RMB/kWh</td>
<td>BEV of special purpose</td>
</tr>
<tr>
<td></td>
<td>HV: 50 (maximum)</td>
<td>0.2 RMB/kWh(<150)</td>
</tr>
</tbody>
</table>
Target

- 25 each city: 1000 NEVs (include Tianjin)
- Automotive sales: 10% (2012)

28 cities or regions cumulative sales:

- 10,000 NEVs (megacities), ≥5000 NEVs (other cities, including Tianjin)

Progress

- 27,432 NEVs (public:23,032 NEVs, private 4400 NEVs)
- Completion rate: 40%

38616 NEVs by September, 2014
- Completion rate: 11.5%

Source: Compiled by authors

Table 2

Demographics of Survey Respondents

<table>
<thead>
<tr>
<th>Background</th>
<th>Frequency</th>
<th>Percentage (%)</th>
<th>Background</th>
<th>Frequency</th>
<th>Percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>466</td>
<td>57.5%</td>
<td><=2000</td>
<td>60</td>
<td>7.4%</td>
</tr>
<tr>
<td>Female</td>
<td>345</td>
<td>42.5%</td>
<td>2001-4000</td>
<td>249</td>
<td>30.7%</td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18-25</td>
<td>165</td>
<td>20.3%</td>
<td>4001-6000</td>
<td>239</td>
<td>29.5%</td>
</tr>
<tr>
<td>26-35</td>
<td>395</td>
<td>48.7%</td>
<td>6001-8000</td>
<td>121</td>
<td>14.5%</td>
</tr>
<tr>
<td>Education</td>
<td>Count</td>
<td>Percentage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>-------</td>
<td>------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High school</td>
<td>88</td>
<td>10.9%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Junior college</td>
<td>157</td>
<td>19.4%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>College</td>
<td>404</td>
<td>49.8%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Master or above</td>
<td>162</td>
<td>20.0%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Car ownership</th>
<th>Count</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Having</td>
<td>538</td>
<td>66.3%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Household size</th>
<th>Count</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td>2.5%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IC Bus card</th>
<th>Count</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Having</td>
<td>311</td>
<td>80.4%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Driver’s license</th>
<th>Count</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Having</td>
<td>691</td>
<td>85.2%</td>
</tr>
</tbody>
</table>
Table 3
Variables and Correlation Matrix for NEV purchasing intentions (N=811)

<table>
<thead>
<tr>
<th></th>
<th>LV</th>
<th>LSK</th>
<th>LOK</th>
<th>AB</th>
<th>SN</th>
<th>PBC</th>
<th>PN</th>
<th>POL</th>
<th>INT</th>
</tr>
</thead>
<tbody>
<tr>
<td>LV</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LSK</td>
<td>0.163**</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOK</td>
<td>0.404**</td>
<td>0.174**</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AB</td>
<td>0.193**</td>
<td>0.302**</td>
<td>0.220**</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SN</td>
<td>0.244**</td>
<td>0.330**</td>
<td>0.257**</td>
<td>0.579**</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PBC</td>
<td>0.102**</td>
<td>0.235**</td>
<td>0.156**</td>
<td>0.185**</td>
<td>0.301**</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PN</td>
<td>0.257**</td>
<td>0.262**</td>
<td>0.211**</td>
<td>0.503**</td>
<td>0.654**</td>
<td>0.213**</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>POL</td>
<td>0.160**</td>
<td>0.171**</td>
<td>0.185**</td>
<td>0.386**</td>
<td>0.423**</td>
<td>0.277**</td>
<td>0.389**</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>INT</td>
<td>0.171**</td>
<td>0.259**</td>
<td>0.175**</td>
<td>0.449**</td>
<td>0.666**</td>
<td>0.364**</td>
<td>0.583**</td>
<td>0.695**</td>
<td>1</td>
</tr>
<tr>
<td>SD</td>
<td>0.603</td>
<td>0.733</td>
<td>0.592</td>
<td>0.561</td>
<td>0.764</td>
<td>1.135</td>
<td>0.984</td>
<td>1.027</td>
<td>0.986</td>
</tr>
</tbody>
</table>

Note. 1. LV, Low-carbon value; LSK, Low-carbon subjective knowledge; LOK, Low-carbon objective knowledge; AB, Attitude; SN, Subjective norms; PBC, Perceived behavioral control; PN, Personal norms; POL, Policy; INT, Intention. 2. *p<0.5; **p<0.01; ***p<0.001.
Hierarchical multiple regression analysis of purchasing NEVs intention

<table>
<thead>
<tr>
<th>Independent variables</th>
<th>Control model</th>
<th>Direct effects model</th>
<th>Moderation model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Model (1)</td>
<td>Model (2)</td>
<td>Model (3)</td>
</tr>
<tr>
<td>AB</td>
<td>0.203***(3.720)</td>
<td>0.154**(2.885)</td>
<td>0.219***(3.936)</td>
</tr>
<tr>
<td>SN</td>
<td>0.496***(10.698)</td>
<td>0.451***(9.936)</td>
<td>0.473***(10.005)</td>
</tr>
<tr>
<td>PBC</td>
<td>0.160***(6.977)</td>
<td>0.132***(5.832)</td>
<td>0.179***(7.504)</td>
</tr>
<tr>
<td>PN</td>
<td>0.214***(6.412)</td>
<td>0.184***(5.636)</td>
<td>0.219***(6.489)</td>
</tr>
<tr>
<td>POL</td>
<td></td>
<td>0.188***(7.189)</td>
<td>0.184***(6.974)</td>
</tr>
<tr>
<td>Interactions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LV</td>
<td></td>
<td></td>
<td>-0.048(-0.927)</td>
</tr>
<tr>
<td>LSK</td>
<td></td>
<td></td>
<td>-0.016(-0.302)</td>
</tr>
<tr>
<td>LOK</td>
<td></td>
<td></td>
<td>0.033(0.835)</td>
</tr>
<tr>
<td>LV×AB</td>
<td></td>
<td></td>
<td>-0.045(-0.524)</td>
</tr>
<tr>
<td>LV×SN</td>
<td></td>
<td></td>
<td>0.115(1.453)</td>
</tr>
<tr>
<td>LV×PBC</td>
<td></td>
<td></td>
<td>-0.016(-0.385)</td>
</tr>
<tr>
<td>LV×PN</td>
<td></td>
<td></td>
<td>-0.097(-1.395)</td>
</tr>
<tr>
<td>LSK×AB</td>
<td></td>
<td></td>
<td>0.129(2.071)</td>
</tr>
<tr>
<td>LSK×SN</td>
<td></td>
<td></td>
<td>-0.242***(4.595)</td>
</tr>
<tr>
<td>LSK×PBC</td>
<td></td>
<td></td>
<td>0.044(1.486)</td>
</tr>
<tr>
<td>LSK×PN</td>
<td></td>
<td></td>
<td>0.094(2.207)</td>
</tr>
<tr>
<td>LOK×AB</td>
<td></td>
<td></td>
<td>0.037(0.391)</td>
</tr>
<tr>
<td>LOK×SN</td>
<td></td>
<td></td>
<td>0.009(0.101)</td>
</tr>
<tr>
<td>LOK×PBC</td>
<td></td>
<td></td>
<td>-0.087*(-2.084)</td>
</tr>
<tr>
<td>LOK×PN</td>
<td></td>
<td></td>
<td>0.081(1.339)</td>
</tr>
<tr>
<td>Control variables</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td>-0.117(-1.684)</td>
<td>-0.044(-0.899)</td>
<td>-0.019(-0.394)</td>
</tr>
<tr>
<td></td>
<td>0.116(2.388)</td>
<td>0.040(1.151)</td>
<td>0.046(1.367)</td>
</tr>
<tr>
<td>----------------------</td>
<td>--------------</td>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Household size</td>
<td>0.053(0.376)</td>
<td>0.048(0.480)</td>
<td>0.013(0.132)</td>
</tr>
<tr>
<td>Age 18-25</td>
<td>0.128(0.998)</td>
<td>0.054(0.587)</td>
<td>0.014(0.159)</td>
</tr>
<tr>
<td>Age 26-35</td>
<td>0.062(0.485)</td>
<td>0.034(0.229)</td>
<td>0.036(1.222)</td>
</tr>
<tr>
<td>Age 36-45</td>
<td>0.164(1.176)</td>
<td>0.106(1.065)</td>
<td>0.081(0.842)</td>
</tr>
<tr>
<td>Age 46-60</td>
<td>0.207(1.775)</td>
<td>0.139(1.670)</td>
<td>0.143(1.766)</td>
</tr>
<tr>
<td>Income <2000</td>
<td>0.099(1.083)</td>
<td>0.060(0.914)</td>
<td>0.048(0.762)</td>
</tr>
<tr>
<td>Income 2000-4000</td>
<td>-0.183(-1.826)</td>
<td>-0.161(-1.625)</td>
<td>-0.152(-1.417)</td>
</tr>
<tr>
<td>Income 4001-6000</td>
<td>-0.389*(-4.276)</td>
<td>-0.143*(-2.191)</td>
<td>-0.130*(-2.058)</td>
</tr>
<tr>
<td>Adj R²</td>
<td>0.043</td>
<td>0.518</td>
<td>0.547</td>
</tr>
<tr>
<td>R² change</td>
<td>0.525</td>
<td>0.029</td>
<td>0.021</td>
</tr>
<tr>
<td>F</td>
<td>5.484</td>
<td>73.190</td>
<td>75.847</td>
</tr>
<tr>
<td>Sig. F.Change</td>
<td>0.000</td>
<td>0.000</td>
<td>0.002</td>
</tr>
<tr>
<td>Sig. Model</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Note: 1. AB, Attitude; SN, Subjective norms; PBC, Perceived behavioral control; PN, Personal norms; LV, Low-carbon value; LSK, Low-carbon subjective knowledge; LOK, Low-carbon objective knowledge. 2. Coefficient is unstandardized coefficient. 3. T value is in parentheses. 4. *p<0.05; **p<0.01; ***p<0.001.
Table 5

Post-hoc analysis of individual moderating effects on purchasing NEVs behavioral intention

<table>
<thead>
<tr>
<th></th>
<th>Model (5a)</th>
<th>Model (5b)</th>
<th>Model (6a)</th>
<th>Model (6b)</th>
<th>Model (7a)</th>
<th>Model (7b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td>0.206*** (3.769)</td>
<td>0.204*** (3.725)</td>
<td>0.206*** (3.736)</td>
<td>0.213*** (3.836)</td>
<td>0.208*** (3.796)</td>
<td>0.203*** (3.716)</td>
</tr>
<tr>
<td>SN</td>
<td>0.499*** (10.750)</td>
<td>0.495*** (10.562)</td>
<td>0.498*** (10.668)</td>
<td>0.481*** (10.312)</td>
<td>0.501*** (10.743)</td>
<td>0.495*** (10.593)</td>
</tr>
<tr>
<td>PBC</td>
<td>0.160*** (6.975)</td>
<td>0.165*** (7.063)</td>
<td>0.161*** (6.958)</td>
<td>0.169*** (7.238)</td>
<td>0.161*** (7.015)</td>
<td>0.167*** (7.261)</td>
</tr>
<tr>
<td>PN</td>
<td>0.219*** (6.499)</td>
<td>0.217*** (6.377)</td>
<td>0.215*** (6.420)</td>
<td>0.216*** (6.497)</td>
<td>0.216*** (6.447)</td>
<td>0.215*** (6.412)</td>
</tr>
<tr>
<td>LV</td>
<td>-0.046 (-1.087)</td>
<td>-0.055 (-1.130)</td>
<td>-0.014 (-0.391)</td>
<td>-0.019 (-0.499)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LSK</td>
<td></td>
<td></td>
<td></td>
<td>-0.043 (-0.999)</td>
<td>-0.021 (-0.446)</td>
<td></td>
</tr>
<tr>
<td>LOK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.045 (0.543)</td>
</tr>
<tr>
<td>Mi × AB</td>
<td>-0.021 (-0.265)</td>
<td></td>
<td>0.138* (2.277)</td>
<td></td>
<td>-0.005 (-0.053)</td>
<td></td>
</tr>
<tr>
<td>Mi × SN</td>
<td>0.082 (1.190)</td>
<td></td>
<td>-0.217*** (-4.258)</td>
<td></td>
<td>0.045 (0.543)</td>
<td></td>
</tr>
<tr>
<td>Mi × PBC</td>
<td>-0.042 (-1.130)</td>
<td></td>
<td>0.040 (1.363)</td>
<td></td>
<td>-0.092* (-2.518)</td>
<td></td>
</tr>
<tr>
<td>Mi × PN</td>
<td>-0.048 (-0.761)</td>
<td></td>
<td>0.080 (1.918)</td>
<td></td>
<td>0.070 (1.253)</td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td>-0.046 (-0.929)</td>
<td>-0.049 (-0.991)</td>
<td>-0.043 (-0.856)</td>
<td>-0.036 (-0.724)</td>
<td>-0.047 (-0.955)</td>
<td>-0.043 (-0.867)</td>
</tr>
<tr>
<td>Household size</td>
<td>0.042 (1.199)</td>
<td>0.039 (1.125)</td>
<td>0.039 (1.134)</td>
<td>0.040 (1.173)</td>
<td>0.040 (1.156)</td>
<td>0.040 (1.160)</td>
</tr>
<tr>
<td>Age</td>
<td>0.046 (0.456)</td>
<td>0.054 (0.533)</td>
<td>0.048 (0.480)</td>
<td>0.048 (0.483)</td>
<td>0.042 (0.412)</td>
<td>0.046 (0.454)</td>
</tr>
<tr>
<td>18-25</td>
<td>0.061 (0.668)</td>
<td>0.073 (0.793)</td>
<td>0.055 (0.597)</td>
<td>0.040 (0.434)</td>
<td>0.054 (0.586)</td>
<td>0.059 (0.640)</td>
</tr>
<tr>
<td>26-35</td>
<td>0.033 (0.220)</td>
<td>0.084 (1.161)</td>
<td>0.079 (1.087)</td>
<td>0.079 (1.087)</td>
<td>0.076 (1.052)</td>
<td>0.083 (1.142)</td>
</tr>
<tr>
<td>36-45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Income</td>
<td>Adj R²</td>
<td>R² change</td>
<td>F</td>
<td>Sig.F.Change</td>
<td>Sig.Model</td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>--------</td>
<td>-----------</td>
<td>----------</td>
<td>--------------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>46-60</td>
<td>0.115(1.158)</td>
<td>0.122(1.226)</td>
<td>0.107(1.078)</td>
<td>0.105(1.067)</td>
<td>0.107(1.083)</td>
<td>0.111(1.118)</td>
</tr>
<tr>
<td>Income < 2000</td>
<td>0.141(1.691)</td>
<td>0.145(1.736)</td>
<td>0.138(1.660)</td>
<td>0.121(1.458)</td>
<td>0.276*(2.878)</td>
<td>0.274**(2.857)</td>
</tr>
<tr>
<td>2000-4000</td>
<td>0.058(0.891)</td>
<td>0.062(0.946)</td>
<td>0.058(0.893)</td>
<td>0.046(0.704)</td>
<td>0.196*(2.476)</td>
<td>0.192*(2.425)</td>
</tr>
<tr>
<td>4001-6000</td>
<td>-0.176(-1.785)</td>
<td>-0.209(-2.135)</td>
<td>-0.183(-1.863)</td>
<td>-0.193(-1.979)</td>
<td>0.189*(1.911)</td>
<td>0.210*(2.160)</td>
</tr>
<tr>
<td>6001-8000</td>
<td>-0.142*(-2.173)</td>
<td>-0.144*(-2.200)</td>
<td>-0.145*(-2.212)</td>
<td>-0.150*(-2.304)</td>
<td>0.138*(2.115)</td>
<td>0.143*(2.183)</td>
</tr>
</tbody>
</table>

Note. 1. AB, Attitude; SN, Subjective norms; PBC, Perceived behavioral control; PN, Personal norms; LV, Low-carbon value; LSK, Low-carbon subjective knowledge; LOK, Low-carbon objective knowledge. 2. Mi is moderate variable, i.e. low-carbon value in model (5); low-carbon subjective knowledge in model (6); and low-carbon objective knowledge in model (7). 3. Coefficient is unstandardized coefficient. 4. T value is in parentheses. *p<0.05; **p<0.01; ***p<0.001.