University of Sussex
Browse
Hyatt_Myeloma_B J Haem_final_postprint.pdf (484.3 kB)

Telomere length is a critical determinant for survival in multiple myeloma

Download (484.3 kB)
journal contribution
posted on 2023-06-09, 12:40 authored by Sam Hyatt, Rhiannon E Jones, Nicole H Heppel, Julia W Grimstead, Chris Fegan, Graham H Jackson, Robert Hills, James M Allan, Guy Pratt, Christopher PepperChristopher Pepper, Duncan M Baird
The variable clinical outcomes of Multiple Myeloma (MM) patients are incompletely defined by current prognostication tools. We examined the clinical utility of high-resolution telomere length analysis as a prognostic marker in MM. Cohort stratification, using a previously determined length threshold for telomere dysfunction, revealed that patients with short telomeres had a significantly shorter overall survival (P < 0·0001; HR = 3·4). Multivariate modelling using forward selection identified International Staging System (ISS) stage as the most important prognostic factor, followed by age and telomere length. Importantly, each ISS prognostic subset could be further risk-stratified according to telomere length, supporting the inclusion of this parameter as a refinement of the ISS. Despite the introduction of novel therapeutic modalities, patients with multiple myeloma (MM) display a heterogeneous clinical course, with survival ranging from a few months to over 10 years. Therefore, there is a requirement for reliable prognostic and predictive markers in this disease to allow for risk stratification and rational clinical decision-making. The most commonly used prognostic system in MM is the International Staging System (ISS) that is based on serum levels of both ß2-micoglobulin and albumin (Greipp et al, 2005). Recently the ISS has been improved upon by the inclusion of cytogenetic information to take into account the level of lactate dehydrogenase and the considerable genetic heterogeneity known to occur in this disease (Palumbo et al, 2015). Hyperdiploidy and the loss of whole chromosome arms is frequently detected in MM, which includes, amongst others, gains of 1q in 30% of cases and the loss of 17p in 7% of cases (Walker et al, 2010). Short dysfunctional telomeres are susceptible to DNA repair activities that can result in chromosomal fusion and the initiation of cycles of anaphase-bridging, breakage and fusion that can drive genomic instability and clonal evolution (Artandi et al, 2000; Roger et al, 2013; Jones et al, 2014). Telomere dysfunction has been documented in numerous haematological malignancies (Jones et al, 2012), and is one putative mechanism that may lead to the genetic and clinical heterogeneity observed in MM (Wu et al, 2003) and may relate to changes in the 3D telomeric architecture that have been documented in MM cells (Klewes et al, 2013). Recently, we have shown that high-resolution telomere analysis, combined with a functional definition of telomere length, can provide powerful prognostic information in several tumour types, including chronic lymphocytic leukaemia (CLL)(Lin et al, 2014), myelodysplasia (unpublished observations) and breast cancer (Simpson et al, 2015). Here we sought to apply these technologies to examine the prognostic utility of telomere length in MM.

History

Publication status

  • Published

File Version

  • Accepted version

Journal

British Journal of Haematology

ISSN

0007-1048

Publisher

Wiley

Issue

1

Volume

178

Page range

94-98

Department affiliated with

  • Clinical and Experimental Medicine Publications

Research groups affiliated with

  • Haematology Research Group Publications

Full text available

  • Yes

Peer reviewed?

  • Yes

Legacy Posted Date

2018-03-28

First Open Access (FOA) Date

2018-05-02

First Compliant Deposit (FCD) Date

2018-03-28

Usage metrics

    University of Sussex (Publications)

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC