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Whirl Mappings on Generalised Annuli and the

Incompressible Symmetric Equilibria of the

Dirichlet Energy

Charles Morris Ali Taheri

Abstract

In this paper we show a striking contrast in the symmetries of equilibria
and extremisers of the total elastic energy of a hyperelastic incompressible
annulus subject to pure displacement boundary conditions. Indeed upon
considering the equilibrium equations, here, the nonlinear second order
elliptic system formulated for the deformation u = (u1, ..., uN ):

EL[u,X] =

8<:
∆u = div (P(x)cof∇u) in X,
det∇u = 1 in X,
u ≡ ϕ on ∂X,

where X is a finite, open, symmetric N -annulus (with N ≥ 2), P = P(x)
is an unknown hydrostatic pressure field and ϕ is the identity mapping, we
prove that, despite the inherent rotational symmetry in the system, when
N = 3, the problem possesses no non-trivial symmetric equilibria whereas
in sharp contrast, when N = 2, the problem possesses an infinite family of
symmetric and topologically distinct equilibria. We extend and prove the
counterparts of these results in higher dimensions by way of showing that
a similar dichotomy persists between all odd vs. even dimensions N ≥ 4
and discuss a number of closely related issues.

1 Introduction

A problem of major interest and significance in nonlinear elasticity is the under-
standing of qualitative features and symmetries of the energy minimisers and
equilibria under the so-called incompressibility constraint (see, e.g., [1]-[6], [19]
[20, 21]). Motivated by the above and the earlier works [19, 20], [25]-[27], in
this paper we make an interesting contribution towards certain aspects of this
problem by considering the geometric setup where X ⊂ RN (N ≥ 2) is a finite,
symmetric, open annulus and the total elastic energy is given by an integral

E[u;X] =
∫
X

W (∇u(x)) dx. (1.1)
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The stored energy function W = W (F) : RN×N → R ∪ {∞} is taken to be
isotropic, frame indifferent and polyconvex (see below) while the deformation u
is restricted to the class of admissible incompressible Sobolev mappings

A(X) =
{

u ∈ W 1,2(X, RN ) : det∇u = 1 a.e. in X, u ≡ ϕ on ∂X
}

, (1.2)

with the last condition in (1.2) asserting that u agrees with the identity mapping
on ∂X in the sense of traces. To prevent interpenetration of matter, W (F) ≡ ∞
for detF ≤ 0 and so as far as the elastic deformations and their energetics are
concerned it is the open set RN×N

+ = {F ∈ RN×N : detF > 0} that is of interest.
Now recall that the stored energy function W = W (F) is said to be polyconvex
(see [2, 15] and [6, 7]) iff it can be expressed as a convex function of the minors (or
equivalently sub-determinants) of F, that is, iff W (F) = φ(F, adj2F, · · · , adjNF)
for some convex function φ : Rτ(N) → R ∪ {∞}. Here adjsF (with 1 ≤ s ≤ N)
stands for the matrix of all s× s minors of F and τ(N) =

∑
(N !)2/[s!(N − s)!]2

(summation over s = 1, ..., N). Additionally the stored energy function is said
to be frame indifferent and isotropic iff W (QF) = W (F) and W (FQ) = W (F)
for all Q ∈ SO(N) respectively, that is, it is invariant under the left and right
actions of the rotation group SO(N). For more discussion on the implications
of these assumptions to the representation of W = W (F) in terms of the right-
and left- Cauchy-Green tensors or the singular values of F see [1, 2] or [6, 7]. A
central example of a frame indifferent, isotropic and polyconvex stored energy
function is given by

W (F) = tr{FtF}+ h(detF) =
N∑

j=1

v2
j + h(

N∏
j=1

vj), (1.3)

where h is any convex function on the line, v1, ..., vN are the singular values of
F, that is, the eigenvalues of

√
FtF and the second equality assumes detF > 0

(see, [1]-[2] and [6, 7] for more).
Now subject to the differentiability of the stored energy function, by invoking

the Lagrange multipliers method (cf. [3, 6, 26]) it can be seen that the Euler-
Lagrange system associated with the elastic energy E[·;X] over the class of
admissible deformations A(X) takes the form

EL[u,X] =

 div S[x,∇u(x)] = 0 in X,
det∇u = 1 in X,
u ≡ ϕ on ∂X,

(1.4)

where the divergence operator is understood to act row-wise while the tensor
field S = S[x,∇u] – the Piola-Kirchhoff stress tensor – is given by

S[x,F] =
∂W

∂F
(F)−P(x)F−t =

∂W

∂F
(F)−P(x)cof F. (1.5)

Here the function P is an a priori unknown Lagrange multiplier associated with
the incompressibility constraint often called the hydrostatic pressure.
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In this paper we shall introduce and study a class of mappings called whirl
mappings (or whirls for simplicity). These are certain continuous self-mappings
of the N -dimensional annulus X onto itself – for definiteness we hereafter write
X = X[a, b] = {(x1, ..., xN ) : a < |x| < b} with 0 < a < b < ∞ – that agree with
the identity mapping on the boundary ∂X and admit the representation

u : x 7→ Q(ρ1, . . . , ρn) x, x ∈ X. (1.6)

In this representation Q is a continuous SO(N)-valued matrix field depending
on the variable x through the 2-plane radial variables % = (ρ1, . . . , ρn) given by

ρj =
√

x2
2j−1 + x2

2j , 1 ≤ j ≤ n− 1, (1.7)

and

ρn =

{√
x2

2n−1 + x2
2n if N = 2n,

x2n−1 if N = 2n− 1,
(1.8)

where % = (ρ1, . . . , ρn) ∈ UN ⊂ Rn, UN = {% ∈ Rn
+ : a < |%| < b} when N = 2n

and UN = {% ∈ Rn−1
+ ×R : a < |%| < b} when N = 2n−1. Next for the purpose

of symmetry considerations described below we demand Q to take values on a
fixed maximal torus T ⊂ SO(N) that here we set to be the subgroup of all 2×2
block diagonal rotation matrices. As a result

Q(%) = Q(ρ1, . . . , ρn) = diag(R[g1], . . . ,R[gn]), N = 2n, (1.9)

and

Q(%) = Q(ρ1, . . . , ρn) = diag(R[g1], . . . ,R[gn−1], 1), N = 2n− 1, (1.10)

where each block R = R[g] ∈ SO(2) is determined by an angle of rotation or
whirl function g = gj(ρ1, . . . , ρn). Now any such whirl mapping u is invariant
under the action of the maximal torus T since firstly each ρj with 1 ≤ j ≤ n
remains fixed under the action of T and secondly,

[Pu ◦Pt](x) = Pu(Ptx) = PQ(ρ1, . . . , ρn)Ptx = Q(ρ1, . . . , ρn)x = u(x),

for all P ∈ T and x ∈ X. (Note that the second to last equality above follows
from the commutativity of T.) Thus in this sense the whirl mappings as defined
above are rotationally symmetric with respect to T ⊂ SO(N).

Specialising momentarily to N = 3 the SO(3)-valued matrix field Q in (1.6)
has the form Q = diag(R[g], 1) where g = g(ρ1, x3), ρ1 =

√
x2

1 + x2
2 and ρ2 = x3

[cf. (2.4)]. Thus subject to g being differentiable, the deformation gradient (with
ρ = ρ1, Q̇ = ∂gQ) is seen to be ∇u = Q(ρ, x3) + Q̇(ρ, x3)x ⊗ ∇g where ∇g
denotes the gradient in the x variables, i.e., ∇g = (gρ x1/ρ, gρ x2/ρ, gx3). Setting
now for each x ∈ X fixed, P1 = PRQt, P2 = RtPt where P,R ∈ SO(3) are the
matrices of rotation about the axes e1 = (1, 0, 0) and e3 = (0, 0, 1) respectively
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Figure 1: The figure here shows how a whirl mapping u acts on X when N = 3.
In particular it shows how the whirl u wraps a radial line around the centre in
the (x1, x2)-plane.

such that RQtQ̇x = (
√

x2
1 + x2

2, 0, 0) and PR∇g = (0, 0, |∇g|), upon noting
〈QtQ̇x,∇g〉 = 0, a straightforward calculation gives

P1∇uP2 =

1 0 ρ|∇g|
0 1 0
0 0 1

 =: B[ρ|∇g|]. (1.11)

Hence in view of the assumptions on W the elastic energy E when restricted to
these whirl mappings in three dimensions can be expressed as,

E[u;X] =
∫
X

W (∇u) dx =
∫
X

W (B[ρ|∇g|]) dx = 2π

∫
U

f(ρ|∇g|)ρ dρdx3.

Here U = U3 as defined earlier is a half annulus (see also Section 2) and f(t) =
W (B[t]) is the restriction of the stored energy function to the rank-one line
B[t] = I3 + te1 ⊗ e3 with −∞ < t < ∞.

For the sake of this paper we shall confine to invariant stored energy functions
of the form (1.3) that by virtue of the incompressibility constraint can be taken
without loss of generality to be W (F) = tr{FtF}/2 with the resulting elastic
energy E in (1.1) being the Dirichlet energy. The main goal then is to highlight
a curious difference in the existence and multiplicity of symmetric equilibria of
the elastic energy (1.1) or equivalently solutions to the nonlinear system (1.4) in
the form of whirl mappings between the cases N = 2 and N = 3. Indeed in the
latter case we show that there are no non-trivial equilibria in the class of whirl
mappings whereas in the former case they do exist and quite in abundance – in
fact, here, we show that there are infinitely (countably) many equilibria in the
form of whirl mappings, each of a distinct topological type. In the final sections
we establish the counterpart of these results in higher dimensions and prove a
similar dichotomy between all odd vs. even dimensions N ≥ 4.
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2 Existence and non-existence results in two and
three dimensions

The aim of this section is to showcase a curious and sharp contrast in the nature
and form of the symmetries of the equilibria and extremisers of the elastic energy
between the cases N = 2 and N = 3. Specifically here we show that when N = 3
the only whirl solution to the system (2.1) below is the identity mapping whereas
when N = 2 there is an infinite (countably many) scale of such solutions to (2.1),
each of a different topological type. To this end let us recall that the Euler-
Lagrange system associated with the Dirichlet energy (W (F) = tr (FtF)/2) over
A(X) (for any N ≥ 2) is given by the nonlinear system [cf. (1.4)- (1.5)]

EL[u,X] =

 div S[x,∇u(x)] = 0 in X,
det∇u = 1 in X,
u ≡ ϕ on ∂X,

(2.1)

where the stress field S in this case is given by S[x,F] = F−P(x)F−t. There-
fore, elaborating further, the divergence term on the left in the first line of the
above system can be written as

div S[x,∇u(x)] = ∆u− div(P(∇u)−t) = ∆u− (∇u)−t∇P, (2.2)

where the last identity subject to sufficient regularity of u results from an ap-
plication of the so-called Piola identity (see, e.g., [2, 15, 28]). Hence the first
equation in the system (2.1) reads as

div S[x,∇u(x)] = 0 ⇐⇒ ∇P = (cof∇u)−1∆u = (∇u)t∆u. (2.3)

By a classical solution we mean a pair (u, P) where u is admissible, that is,
u ∈ A(X), (u, P) is regular, i.e., u ∈ C(X, R3)∩C2(X, R3), P ∈ C(X)∩C1(X)
and (2.1), or the equivalent formulation of the first equation, (2.3) holds. Now
being prompted by considerations of symmetry we continue by seeking classical
solutions to the system (2.1) from the class of whirl mappings. 1

The case N = 3. Let U = U [a, b] = {(ρ, z) ∈ R2 : ρ > 0, a <
√

ρ2 + z2 < b},
i.e., the half vertical open annulus whose closure upon a 2π rotation about the
z-axis gives X.

z

ρ

∂Ub

∂Ua

1We consider only classical solutions in this paper. Less regular solutions or other possible
pathological solutions are neither discussed not studied here.
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Then by definition any whirl mapping u on X is represented as u(x) = Q(ρ, z)x
where x = (x1, x2, x3), ρ =

√
x2

1 + x2
2 and for brevity z = x3 where for each

(ρ, z) ∈ U the matrix field Q has the specific block diagonal form

Q = Q[g](ρ, z) = diag(R[g], 1) =
[

R[g] 0
0 1

]
. (2.4)

Here R = R[g] is a planar rotation matrix, that is, an element of the special
orthogonal group SO(2) [see (3.7)] with g = g(ρ, z) representing the angle of
rotation or whirl function associated with Q (or u respectively). As a matter of
fact here g is assumed to lie in one of the spaces

Gk(U) :=
{

g ∈ W 1,2(U) : g ≡ 0 on ∂Ua and g ≡ 2πk on ∂Ub

}
, k ∈ Z,

(2.5)
with ∂Ua = {(ρ, z) ∈ ∂U :

√
ρ2 + z2 = a}, ∂Ub = {(ρ, z) ∈ ∂U :

√
ρ2 + z2 = b}.

Note that the boundary conditions on g here ensure that upon passing to the
associated whirl mapping we have u ≡ x on ∂X. A set of straightforward and
direct calculations based on the representation of u and Q now give

∇u = [∂ui/∂xj : 1 ≤ i, j ≤ 3]

=

 cos g − x1(x1 sin g + x2 cos g)gρ/ρ − sin g − x2(x1 sin g + x2 cos g)gρ/ρ
sin g + x1(x1 cos g − x2 sin g)gρ/ρ +cos g + x2(x1 cos g − x2 sin g)gρ/ρ

0 0

−(x1 sin g + x2 cos g)gz

+(x1 cos g − x2 sin g)gz

1

 ,

=
[

R[g](ρ, z) 0
0 1

]
+

 −(x1 sin g + x2 cos g)
x1 cos g − x2 sin g

0

⊗
 x1gρ/ρ

x2gρ/ρ
gz

 . (2.6)

The last equation in particular gives det∇u = 1 in X. (Note that for any
invertible matrix A and vectors a, b: det(A+a⊗b) = detA×det(I+A−1a⊗b) =
detA+ 〈A−1a, b〉detA as a consequence of the determinant being quasiaffine.)
Therefore the whirl mapping u satisfies the boundary condition u = ϕ on ∂X
and the incompressibility constraint det∇u = 1 in X and so to have the inclusion
u ∈ A(X) all that remains is to justify the L2-integrability of ∇u. Towards this
end a straightforward calculation gives

|∇u|2 = tr{[∇u]t[∇u]} = 3 + ρ2(g2
ρ + g2

z), (2.7)

and so it is evident that ||(gρ, gz)||L2(U,R2) < ∞ =⇒ ||∇u||L2(X,R3×3) < ∞. As
a result by combining all the above ingredients we have

g ∈ G (U) =
⋃
k∈Z

Gk(U) =⇒ u = Q[g](ρ, z)x ∈ A(X). (2.8)
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Next upon integrating (2.7) and changing variables it is seen that the elastic
energy of u can be expressed as an associated restricted energy of the angle of
rotation function g through

2E[u;X] =
∫
X

|∇u|2 dx =
∫
X

[3 + ρ2(g2
ρ + g2

z)] dx

= 2π

∫
U

[3 + ρ2(g2
ρ + g2

z)]ρ dρdz =: 3|X|+ 2πH[g;U ]. (2.9)

Hence aiming to resolve the system (2.3) and obtaining multiple solutions
in the form of whirl mappings we proceed on to extremising the energy E[u;X]
over the subclass of whirl mappings in A(X). In fact in view of the formulation
(2.9) above we initially set ourselves the task of extremising the restricted energy
H[g;U ] over the grand class G (U) of all admissible angle of rotation functions;
specifically:

H[g;U ] =
∫

U

ρ3(g2
ρ + g2

z) dρdz,

g ∈ G (U) =
⋃
k∈Z

Gk(U). (2.10)

Evidently the Euler-Lagrange equation associated with H[·;U ] over each Gk(U)
is seen to take the divergence form

EL[g, U ] =


∂ρ(ρ3gρ) + ∂z(ρ3gz) = 0 in U,
g = 0 on ∂Ua,
g = 2πk on ∂Ub,
ρ3∂νg = 0 on ∂U\[∂Ua ∪ ∂Ub].

(2.11)

Notice that the horizontal part of the boundary ∂U\[∂Ua ∪ ∂Ub] = {(ρ, z) ∈
∂U : ρ = 0} is left free accounting for the natural boundary condition in the
last line. Any solution to (2.11) defines a corresponding whirl mapping u (as
outlined earlier in the introduction) which is a possible candidate for a solution
to (2.1). The following proposition establishes the existence of a unique solution
to the restricted Euler-Lagrange equation (2.11) for each fixed k ∈ Z.

Proposition 2.1. For every k ∈ Z the restricted Euler-Lagrange equation (2.11)
has a unique solution g = g(ρ, z; k) in Gk(U) given explicitly by

g(ρ, z; k) =
2πka3b3

b3 − a3

[
1
a3
− 1

(ρ2 + z2)3/2

]
, (ρ, z) ∈ U. (2.12)

Proof. First a straightforward calculation shows that g satisfies the required
boundary conditions in (2.11): For the segment U\[∂Ua∪∂Ub] this is a result of
ρ ≡ 0 while for ∂Ua and ∂Ub this follows as a result ρ2+z2 = a2 and ρ2+z2 = b2

respectively. Now from the explicit formulation of g we can compute the gradient
vector ∇Ug = (∂ρg, ∂zg) as

∂ρg =
6πka3b3

b3 − a3

ρ

(ρ2 + z2)5/2
, ∂zg =

6πka3b3

b3 − a3

z

(ρ2 + z2)5/2
. (2.13)
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In particular upon recalling (ρ, z) ∈ U =⇒ a <
√

ρ2 + z2 < b it follows at
once that g ∈ W 1,2(U). Next referring to the first equation in (2.11) and upon
writing divU (X1, X2) = ∂ρX1 + ∂zX2 it follows using the above description of
∇Ug that

divU

(
ρ3∇Ug

)
=∂ρ(ρ3∂ρg) + ∂z(ρ3∂zg) =

6πka3b3

b3 − a3
×

×
[
∂ρ{ρ4(ρ2 + z2)−5/2}+ ∂z{ρ3z(ρ2 + z2)−5/2}

]
= 0. (2.14)

(In other words the vector field ρ3(ρ2 + z2)−5/2(ρ, z) is divergence free in U .)
Thus g solves (2.11). The proof of uniqueness is now standard: Indeed assume
that g1, g2 are solutions to (2.11) and set g = g1−g2. Then g solves (2.11) with
g ≡ 0 on ∂Ua ∪ ∂Ub and so an application of the divergence theorem along with
the above gives∫

U

ρ3|∇Ug|2 dρdz =
∫

U

divU

(
ρ3g∇Ug

)
dρdz =

∫
∂U

ρ3g∂νg dσ = 0. (2.15)

However as ρ > 0 in U and |∇Ug|2 ≥ 0 we must have g ≡ c for some constant c
that as a result of the zero boundary conditions gives g ≡ 0, i.e., g1 ≡ g2. This
therefore completes the proof.

We are now in a position to prove that when N = 3 the whirl mapping
u with the associated angle of rotation g is not a solution to the system (2.1)
except for when k = 0.

Theorem 2.1. (N = 3) Let X = X[a, b] ⊂ R3 be an open annulus and consider
the elastic energy (1.1) with W (F) = tr(FtF)/2 over the space of incompressible
admissible mappings A(X). Then there are no non-trivial equilibria in the form
of a whirl mapping.

Proof. The idea is to examine the Euler-Lagrange system associated with the
Dirichlet energy against the whirl mapping u ∈ A(X) corresponding to the whirl
function g ∈ Gk(U) described in the previous proposition. Towards this end we
first note that

∇u(x) = Q[g] + Q̇[g]x⊗∇g, (2.16)

∆u(x) = ∆gQ̇[g]x + 2Q̇[g]∇g + |∇g|2Q̈x. (2.17)

Now referring to the PDE (2.3) an explicit calculation using the above gives

(∇u)t∆u = 2QtQ̇∇g + ∆gQtQ̇x + |∇g|2QtQ̈x

+ 2〈Q̇x, Q̇∇g〉∇g + ∆g|Q̇x|2∇g

+ |∇g|2〈Q̇x, Q̈x〉∇g. (2.18)

This upon noting the identities 〈Q̇x, Q̈x〉 = 0, |Q̇x|2 = ρ2 and 〈Q̇x, Q̇∇g〉 = ρgρ

is then seen to simplify to

(∇u)t∆u = 2QtQ̇∇g + ∆gQtQ̇x + |∇g|2QtQ̈x +
(
2ρgρ + ρ2∆g

)
∇g. (2.19)
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Now referring to the reduced Euler-Lagrange system for the whirl function g
and using the identity ∆g = ρ−1gρ + gρρ + gzz it follows that ∆g + 2gρ/ρ = 0.
Hence plugging the latter into (2.19) results in the formulation

(∇u)t∆u = 2QtQ̇∇g + ∆gQtQ̇x + |∇g|2QtQ̈x, (2.20)

or in components

(∇u)t∆u =

 −ρ−1x2(3gρ + ρgρρ + ρgzz) + 2x1g
2
ρ + ρx1gρ(gρρ + gzz)− x1g

2
z

+ρ−1x1(3gρ + ρgρρ + ρgzz) + 2x2g
2
ρ + ρx2gρ(gρρ + gzz)− x2g

2
z

ρgz(3gρ + ρgρρ + ρgzz)


=

 −ρ−1x2(2gρ + ρ∆g)− x1(g2
ρ + g2

z)
+ρ−1x1(2gρ + ρ∆g)− x2(g2

ρ + g2
z)

0

 . (2.21)

A further application of ∆g +2gρ/ρ = 0 to the above components finally results
in the identity

∇P = (∇u)t∆u =

 −x1(g2
ρ + g2

z)
−x2(g2

ρ + g2
z)

0

 . (2.22)

Here (2.22) is the formulation of the Euler-Lagrange system for the candidate
whirl mapping u in terms of its associated whirl function g. Before we use the
explicit form of the solution g to the restricted Euler-Lagrange equation (2.11)
we note that a necessary condition for the solvability of the above system for
P is that the vector field on the right is curl-free. Thus,

curl(∇P) = ∇×
[
(∇u)t∆u

]
= 0
⇐⇒

∂

∂z

[
(g2

ρ + g2
z)
]

= 0, (2.23)

x1
∂

∂x2

[
(g2

ρ + g2
z)
]
− x2

∂

∂x1

[
(g2

ρ + g2
z)
]

= 0.

Now using the explicit description of the whirl function g in (2.12), for each
k ∈ Z, a basic calculation gives g2

ρ + g2
z = (6πka3b3)2/(b3 − a3)2(ρ2 + z2)−4.

Thus, in particular, when k 6= 0, this results in

∂

∂z
(g2

ρ + g2
z) = −

(
6πka3b3

b3 − a3

)2 8z

(ρ2 + z2)5
6= 0, (2.24)

that clearly contradicts (2.23). It therefore follows as claimed that here there
are no non-trivial whirl mappings serving as equilibria of the elastic energy.

The case N = 2. Let us next contrast the non-existence result for (non-trivial)
whirl mappings in three dimensions with an interesting multiplicity result in
two dimensions.
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Theorem 2.2. (N = 2) Consider the whirl mapping uk = u(x; k) = Q[g(r; k)]x
with k ∈ Z whose angle of rotation function is given by

g = g(r; k) =
2πa2b2k

b2 − a2

(
1
a2
− 1

r2

)
a ≤ r ≤ b. (2.25)

Then (uk : k ∈ Z) are equilibria of the energy (1.1) with W (F) = tr(FtF)/2 over
A(X); specifically, for a suitable hydrostatic pressure Pk, the pair (uk,Pk) is
a smooth solution to the system (2.1).

Proof. Fix k and for notational convenience put u = uk and g = g(r; k). Then
upon noting that for N = 2 we have ρ =

√
x2

1 + x2
2 = r we can write

∇u(x) = Q[g](r) +
ġ(r)
r

Q̇[g](r)x⊗ x, (2.26)

∆u(x) =
(

rg̈ + 3ġ

r

)
Q̇[g](r)x + ġ2Q̈[g](r)x. (2.27)

Hence referring to (2.3) and using the calculations above we can write

∇P = (∇u)t∆u =
{
Qt[g](r) + x⊗ ġ(r)

r
Q̇[g](r)x

}
× (2.28)

×
{(

rg̈ + 3ġ

r

)
Q̇[g](r)x + ġ2Q̈[g](r)x

}
=
{

(rg̈ + 3ġ)
[
ġI2 + QtQ̇

]
+ ġ2QtQ̈ +

ġ3

r
〈Q̇x, Q̈x〉

}
x,

that by virtue of the orthogonality relation 〈Q̇x, Q̈x〉 = 0 results in the equation

∇P = (∇u)t∆u =
[
−rġ2 cos θ + (3ġ + rg̈)(rġ cos θ − sin θ)
−rġ2 sin θ + (3ġ + rg̈)(rġ sin θ + cos θ)

]
. (2.29)

Now referring to the explicit form of the angle of rotation function g as given by
(2.25) we have ġ(r) = 4πa2b2k/(b2−a2)r−3 and g̈(r) = −12πa2b2k/(b2−a2)r−4

and so by a straightforward calculation 3ġ + rg̈ = 0. As a consequence the PDE
(2.29) simplifies further and gives

(∇u)t∆u =
{

(rg̈ + 3ġ)
[
ġI2 + QtQ̇

]
+ ġ2QtQ̈

}
x

=
[
−rġ2 cos θ + (3ġ + rg̈)(rġ cos θ − sin θ)
−rġ2 sin θ + (3ġ + rg̈)(rġ sin θ + cos θ)

]
=
[
−rġ2 cos θ
−rġ2 sin θ

]
=

4π2a4b4k2

(b2 − a2)2
∇ 1
|x|4

= ∇P. (2.30)

Therefore the whirl mapping u is a solution to the system (2.1) for a suitable
choice of the hydrostatic pressure P. It is interesting to note that here the whirl
mapping u is totally rotationally symmetric in that for every R ∈ SO(2) we have
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[Ru ◦Rt](x) = Ru(Rtx) = RQ[g](r)Rtx = RRtQ[g](r)x = Q[g](r)x = u(x) in
view of the rotation group SO(2) being commutative. Additionally the energy
of the whirl mapping u = uk here is seen to be

E[u;X]− |X| =
∫
X

|∇u|2 − 2
2

dx =
16π3a4b4k2

(b2 − a2)2

∫ b

a

dr

r3
=

8π3a2b2k2

b2 − a2
, (2.31)

showing that the elastic energy of uk diverges to infinity like k2 as |k| ↗ ∞.

Remark 2.1. The space of those continuous self-mappings of an N -annulus X
(N ≥ 2) onto itself that agree with the identity mapping on the boundary ∂X
has a rich and interesting topology. To discuss this further and the link it bears
to the extremising whirls consider

C (X) =
{

u ∈ C(X, RN ) : u(X) ⊂ X, u ≡ x on ∂X
}

, (2.32)

equipped with the compact open topology. Then as a result of the isomorphisms
(cf. [25, 27])

π0(C (X)) ∼= π1[Cφ(SN−1, SN−1)]

∼= π1[SO(N)] ∼=
{

Z in N = 2,
Z2 on N ≥ 3,

(2.33)

it is seen that the space C (X) has an infinite number of connected components
when N = 2 and only two when N ≥ 3. Here Cφ(SN−1, SN−1) is the component
of the space of continuous self-mappings of the sphere onto itself containing the
identity or equivalently the component containing mappings with Brouwer-Hopf
degree +1, π1 stands for the first homotopy group (or the fundamental group)
functor and π0(C (X)) is the set of connected components of C (X).

Now when N = 2 any admissible u ∈ A(X) has a continuous representative
(also denoted u) satisfying u ∈ C (X). To see this observe firstly that det∇u = 1
a.e. combined with a Lebesgue-type monotonicity argument as, e.g., in [30] (see
also [11, 15, 23]) implies that u has a continuous representative u ∈ C(X; R2).
Next the identity boundary condition on u and a degree theoretical argument
gives that u−1(p) is non-empty for every p ∈ X and so X ⊂ u(X). 2 Finally to
justify u(X) ⊂ X one argues by contradiction: Suppose that there exists x ∈ X
such that u(x) 6∈ X; then the continuity of u and Lemma 2.4 in [10] contradicts
d(u,X, p) = 0 for p /∈ X. Note that by the same degree theory discussion, for
any u ∈ C (X) we have u(X) = X. Now returning to the connected components,
for N = 2 we can enumerate these and accordingly partition C (X) as,

C (X) =
⋃
k∈Z

Ck(X), Ck(X) =
{

u ∈ C (X) : Ind(u) = k

}
, (2.34)

2Due to u ≡ x on ∂X we have d(u,X, p) = 1 for p ∈ X and d(u,X, p) = 0 for p ∈ R2\X
where d here stands for the Brouwer degree of u ∈ C(X; R2).
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where the integer Ind(u) is the index or Brouwer-Hopf degree of the mapping
u|u|−1 ∈ C (S1, S1) through the identification S1 ∼= [a, b]/{a, b}. Using this we
can now define Ak(X) as the class of all those admissible mappings u whose
continuous representative lies in Ck(X), that is, with a slight abuse of notation,
and upon using (2.34),

A(X) =
⋃
k∈Z

Ak(X), Ak(X) :=
{

u ∈ A(X) : Ind(u) = k

}
, (2.35)

where Ind(u) is now the index of the continuous representative of u ∈ A(X).
By going back to Theorem 2.2 it is seen that the equilibrium whirl mapping
uk = Q[gk](r)x with the whirl function g = gk as in (2.25) lies in Ak(X) as a
result of:

Ind(uk) =
1
2π

∫ 2π

0

uk × (uk),r

|uk|2
dr =

1
2π

∫ 2π

0

ġk(r) dr = k. (2.36)

In particular the mappings uk are all of different topological types. Furthermore
it is easily seen that uk is the unique minimiser of E amongst all whirl mappings
in Ak(X). A much stronger statement and plausible conjecture is that uk is the
unique minimiser of the elastic energy E over the full component Ak(X) ∀k ∈ Z.
(See [26, 27] for more and [16, 17] for related results. See also [13, 14, 18, 24].)

3 Structure of whirl mappings in higher dimen-
sions

In the remainder of this paper we show how the concepts of whirl mappings and
their symmetries can be extended to higher dimensions and investigate whether
this class of mappings provides equilibria for the Dirichlet energy over the space
A(X). Towards this end let us start by defining a generalised whirl mapping u
of an annulus X = X[a, b] ⊂ RN as a continuous self-mapping of X onto itself
agreeing with the identity mapping on the boundary ∂X and having the specific
representation

u : x 7→ u(x) =

{
Q(ρ1, . . . , ρn−1, ρn) x, if N = 2n,

Q(ρ1, . . . , ρn−1, xN ) x, if N = 2n− 1.
(3.1)

Here x = (x1, ..., xN ) ∈ X and for 1 ≤ j ≤ n when N = 2n and 1 ≤ j ≤ n−1
when N = 2n − 1 we set ρj = (x2

2j−1 + x2
2j)

1/2 while Q is a suitable mapping
(see below) taking values in the special orthogonal group SO(N). For the sake
of brevity we agree to set, when N = 2n − 1, ρn = xN , so that as a result we
can write u in (3.1), regardless of N being even or odd, as

u : x 7→ u(x) = Q(ρ1, . . . , ρn)x, x ∈ X. (3.2)

With this notation in place we now require Q to lie in C(UN , T) where T is
the fixed maximal torus in SO(N) of all block diagonal 2× 2 rotation matrices
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(with an additional unit block at the end for N odd – see below) and UN ⊂ Rn

is the semi-annular region defined according to whether the spatial dimension
N is even or odd by

UN =
{

% = (ρ1, . . . , ρn) ∈ Rn
+ : a < |%| < b

}
, if N = 2n, (3.3)

and

UN =
{

% = (ρ1, . . . , ρn) ∈ Rn−1
+ × R : a < |%| < b

}
, if N = 2n− 1, (3.4)

respectively. Note that here and in what follows we write |%| =
√

ρ2
1 + ... + ρ2

n.
As a result of Q taking values on the maximal torus T ⊂ SO(N) we can write
Q(%) = diag(R[g1](%), . . . ,R[gn](%), 1) when N = 2n− 1, or more specifically,

Q(%) = Q(ρ1, · · · , ρn) =


R[g1] 0 · · · 0

...
. . .

...
0 · · · R[gn−1] 0
0 0 · · · 1

 , (3.5)

and Q(%) = diag(R[g1](%), . . . ,R[gn](%)) when N = 2n, that is,

Q(%) = Q(ρ1, · · · ρn) =


R[g1] 0 · · · 0

...
. . .

...
0 · · · R[gn−1] 0
0 0 · · · R[gn]

 . (3.6)

In either case the angle of rotation or whirl function gj = gj(%) lies in C(UN , R)
for 1 ≤ j ≤ n while each 2× 2 rotation block in (3.5), (3.6) is the usual SO(2)
matrix of the from

R[g] = exp{gJ} =
[
cos g − sin g
sin g cos g

]
, J =

[
0 −1
1 0

]
. (3.7)

Let us now, by assuming sufficient differentiability of the whirl functions gj ,
proceed with the calculation of some quantities that will be needed later on.
Firstly by a straightforward differentiation it is seen that

∇u = Q +
n∑

j=1

Q,jx⊗∇ρj . (3.8)

Hence upon calculating the square of the Hilbert-Schmidt matrix norm we have

|∇u|2 = tr

{
(Q +

n∑
j=1

Q,jx⊗∇ρj)(Q +
n∑

j=1

Q,jx⊗∇ρj)t

}

= tr

{
IN +

n∑
j=1

[Q,jx⊗Q∇ρj + Q∇ρj ⊗Q,jx] +
n∑

j=1

Q,jx⊗Q,jx

}
.

(3.9)
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Here Q,j denotes the partial derivative of Q with respect to the ρj variable.
Next we show, upon utilising (3.8), that whirl mappings satisfy the incompress-
ibility constraint. Indeed by the above calculation we have

det∇u = det(Q +
n∑

j=1

Q,jx⊗∇ρj) = det(IN +
n∑

j=1

QtQ,jx⊗∇ρj). (3.10)

Now, upon going further into the structure of Q, we note that,

QtQ,j =

{
diag(∂jg1J, . . . , ∂jgn−1J, 0) if N = 2n− 1,

diag(∂jg1J, . . . , ∂jgn−1J, ∂jgnJ) if N = 2n,
(3.11)

where in the above for short we have set ∂jgi = ∂ρj gi while J is as in (3.7). Next
let yj = (x2j−1, x2j) for 1 ≤ j ≤ n if N = 2n and yn = x2n−1 when N = 2n− 1.
Then it is easily seen that

QtQ,jx =

{
(∂jg1Jy1, . . . , ∂jgn−1Jyn−1, 0)t if N = 2n− 1,

(∂jg1Jy1, . . . , ∂jgn−1Jyn−1, ∂jgnJyn)t if N = 2n.
(3.12)

Furthermore from the definition of ρj it is clear that ∇ρj = (0, . . . , yj/ρj , . . . , 0)
and therefore in view of J being skew-symmetric it is plain that

〈QtQ,jx,∇ρi〉 = 〈 ∂gi

∂ρj
Jyi,

yi

ρi
〉 = 0, (3.13)

for all 1 ≤ i, j ≤ n. With this observation in mind we now state a lemma which
will later assist us in proving that whirl mappings are incompressible mappings.

Lemma 3.1. Suppose that a1, . . . , ak and b1, . . . , bk are two sequences of vectors
in Rd satisfying the orthogonality relations 〈ai, bj〉 = 0 for each 1 ≤ i, j ≤ k.
Then

det(Id +
k∑

j=1

aj ⊗ bj) = 1. (3.14)

Here as usual a⊗ b stands for the rank-one matrix [aibj : 1 ≤ i, j ≤ d].

Proof. This is by induction on k. Firstly when k = 1 for the rank-one pertur-
bation of Id we have det(Id + a1 ⊗ b1) = 1 + 〈a1, b1〉 = 1. Before proceeding
to the case of an arbitrary k ≥ 2 it is instructive to see how the case k = 2
works. Towards this end let A1 = Id +a1⊗ b1 and note that A−1

1 = Id−a1⊗ b1.
Then det(Id +a1⊗ b1 +a2⊗ b2) =

(
1 + 〈b2, A

−1
1 a2〉

)
det A1. However as we have

det A1 = 1 and A−1
1 a2 = a2 − a1〈a2, b1〉 = a2 it follows easily upon substitution

that det(Id + a1 ⊗ b1 + a2 ⊗ b2) = (1 + 〈b2, a2〉) = 1. Thus we have shown that
(3.14) holds in the case that k = 2.
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Let us now assume that (3.14) holds for a fixed k. Put Ak = Id +
∑

aj ⊗ bj

which then gives A−1
k = Id −

∑
aj ⊗ bj (both summations over 1 ≤ j ≤ k).

Therefore

det(Id +
k+1∑
j=1

aj ⊗ bj) =
(
1 + 〈bk+1, A

−1
k ak+1〉

)
det Ak. (3.15)

Next by the inductive hypothesis we have detAk = 1 and by invoking the
assumption on the vectors aj and bj we have A−1

k ak+1 = ak+1. Therefore this
results in (1+〈bk+1, A

−1
k ak+1〉) detAk = (1+〈bk+1, ak+1〉) = 1 which then gives

the required conclusion for k + 1. The proof is thus complete.

Now taking aj = QtQ,jx and bj = ∇ρj combined with the orthogonality
relations (3.13), it follows from Lemma 3.1 that,

det∇u = det(IN +
n∑

j=1

QtQ,jx⊗∇ρj) = 1. (3.16)

Therefore whirl mappings are incompressible. Now for a whirl mapping u
to be admissible, i.e., u ∈ A(X), we need Q(%) ≡ IN for % ∈ (∂UN )a ∪ (∂UN )b.
Recall that (∂UN )a = {% ∈ ∂UN : |%| = a} and (∂UN )b = {% ∈ ∂UN : |%| = b}.
From this point onwards we shall impose this boundary condition on Q and by
virtue of the direct dependence of Q on the angle of rotation functions gj do so
by requiring each gj ≡ 0 on (∂UN )a and gj ≡ 2πkj on (∂UN )b for kj ∈ Z [see
(3.24)]. Now recalling (3.9) we obtain

|∇u|2 = tr
[
(∇u)(∇u)t

]
= tr(IN +

n∑
j=1

[Q,jx⊗Q∇ρj + Q∇ρj ⊗Q,jx] +
n∑

j=1

Q,jx⊗Q,jx)

= N +
n∑

j=1

|Q,jx|2 +
n∑

j=1

tr (Q,jx⊗Q∇ρj + Q∇ρj ⊗Q,jx) . (3.17)

However since as a result of the orthogonality relations described earlier we
have the identities

tr (Q,jx⊗Q∇ρj) = tr (Q∇ρj ⊗Q,jx)
= 〈Q∇ρj ,Q,jx〉
= 〈∇ρj ,QtQ,jx〉 = 0 (3.18)

it follows that the third term in (3.17) vanishes and therefore the square of
the Hilbert-Schmidt norm of the deformation gradient can be simplified and
expressed as

|∇u|2 = N +
n∑

j=1

|Q,jx|2. (3.19)
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Consequently the total elastic energy E of a whirl mapping u results from
integrating (3.19) and can be written as

E[u;X] =
1
2

∫
X

|∇u|2 =
N

2
|X|+ 1

2

∫
X

n∑
j=1

|Q,jx|2 dx. (3.20)

Now referring to the explicit representation of Q in terms of g as expressed at
the beginning of the section it is easily seen that

n∑
j=1

|Q,jx|2 =
n∑

j=1

s∑
l=1

(gl,j)2ρ2
l =

s∑
l=1

|∇gl|2ρ2
l , (3.21)

where we have set s = n if N = 2n or s = n − 1 if N = 2n − 1. Therefore
returning to (3.20), a change of variables gives,

E[u;X]− N

2
|X| = 1

2

∫
X

s∑
l=1

|∇gl|2ρ2
l dx

=
1
2

∫
UN

s∑
l=1

(2π)s|∇gl|2ρ2
l

s∏
j=1

ρj dρ

=
(2π)s

2
H[g;UN ]. (3.22)

A close inspection of the integral above shows that the energy functional H
is a sum of independent energies Hl (with 1 ≤ l ≤ s), defined for g = (g1, ..., gs),
respectively by,

H[g;UN ] =
s∑

l=1

Hl[gl;UN ], Hl[g;UN ] =
∫

UN

|∇g|2ρ2
l

s∏
j=1

ρj dρ. (3.23)

Now as H is a sum of Hl’s and each Hl depends only on the angle of rotation
function g = gl it follows that the resulting Euler-Lagrange equations decouple
and so this means that we can analyse each energy Hl and its associated Euler-
Lagrange equation separately and independently of the rest. Towards this end
we introduce the admissible class of mappings for each Hl as the grand class
G (UN ) defined through

G (UN ) =
⋃
k∈Z

Gk(UN ) (3.24)

where the components in the union on the right for each fixed k ∈ Z are in turn
given by

Gk(UN ) =
{

g ∈ W 1,2(UN ) : g ≡ 0 on (∂UN )a and g ≡ 2πk on (∂UN )b

}
.
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Now for fixed 1 ≤ l ≤ s and k ∈ Z the Euler-Lagrange equation associated with
the energy Hl in (3.23) over the space Gk(UN ) is easily seen to take the form

EL[g, UN ] =


div
(
ρ2

l∇g
∏s

j=1 ρj

)
= 0 % ∈ UN ,

g = 0 % ∈ (∂UN )a,

g = 2πk % ∈ (∂UN )b,

ρ2
l ∂νg

∏s
j=1 ρj = 0 % ∈ ∂UN\[(∂UN )a ∪ (∂UN )b].

(3.25)

A quick comment on notation: here and in the remainder of the section all
differential operators are understood in reference to the (ρ1, ..., ρn) variables. To
avoid any confusion with those in reference to the (x1, ..., xN ) variables, when
necessary, a subscript U = UN is used. Thus in particular here div(X1, ..., Xn) =
divUN

(X1, ..., Xn) = ∂ρ1X1 + ... + ∂ρnXn and ∇f = ∇UN
f = (∂ρ1f, ..., ∂ρnf).

The next result states that for each k ∈ Z the boundary value problem (3.25)
has a unique solution that can be described in explicit terms.

Proposition 3.1. For every k ∈ Z the Euler-Lagrange system (3.25) associated
with the energy Hl over Gk(UN ) has a unique solution g = g(%) = g(ρ1, ..., ρn)
given explicitly by,

g(ρ1, ..., ρn; k) =
2πaNbNk

bN − aN

 1
aN

− 1(√∑n
i=1 ρ2

i

)N

 , ρ ∈ UN . (3.26)

Proof. First we attend to the uniqueness part. To this end suppose that g1, g2

are two solutions to (3.25) and put g = g1 − g2. Then g is a solution to (3.25)
but now with all boundary conditions being zero. By an application of the
divergence theorem it then follows that∫

UN

|∇g|2ρ2
l

s∏
j=1

ρj dρ =
∫

∂UN

g∂νgρ2
l

s∏
j=1

ρj dσ = 0, (3.27)

as g(%) = 0 for % ∈ (∂UN )a and % ∈ (∂UN )b. Now in view of ρj > 0 in UN for
1 ≤ j ≤ s it follows that |∇g|2 ≡ 0 and therefore g ≡ 0 in UN as a result of the
zero boundary conditions on g. Hence g1 = g2 in UN .

Hence it remains to show that for each k ∈ Z the given whirl function g(· ; k)
is a solution to (3.25). To this end we first note that g satisfies all the required
boundary conditions as a consequence of |ρ| = a on (∂UN )a, |ρ| = b on (∂UN )b

and ρ1 × ... × ρs ≡ 0 on ∂UN\[(∂UN )a ∪ (∂UN )b]. Next by a straightforward
differentiation it is seen that

∂ρl
g(% ; k) =

2πaNbNk

bN − aN

Nρl(√∑n
i=1 ρ2

i

)N+2
. (3.28)

For the sake of convenience and clarity let us now proceed by considering
the even and odd cases of N separately. In the former case N = 2n upon using
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(3.28) we obtain that

div

ρ2
l∇g

n∏
j=1

ρj

 =
2πNaNbNk

bN − aN

n∑
r=1

∂

∂ρr

ρ2
l

n∏
j=1
j 6=r

ρj
ρ2

r

(
∑n

i=1 ρ2
i )

n+1


=

2πNaNbNk

bN − aN


n∑

r=1
r 6=l

ρ2
l

n∏
j=1
j 6=r

ρj
∂

∂ρr

(
ρ2

r

(
∑n

i=1 ρ2
i )

n+1

)
+

+

 n∏
j=1
j 6=l

ρj

 ∂

∂ρl

(
ρ4

l

(
∑n

i=1 ρ2
i )

n+1

)
=

2πNaNbNk

bN − aN


n∑

r=1
r 6=l

ρ2
l

∏n
j=1,j 6=r ρj

(
∑n

i=1 ρ2
i )

n+1

(
2ρr −

(2n + 2)ρ3
r

(
∑n

i=1 ρ2
i )

)
+

+

∏n
j=1,j 6=l ρj

(
∑n

i=1 ρ2
i )

n+1

(
4ρ3

l −
(2n + 2)ρ5

l

(
∑n

i=1 ρ2
i )

)}
(3.29)

and consequently

div

ρ2
l∇g

n∏
j=1

ρj

 =
2πNaNbNk

bN − aN

{
n∑

r=1

ρ2
l

∏n
j=1 ρj

(
∑n

i=1 ρ2
i )

n+1

(
2− (2n + 2)ρ2

r

(
∑n

i=1 ρ2
i )

)
+

+ 2
ρ2

l

∏n
j=1 ρj

(
∑n

i=1 ρ2
i )

n+1

}

=
2πNaNbNk

bN − aN

{
ρ2

l

∏n
j=1 ρj

(
∑n

i=1 ρ2
i )

n+1 (2n− (2n + 2)) +

+ 2
ρ2

l

∏n
j=1 ρj

(
∑n

i=1 ρ2
i )

n+1

}
= 0. (3.30)

Thus we have that the angle of rotation function g given by (3.26) solves
(3.25) and therefore in the even dimensional case N = 2n is the unique solution.
Now for when N = 2n−1 the calculations proceed in a similar fashion but with
a careful change accounting for ρn = xN . Indeed proceeding with the divergence
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and the first equation in (3.25) here we have

div

ρ2
l∇g

n−1∏
j=1

ρj

 =
2πNaNbNk

bN − aN


n−1∑
r=1

∂

∂ρr

ρ2
l

n−1∏
j=1
j 6=r

ρj
ρ2

r

(
∑n

i=1 ρ2
i )

n+1/2

+

+ ρ2
l

n−1∏
j=1

ρj
∂

∂ρn

(
ρn

(
∑n

i=1 ρ2
i )

n+1/2

)
=

2πNaNbNk

bN − aN
× (I + II). (3.31)

Now proceeding directly and referring to (3.31) we can write

I =
1

(
∑n

i=1 ρ2
i )

1/2

n−1∑
r=1

∂

∂ρr

ρ2
l

n−1∏
j=1
j 6=r

ρj
ρ2

r

(
∑n

i=1 ρ2
i )

n

+

+
n−1∑
r=1

∂

∂ρr

(
1

(
∑n

i=1 ρ2
i )

1/2

)ρ2
l

n−1∏
j=1
j 6=r

ρj
ρ2

r

(
∑n

i=1 ρ2
i )

n

 = I1 + I2, (3.32)

where we have

I1 =
n−1∑
r=1

ρ2
l

∏n−1
j=1 ρj

(
∑n

i=1 ρ2
i )

n+1/2

(
2− 2nρ2

r

(
∑n

i=1 ρ2
i )

)
+ 2

ρ2
l

∏n−1
j=1 ρj

(
∑n

i=1 ρ2
i )

n+1/2

=
ρ2

l

∏n−1
j=1 ρj

(
∑n

i=1 ρ2
i )

n+1/2

(
2n− 2n

∑n
i=1 ρ2

i − ρ2
n∑n

i=1 ρ2
i

)

= 2n
ρ2

l ρ
2
n

∏n−1
j=1 ρj

(
∑n

i=1 ρ2
i )

n+3/2
, (3.33)

and

I2 = −
n−1∑
r=1

ρ2
l

n−1∏
j=1

ρj
ρ2

r

(
∑n

i=1 ρ2
i )

n+3/2
= −

ρ2
l

∏n−1
j=1 ρj

(
∑n

i=1 ρ2
i )

n+3/2

(
n−1∑
i=1

ρ2
i

)
.

Likewise a straightforward calculation gives

II =
ρ2

l

∏n−1
j=1 ρj

(
∑n

i=1 ρ2
i )

n+1/2

(
1− (2n + 1)ρ2

n∑n
i=1 ρ2

i

)
. (3.34)

Hence by putting the various fragments of the above calculations and derivations
together it is seen at once that the full divergence term in the above set of
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equations can be written as

div

ρ2
l∇g

n∏
j=1

ρj

 =
2πNaNbNk

bN − aN
× (I + II)

=
2πNaNbNk

bN − aN

ρ2
l

∏n−1
j=1 ρj

(
∑n

i=1 ρ2
i )

n+1/2
×

×

(
1−

(2n + 1)ρ2
n − 2nρ2

n +
∑n−1

r=1 ρ2
r∑n

i=1 ρ2
i

)
= 0. (3.35)

Therefore we have shown that (3.26) is also the unique solution to (3.25) in the
odd dimensional case N = 2n− 1.

Remark 3.1. In view of Proposition 3.1 the whirl function g = g(ρ1, . . . , ρn; k)
is solely a function of |%| =

√
ρ2
1 + ... + ρ2

n =
√

x2
1 + ... + x2

N = r [cf. (3.26)].
Moreover as a solution to the boundary value problem (3.25), the dependence of
g(%; k) on k ∈ Z is linear, that is, we have g(%; k) = kg(%; 1). These observations
put together prompt us to write the solution g to (3.25), with a slight abuse of
notation, as

g(r ; k) = d(k)− c(k)r−N , a ≤ r ≤ b, k ∈ Z, (3.36)

with the choice of coefficients

c(k) =
2πaNbNk

bN − aN
, d(k) =

2πbNk

bN − aN
. (3.37)

Thus any solution g = (g1, ..., gs) to the Euler-Lagrange equation associated
with the restricted energy H[g;UN ], in turn, depends solely on the radial variable
r and as a matter of fact, in vector notation g(r) = d− c/rN with c = c(k) =
(c1, . . . , cs) and d = d(k) = (d1, . . . , ds). In particular the corresponding whirl
mapping u is of the form u(x) = Q(r)x for a suitable Q ∈ C∞([a, b],SO(N)).

4 Whirl mappings as solutions to the nonlinear
system (2.1) in higher dimensions N ≥ 4

In this final section of the paper we show that in higher dimensions N ≥ 4, the
non-trivial whirl mappings obtained as extremisers (equivalently critical points)
of the restricted energy in the previous section can only go on to satisfy the full
Euler-Lagrange system (2.1) associated with the Dirichlet energy E, i.e., with
W (F) = tr(FtF)/2, when N = 2n. In contrast, when N = 2n−1 the only whirl
solution to (2.1) will be shown to be the identity mapping. The conclusion is
therefore similar in spirit to the cases N = 2 vs. N = 3 discussed earlier in the
paper but with further and natural complications.
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Towards this end recall that the Euler-Lagrange equation associated with
the Dirichlet energy over A(X) takes the form [cf. (1.4), (2.1)]

div S[x,∇u(x)] = ∆u− div(P(x) cof∇u)
= ∆u− (cof∇u)∇P(x)
= 0. (4.1)

Subsequently by invoking the incompressibility constraint det∇u = 1 and basic
identities, upon rearranging terms, it must be that

(cof∇u)−1∆u = (∇u)t∆u = ∇P. (4.2)

Again, by a classical solution we mean a pair (u, P) where u is admissible,
that is, u ∈ A(X), (u, P) is regular, i.e., u ∈ C(X, RN ) ∩ C2(X, RN ), P ∈
C(X)∩C1(X) and (1.4) or the equivalent formulation of the first equation (4.2)
holds. Now straightforward calculations using the notation introduced in the
previous section lead to the identities (here dots denote derivatives of Q with
respect to r =

√
ρ2
1 + · · ·+ ρ2

n =
√

x2
1 + · · ·+ x2

N in light of Remark 3.1),

∇u = Q + r−1Q̇x⊗ x, (4.3)

∆u = r−1
[
(N + 1)Q̇ + rQ̈

]
x. (4.4)

Next referring to the previous section and by using the explicit form of Q and
g as given by (3.36) we can easily verify that

Q̇ = Nr−(N+1)QC, (4.5)

Q̈ = −N(N + 1)r−(N+2)QC + N2r−(2N+2)QC2. (4.6)

Here C is the N ×N skew-symmetric block diagonal matrix given by,

C =

{
diag(c1J, . . . , cn−1J, 0) if N = 2n− 1,

diag(c1J, . . . , cn−1J, cnJ) if N = 2n,
(4.7)

and as seen before J is the 2× 2 skew-symmetric square root of −I2 [see (3.7)].
Furthermore the boundary conditions Q(a) = IN and Q(b) = IN force the block
entries of C to take on the values [cf. (3.37)]

cjJ = cj(kj)J =
2πaNbN

bN − aN
kjJ, kj ∈ Z. (4.8)

Therefore returning to the PDE (4.2) it is not difficult to verify that firstly, the
Laplacian of u can be computed and simplified to,

∆u =r−1
[
(N + 1)Q̇ + rQ̈

]
x

=r−1

{
(N + 1)Nr−(N+1)QC + r

[
−N(N + 1)r−(N+2)QC+

+ N2r−(2N+2)QC2

]}
=

N2

r2N+2
QC2x, (4.9)
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and secondly, and as a consequence, that (4.2) results in the gradient of the
pressure field P being

∇P = (cof∇u)−1∆u = (∇u)t∆u

=
N2

r2N+2

(
Qt +

N

rN+2
x⊗QCx

)
QC2x =

N2

r2N+2
C2x. (4.10)

Note that here C2 is the N ×N symmetric block-diagonal matrix [cf. (4.7)]

C2 =

{
diag(−c2

1I2, . . . ,−c2
n−1I2, 0) if N = 2n− 1,

diag(−c2
1I2, . . . ,−c2

n−1I2,−c2
nI2) if N = 2n.

(4.11)

Now as the vector field on the RHS in (4.10) must necessarily be curl-free in X
(as a result of being a gradient field) we proceed by computing for 1 ≤ i, j ≤ N ,

{
curl

[
(∇u)t∆u

]}
ij

= 0 ⇐⇒ ∂

∂xj

[
N∑

`=1

u`,i∆u`

]
− ∂

∂xi

[
N∑

`=1

u`,j∆u`

]
= 0

⇐⇒
[
(∇u)t∆∇u

]
ij
−
[
(∇u)t∆∇u

]
ji

= 0

⇐⇒ ∂

∂xj

c2
[(i+1)/2]xi

r2N+2
− ∂

∂xi

c2
[(j+1)/2]xj

r2N+2
= 0

⇐⇒ (2N + 2)
(
c2
[(i+1)/2] − c2

[(j+1)/2]

) xixj

r2N+4
= 0,

(4.12)

for all x ∈ X. Therefore the whirl mapping u is a solution to the Euler-Lagrange
system (2.1) iff we have |c1|2 = · · · = |cn|2 ≡ c2. However in odd dimensions
due to the presence of a zero entry in the last block of C [cf. (4.7)] this gives
c = 0 and so |c1| = · · · = |cn| = 0. Therefore QtQ̇ = 0 and this in turn gives

QtQ̇ = 0 ⇐⇒ Q̇ = 0 ⇐⇒ Q ≡ IN , (4.13)

as Q(a) = Q(b) = IN . As a result for N odd the only whirl mapping satisfying
the Euler-Lagrange system (2.1) is the identity mapping u ≡ x. In contrast for N
even we have |c1| = · · · = |cn| and so (2.1) admits an infinite family of solutions
in the form uk = Q(ρ1, . . . , ρn; k)x (with k ∈ Z) where Q ∈ C∞(UN ;SO(N))
is block diagonal as in (3.6) and the whirl functions gj = g(ρ1, . . . , ρn; kj) (with
1 ≤ j ≤ n) are given explicitly by (3.26) subject to |k1| = . . . |kn| = |k|, that is,
g1, . . . , gn ∈ {±g} where g = g(ρ; k) is as in (3.26). We have therefore proved
the following result.

Theorem 4.1. Let X = X[a, b] ⊂ RN (N ≥ 2) and consider the elastic energy
E[u;X] with W (F) = tr(FtF)/2 over the space of incompressible admissible
mappings A(X) along with the system of Euler-Lagrange equations (2.1). Then
the following hold:

• (N even) The nonlinear system (2.1) admits an infinite family of solutions
in the form of whirl mappings, specifically, uk = Q(ρ1, . . . ρn; k)x with
k ∈ Z, Q as in (3.6), g1, . . . , gN/2 ∈ {±g} and g = g(ρ; k) as in (3.26).
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• (N odd) The only solution to (2.1) in the form of a whirl mapping is the
trivial one, that is, the identity mapping u ≡ x.

Remark 4.1. In the case N even we can explicitly calculate the elastic energy
of the whirl solutions given by Theorem 4.1. Indeed it is seen that the Dirichlet
energy of u = uk (with k ∈ Z) can be expressed as

E[u;X] =
N

2
|X|+ 2N2ωN

∫ b

a

(
πaNbNk

bN − aN

)2

r−N−1 dr

=
N

2
|X|+ 2N2ωNπ2aNbN

bN − aN
k2. (4.14)

Hence similar to what was seen earlier in the planar case the energy of the whirl
solutions diverge to infinity quadratically in k. Likewise the gradient of the
hydrostatic pressure in (4.10) is given by ∇P = Nc2∇|x|−2N/2 where −c2 as
indicated earlier is the common value of the diagonal entries of the symmetric
matrix C2 in (4.11).

Remark 4.2. For N ≥ 4 even the extremising whirls uk in Theorem 4.1 have
the following topological parity. Indeed referring to Remark 2.1 the space C (X)
here has only two connected components. Although for N ≥ 3 the admissible
mappings u ∈ A(X) do not in general have continuous representatives it is clear
however that the whirls uk do lie in C (X). It turns out that when N/2 is even
the whirls uk are all in one component (the same component as the identity). In
contrast when N/2 is odd the whirls uk with k ∈ Z even all lie in one component
and the whirls uk with k ∈ Z odd all lie in the other component. This follows
by a direct calculation of their associated spin degree (cf. [27]).
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