Comparison of the reactivity of the low buried-volume carbene complexes (ITMe)2Pd(PhC≡CPh) and (ITMe)2Pd(PhN=NPh)

Ansell, Melvyn B, Furfari, Samantha K, Cloke, F Geoffrey N, Roe, S Mark, Spencer, John and Navarro, Oscar (2018) Comparison of the reactivity of the low buried-volume carbene complexes (ITMe)2Pd(PhC≡CPh) and (ITMe)2Pd(PhN=NPh). Organometallics, 37 (7). pp. 1214-1218. ISSN 0276-7333

This version is available from Sussex Research Online: http://sro.sussex.ac.uk/id/eprint/74606/

This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher's version. Please see the URL above for details on accessing the published version.

Copyright and reuse:
Sussex Research Online is a digital repository of the research output of the University.

Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available.

Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.
Comparison of the Reactivity of the Low Buried-Volume Carbone Complexes (ITMe)$_2$Pd(PhC≡CPh) and (ITMe)$_2$Pd(PhN≡NPh)

Melvyn B. Ansell,† Samantha K. Furfari,† F. Geoffrey N. Cloke,‡ S. Mark Roe, † John Spencer,*†§ and Oscar Navarro*†§

†Department of Chemistry, University of Sussex, Falmer, Brighton, BN19QJ, U.K.
‡Biomaterials and Biomechanics, School of Dentistry, Oregon Health & Science University, 2730 SW Moody Avenue, Portland, Oregon 97239, United States

ABSTRACT: The novel Pd(0)-azobenzene complex (ITMe)$_2$Pd(PhN≡NPh) (S) (ITMe = 1,3,4,5-tetramethylimidazol-2-ylidene) has been isolated and characterized in the solid state and by cyclic voltammetry. Its reactivity toward E=E' bonds (E, E' = Si, B, Ge) has been compared with that of the known carbene complex (ITMe)$_2$Pd(PhC≡CPh) (2). Whereas 2 reacts with all E=E' bonds studied, 5 only reacted with B=B and B=Si moieties, echoing our previous catalytic studies on azobenzenes.

INTRODUCTION

(NHC)-containing palladium complexes (NHC = N-heterocyclic carbene) are very well-documented in the scientific literature. Dominated by bulky ligands, these complexes display tremendous versatility in high turnover number (TON) catalytic reactions.1-4 Recent reports from our groups have focused on the much smaller carbene ITMe (ITMe = 1,3,4,5-tetramethylimidazol-2-ylidene), and its low percentage buried volume Pd(0) complex Pd(ITMe)$_2$ (1), as well as the isolable alkyne-bearing complex (ITMe)$_2$Pd(PhC≡CPh) (2).5-7 Both can easily cleave nonactivated E=E' bonds (E, E' = Si, B), resulting in Pd(II) complexes that can undergo an atom-economic, Z-selective addition to internal alkyne affording disilylated or silaborated alkenes. These studies have been underpinned by X-ray structural determinations of potential intermediates and mechanistic studies. Complex 2 and its oxidative addition products 3 and 4 (Scheme 1) are involved in stoichiometric reactions of Si=Si, Si=B, and B=B bonds. Catalytic reactions under mild conditions using very low loadings of 1 or 2 include stabilization, disilylations, and diborations of alkenes and stabilizations of diborations of azobenzenes.8

These encouraging findings have led us to further explore the scope and reactivity of 2. First, we wished to explore the synthesis of NHC-containing azobenzene complexes related to 2 to shed some light on the aforementioned catalytic additions of E=E' bonds to azobenzenes. Next, given our success in achieving low catalyst loadings and mild conditions in a number of E=E' additions to alkenes, we wished to investigate the use of complexes such as 2 in the activation of Ge=Ge bonds.9

RESULTS AND DISCUSSION

We decided to exploit the lability of the alkyne ligand exchange in 2. The new complex (ITMe)$_2$Pd(PhN≡NPh), 5, was easily synthesized from 2 in the presence of azobenzene and at room temperature (Scheme 2, a). Alternatively, complex 5 could also be prepared directly from the Pd(II)-allyl precursor 6 in a two-step, one-pot procedure in a slightly higher yield (Scheme 2, b).

The 1H NMR spectrum of 5 in C$_6$D$_6$ shows clear upfield shifts in the resonances for the N-(1,3)-methyl protons, from 3.49 ppm in 2 vs 3.31 ppm in S, and for the C-(4,5)-methyl protons, from 1.54 ppm in 2 vs 1.38 ppm in 5 (see the Supporting Information). In the same way, the 13C(1H) NMR resonance for the carbene carbon in 5 is significantly shifted upfield (189.0 ppm) in comparison to 2 (198.7 ppm). These data suggest that the coordination of PhN≡NPh versus diphenylacetylene results in a much greater electron density at the palladium center corresponding to a higher degree of backbonding. Complex 5 represents, to the best of our knowledge, the first NHC-Pd coordination complex of azobenzene.

Single crystal X-ray crystallography of complex 5 revealed a Y-shaped structure with a clear elongation of the N=N bond [1.412(6) Å] when compared to free PhN≡NPh [1.25 Å] (Figure 1). The lengthening of the N=N bond is consistent with single bond character between the two nitrogen atoms. This feature is commonly observed among other transition metal-azobenzene complexes in a zero-oxidation state, including platinum [1.430(13) Å],10 nickel [1.385(5) Å],11 and iron [1.398(2) Å] analogues.12 The Pd-C$_{carbenic}$ bond lengths in 5

Received: February 23, 2018 Published: March 30, 2018
are also longer [2.057(5) and 2.075(5) Å] than those in 2 [2.029(3) and 2.033(3) Å].

To further support our assignment of a zero-oxidation state to palladium, both 2 and 5 were subjected to cyclic voltammetry experiments. In both cases, an irreversible oxidation is observed (−0.660 V for 2; −0.860 V for 5) in a region consistent with previous reports for the oxidation of Pd(0). In contrast, there is no evidence for the reverse process nor, indeed, reduction of Pd(II), which has been typically observed in the region −1.5 to −2.0 V for related systems. Both complexes do exhibit an irreversible reduction at strongly cathodic potential (below −3.20 V) which we tentatively assign to the reduction of the parent [Pd(NHC)_2L] complex (L = alkyne or azobenzene), presumably in part associated with the NHCs. In the case of 5, we noted an apparently reversible feature (E_{1/2} = −2.02 V), assignable to an essentially pure ligand-based process associated with azobenzene. This may reflect dissociation in THF solution, a process comparable to those observed for a range of free azobenzene derivatives (−1.7 to −1.98 V).

Having recently reported the catalytic diboration and silaboration of azobenzenes using 2, complex 5 was an ideal candidate on which to carry out stoichiometric reactions. Hence, the oxidative addition of silaboranes and disilanes to 5 afforded, as expected, the known hydrazine analogues 7 and 8, respectively (Scheme 3).

To study further the capabilities of these (NHC)_2-Pd(0) complexes, we decided to explore analogous reactions with a digermane substrate. The palladium-catalyzed addition of Ge−Ge bonds to alkynes often requires relatively high palladium loadings, auxiliary ligands, or the use of activated or strained germanium species. Platinum catalyzed processes are also documented. To our delight, the oxidative addition of hexamethyldigermane to in situ prepared 2 at room temperature, led to the novel Pd(II) complex 9, although we were unable to easily extract the digermylated alkene 10 (Scheme 4). However, a 1H NMR experiment showed quantitative conversion of 2 to 10 after 3 days. Attempts to replicate this Ge−Ge reactivity on the azobenzene complex 5 invariably failed, even at higher temperature (100 °C).

Single crystals of 9 suitable for X-ray analysis were isolated from a saturated toluene solution at −30 °C. However, it was not possible to refine the data for lengthy discussions on bond lengths and angles (R_1 = 8.8% and wR_2 = 27.7%) apart from the molecular structure, displaying connectivity only and showing a cis-configuration (see the Supporting Information). Similarly, the solid-state structure of 10 was determined (see the Supporting Information).

Encouraged by these results, the catalytic reaction of Me_3GeGeMe_3 with diphenylacetylene was carried out, affording 10 in nearly quantitative yield (Scheme 5). This is an interesting reaction because germyl groups attached to sp^3 carbons can be readily transformed into iodides with retention...
of stereochemistry, allowing for the stereoselective synthesis of tetra-substituted alkenes.25

\section*{CONCLUSION}
We have extended the chemistry of the low-buried volume complexes 1 and 2 to include the isolation of the novel azobenzene complex 5, which was shown to react with E=E' bonds (B=Si and B=B) to afford substituted hydrazines.

Hexamethylgermane undergoes oxidative addition to 2 to afford Pd(II) complex 9 and adds stereoselectively to diphenylacetylene using catalytic amounts of 2. These findings underline again the excellent potential of the low-buried volume complexes 1 and 2 in the catalytic activation of E=E' bonds. We are actively investigating further applications of these complexes in the synthesis of high value end products.

\section*{EXPERIMENTAL SECTION}
The manipulation of air-sensitive compounds and their spectroscopic measurements were undertaken using standard Schlenk line techniques under predried Ar (using a BASF R3-11(G) catalyst and 4 Å molecular sieves), or in a MBraun glovebox under N\textsubscript{2} (O\textsubscript{2} < 10.0 ppm). All glassware was dried in a 160 °C oven prior to use. Celite was predried in a 200 °C oven and then dried with a heat gun under a dynamic vacuum prior to use. Filter cannulae equipped with microfibre filters were dried in an oven at 160 °C prior to use. Solvents employed in air-sensitive reactions were dried using vacuum distillation, followed by distillation over potassium, e.g., hexane, toluene, or stored over activated 4 Å molecular sieves under an Ar atmosphere (e.g., 2-methyl tetrahydrofuran). Dried solvents were degassed and stored over Ar in ampules containing activated molecular sieves. For reactions carried out under ambient conditions, solvents were used as purchased. Deuterated benzene, CDCl\textsubscript{3}, was degassed and dried by refluxing over potassium for 3 days, vacuum transferred into ampules, and stored under N\textsubscript{2}. Deuterated chloroform, CDCl\textsubscript{3}, was used as purchased.

NMR spectra were recorded on a Varian VNMR 400 (1H 399.5 MHz; 13C(1H) 100.5 MHz; 19F 375.9 MHz; 29Si(1H) 79.4 MHz) or 500 (1H 499.9 MHz; 13C(1H) 125.7 MHz). Chemical shifts are reported in ppm. The spectra were referenced to the corresponding protic solvent (1H) or signals of the solvent (13C).

11B(1H), 19F, and 29Si(1H) NMR spectra were referenced externally relative to BF\textsubscript{3}OEt\textsubscript{3}, CFCI\textsubscript{3} (10%), and SiMe\textsubscript{4} respectively.

Single crystal X-ray diffraction data were collected at the University of Sussex on an Agilent Technologies Xcalibur Gemini Ultra diffractometer (\textit{λCu(Kα)} = 1.54184 or \textit{λMo(Kα)} = 0.71073) equipped with an Eos CCD area detector. Data were collected at 173 K using an Oxford Cryosystems Cobra low temperature device. Data were processed using CrysAlisPro, and the unit cell parameters were refined against all data. Semiempirical absorption corrections were carried out using the MULTI-SCAN program.24 The structures were solved by using an intrinsic phasing method (SHELXT),25 and refined F0 by full matrix least-squares refinement using \textit{SHELX} program.26 All non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms were added at calculated positions and refined using riding models with isotropic displacement parameters based on the equivalent isotropic displacement parameter (\textit{Ueq}) of the parent atoms. The crystal data of 5 were collected on a BRUKER X8-APEC II diffractometer with a CCD area detector and multilayer mirror monochromated Mo(Kα) radiation. The structure was solved using an intrinsic phasing method (SHELXT),25 refined with the SHELXL program,27 and expanded using Fourier techniques. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included in structure factor calculations. All hydrogen atoms were assigned to idealized geometric positions.

The following structures have been assigned CCDC numbers (CCDCs 1824672, 5; 1824670, 9; 1824671, 10).

\textbf{Scheme 3. Reactivity of Azobenzene Complex 5 with (Bpin)\textsubscript{2} and pinB-SiMe\textsubscript{2}Ph}

\begin{equation}
\begin{aligned}
\text{N} & \quad \text{Ph} \\
\text{N} & \quad \text{Ph}
\end{aligned}
\end{equation}

\textbf{Scheme 4. Reactivity of Complex 2 with (GeMe\textsubscript{3})\textsubscript{2}}

\begin{equation}
\begin{aligned}
\text{Cl} & \quad \text{Cl} \\
\text{Me}_{2}Ge & \quad \text{Me}_{2}Ge
\end{aligned}
\end{equation}

\textbf{Scheme 5. Catalytic Digermylation of Diphenylacetylene}

\begin{equation}
\begin{aligned}
\text{O} & \quad \text{N} \\
\text{N} & \quad \text{N}
\end{aligned}
\end{equation}
A white solid was obtained after filtration and subsequently washed with hexane (3 × 5.0 mL). Yield: 0.060 g (70%).

Synthesis of cis-[Pd(II)(ITMe)2(GeMe3)2] (9). Isopropanol (10.0 μL, 0.14 mmol) was added to a suspension of [(ITMe)Pd(methallyl)Cl] (6) (0.019 g, 0.17 mmol) suspended in toluene (5.0 mL). The reaction mixture was stirred at room temperature under a N2 atmosphere for 6 h, at which point PhN=NPh (0.036 g, 0.20 mmol) was added and the solution was stirred for 17 h at room temperature. The resulting reaction mixture was filtered, the filtrate’s volatiles were removed in vacuo, and the crude material was recrystallized in a toluene/hexane solution (2:1, 2 × 15.0 mL) at −35 °C. A yellow solid was obtained after filtration and subsequently washed with hexane (3 × 5.0 mL). Yield: 0.050 g (59%).

Yield: 0.060 g (70%).

Synthesis of cis-[Pd(II)(ITMe)2(GeMe3)2] (9). Isopropanol (10.0 μL, 0.14 mmol) was added to a suspension of [(ITMe)Pd(methallyl)Cl] (6) (0.019 g, 0.17 mmol), and potassium tert-butoxide (0.017 g, 0.15 mmol) in toluene (10.0 mL). The resulting mixture was stirred at room temperature under a N2 atmosphere for 4.5 h. At this stage, (GeMe3)2 (0.080 μL, 0.29 mmol) was added and the reaction mixture was stirred for 19 h at room temperature. The solution was then filtered via cannula, the filtrate’s volatiles were removed in vacuo, and the resulting off-white solid was washed with hexane (3 × 5.0 mL). Yield: 0.050 g (59%). 1H NMR (399.5 MHz, CD2Cl2): δH: 4.33 (s, 12H, N(1,3)-CH3), 1.42 (s, 12H, C(4,5)-CH3), 0.64 (s, 18H, GeMe3). 13C([H]) NMR (100.5 MHz, CD2Cl2): δC: 193.6 (NCN), 123.5 (C(4,5)-CH3), 35.0 (N(1,3)-CH3), 86.6 (C(4,5)-CH3), 7.6 (GeMe3). Elem. Anal. Calc'd for C26H34N6Pd: C, 40.70%; H, 7.17%; N, 9.49%. Found: C, 41.13%; H, 7.44%; N, 9.46%.

Synthesis of (Z)-1,2-Diphenyl-1,2-bis(trimethylgermyl)-ethane (10). In a glovebox, a Young filter flask was loaded with complex 2 (0.004 g, 8.23 μmol), (GeMe3)2 (0.005 g, 22.93 μmol), and C6D6 (0.7 mL). The progress of the reaction was monitored by 1H NMR spectroscopy, showing full conversion to 10 after stirring at room temperature for 3 days.

Catalytic Synthesis of 10. Diphenylethylene (0.025 g, 0.14 mmol), (GeMe3)2 (45.0 μL, 0.22 mmol), and 2 (0.75 mg, 1.41 μmol) were dissolved in C6D6 (10.0 mL) and subsequently heated under a N2 atmosphere to 100 °C for 24 h. Upon cooling, the volatiles were removed in vacuo, and the crude material was redissolved in CH2Cl2 (10.0 mL) and subsequently filtered through flame-dried Celite. The filtrate volatiles were removed in vacuo to reveal an off-white solid. Yield 0.057 g (98%). 1H NMR (399.5 MHz, CDCl3): δH: 6.99 (m, 4H, Ph), 6.87 (m, 2H, p-Ph), 6.66 (m, 4H, Ph), 0.24 (s, 18H, GeMe3). 13C([H]) NMR (100.5 MHz, CDCl3): δC: 157.2 (C=C), 146.1 (i-Ph), 127.7 (Ph), 127.3 (Ph), 124.7 (p-Ph), 1.5 [GeMe3]. Elemt. Anal. Calc'd for C20H22Ge2: C, 58.06%; H, 6.82%. Found: C, 58.07%; H, 6.89%.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available on the ACS Publications website at DOI: 10.1021/acs.organomet.8b00112.

Scanned 1H and 13C NMR spectra for all compounds synthesized herein (PDF)

Accession Codes

CCDC 1824670–1824672 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

AUTHOR INFORMATION

Corresponding Authors

E-mail: j.spencer@sussex.ac.uk (J.S.).
E-mail: navarrof@ohsu.edu (O.N.).

ORCID

Samantha K. Furfari: 0000-0001-6131-0529
F. Geoffrey N. Cloke: 0000-0001-7822-6933
John Spencer: 0000-0001-5231-8836

Author Contributions

All authors have given approval to the final version of the manuscript.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

EPSRC (EP/L505109/1) and the University of Sussex (M.B.A.), and EPSRC (EP/N016785/1) (S.K.F.), are thanked for funding. Dr. Ian Crossley (University of Sussex) is thanked for invaluable assistance and advice. High resolution mass spectrometry was carried out by Dr. A. Abdul-Sada (University of Sussex) and by the EPSRC UK National Mass Spectrometry Facility, University of Swansea. Elemental analyses were carried out by Stephen Boyer, London Metropolitan University. M.B.A. would like to dedicate this publication to the memory of Maureen Rayner.

REFERENCES
