Effect of rituximab on a salivary gland ultrasound score in primary Sjögren’s syndrome: results of the TRACTISS randomised double-blind multicentre substudy

Article (Published Version)

This version is available from Sussex Research Online: http://sro.sussex.ac.uk/id/eprint/73742/

This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher's version. Please see the URL above for details on accessing the published version.

Copyright and reuse:
Sussex Research Online is a digital repository of the research output of the University.

Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available.

Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

http://sro.sussex.ac.uk
CONCISE REPORT

Effect of rituximab on a salivary gland ultrasound score in primary Sjögren’s syndrome: results of the TRACTISS randomised double-blind multicentre substudy

Benjamin A Fisher,1,2,3 Colin C Everett,4 John Rout,5 John L O’Dwyer,6 Paul Emery,7,8 Costantino Pitzalis,9 Wan-Fai Ng,10 Andrew Carr,11 Colin T Pease,7,8 Elizabeth J Price,12 Nurhan Sutcliffe13 Jimmy Makdissi,14 Anwar R Tappuni,14 Nagui S T Gendi,15 Frances C Hall16 Sharon P Ruddock,4 Catherine Fernandez,4 Claire T Hulme,6 Kevin A Davies,17 Christopher John Edwards,18 Peter C Lanyon,19 Robert J Moots,20 Euthalia Roussou,21 Andrea Richards,5 Linda D Sharples,22 Michele Bombardieri,9 Simon J Bowman1,2,3

Handling editor Tore K Kvien
► Additional material is published online only. To view please visit the journal online (http://dx.doi.org/10.1136/annrheumdis-2017-212268).

ABSTRACT

Objectives To compare the effects of rituximab versus placebo on salivary gland ultrasound (SGUS) in primary Sjögren’s syndrome (PSS) in a multicentre, multibserver phase III trial substudy.

Methods Subjects consenting to SGUS were randomised to rituximab or placebo given at weeks 0, 2, 24 and 26, and scanned at baseline and weeks 16 and 48. Sonographers completed a 0–11 total ultrasound score (TUS) comprising domains of echogenicity, homogeneity, glandular definition, glands involved and hypoechoic foci size. Baseline-adjusted TUS values were analysed over time, modelling change from baseline at each time point. For each TUS domain, we fitted a repeated-measures logistic regression model to model the odds of a response in the rituximab arm (≥1-point improvement) as a function of the baseline score, age category, disease duration and time point.

Results 52 patients (n=26 rituximab and n=26 placebo) from nine centres completed baseline and one or more follow-up visits. Estimated between-group differences (rituximab-placebo) in baseline-adjusted TUS were −1.2 (95% CI −2.1 to −0.3; P=0.0099) and −1.2 (95% CI −2.0 to −0.5; P=0.0023) at weeks 16 and 48. Glandular definition improved in the rituximab arm with an OR of 6.8 (95% CI 1.1 to 43.0; P=0.043) at week 16 and 10.3 (95% CI 1.0 to 105.9; P=0.050) at week 48.

Conclusions We demonstrated statistically significant improvement in TUS after rituximab compared with placebo. This encourages further research into both B cell depletion therapies in PSS and SGUS as an imaging biomarker.

Trial registration number 65360827; 2010-021430-64; Results.

INTRODUCTION

Primary Sjögren’s syndrome (PSS) is characterised by focal lymphocytic infiltration of exocrine glands leading to profound dryness. It is often accompanied by systemic manifestations and high levels of fatigue. B cells are considered to have a central role in pathogenesis,1 and two small randomised controlled trials (RCTs) of the anti-CD20 B-cell-depleting agent rituximab suggested benefits in PSS.2,3 Rituximab may also have effects on interleukin-17-producing mast cells and on a CD20-positive T cell subset.4,5 Despite this, French (TEARS) and British (TRACTISS) phase III RCTs failed to demonstrate an effect on primary endpoints based on patient-reported visual analogue scales (VAS).6,7 Potential explanations for these disappointing findings include the lack of patient stratification, insufficient tissue depletion of B cells and the choice and timing of primary outcome.

The requirement for new and validated outcome measures for PSS led to the development of the European Sjögren’s Syndrome Patient Reported Index (ESSPRI) and a physician-assessed systemic disease activity index (European League Against Rheumatism Sjögren’s Syndrome Disease Activity Index (ESSDAI)).8 These are a welcome advance, but certain limitations suggest that additional objective outcome measures/biomarkers would be desirable. Use of the ESSDAI, for example, requires a minimum threshold for trial entry that excludes a large proportion of patients. Other outcome measures include salivary flow rates, although these are subject to issues of standardisation and diurnal variation,9 and histological examination of salivary gland biopsies, which may provide mechanistic information but is invasive.10,11 Salivary gland ultrasound (SGUS) is readily available, non-invasive and shows reasonable sensitivity and good specificity for the diagnosis of PSS.12–14 In PSS, glandular echogenicity is altered and there is loss of homogeneity due to the presence of multiple hypoechoic or anechoic areas, as well as hyperechoic bands. Loss of definition of the glandular border may also be observed. A single-site substudy of SGUS in TEARS showed that a greater number of patients had improvement in parotid gland echostucture at 24 weeks after rituximab compared with placebo.15

Echogenicity	Normal	0	Hypoechoic	1
Consistency	Normal	0	Mild heterogeneity	1
Evident honeycombed	2	Gross multifocal	3	
Definition	Normal	0	Moderately defined	1
Ill-defined	2			
Glands involved	None	0	Parotids or submandibular glands	1
All glands	2			
Hypoechoic foci size	None	0	Small 2–5 mm	1
Large 5–8 mm non-vascular	2			
Over 8 mm vascular	3			

Total | 0–11

TUS was modelled using mixed effects linear regression, including baseline score, patient age, disease duration and time point. Odds of domain improvement were modelled by repeated-measures logistic regression, including baseline score, age, disease duration and time point. Descriptive summary statistics, scatterplots and boxplots were produced to explore and summarise the data.

RESULTS

In total, 66 patients (49.6%) from the total study population consented to SGUS, and 52 (39.1%; n=26 rituximab and n=26 placebo) patients from nine centres completed the baseline and at least one follow-up visit. Of these 52 patients, 43 (83%) completed all three visits. There were no apparent differences in relevant characteristics between those consenting and not consenting to the substudy (online supplementary table S1). The two arms of the substudy were also similar (table 2), although TUS in the rituximab arm was on average one point greater.

METHODS

The TRACTISS study has been previously described.8 Briefly, 133 patients with PSS were randomised 1:1 to 1000 mg rituximab or placebo given at weeks 0, 2, 24 and 26. Patients and clinicians were blind to the randomised allocation. The primary outcome (30% reduction in either oral dryness or fatigue VAS) was assessed at week 48. Methylprednisolone 100 mg was given prior to each infusion of rituximab or placebo. Subjects could consent to an optional SGUS substudy, with assessments at baseline and weeks 16 and 48. The prespecified substudy primary outcome was total ultrasound score (TUS, range 0–11; table 1).

Normal salivary gland echogenicity was defined through similarity with the thyroid. The consistency domain scored the extent of heterogeneity introduced by the presence of hypoechoic areas. The definition domain addressed whether the posterior glandular border was normally visible or else incompletely defined or not possible to define. The hypoechoic foci size domain categorised the size of the glandular hypoechoic lesions that were most typical for that patient. Imaging followed a standard sequence including both transverse and longitudinal views of both parotid and submandibular glands, with data recorded by the sonographer on a study proforma. Additional information was collected for each of the four major salivary glands on vascularity of the gland parenchyma assessed by power Doppler, gland echogenicity (normal, heterogenous or hypoechoic), gland margins (well or ill-defined), approximate hypoechoic foci number (0, 1–5, 5–9 and >10), hypoechoic foci size (<3, 3–7 and >8 mm), as well as domains capturing lymph node abnormalities.

ESSPRI score was calculated as the mean of 0–10 scales for dryness, fatigue and limb pain. The ESSDAI score was scored by the local investigator. Unstimulated whole salivary flow was collected over 15 min, and stimulated whole salivary flow over 10 min following application of citric acid with a cotton swab to the lateral borders of the tongue every 60 s.

DISCUSSION

We demonstrated a statistically significant improvement in TUS after rituximab compared with placebo. While this observation is similar to that in the TEARS substudy, there are a number of key differences. First, in TRACTISS rituximab was given at baseline and then again at 6 months, with a longer follow-up to 48 weeks. Second, the TRACTISS substudy was larger, multicentre and multiobserver. The ability of ultrasound to detect changes...
in this setting is important in encouraging further development of this tool. Third, TRACTISS used a composite SGUS score. Fourth and related to the last point, the number and size of hypoechoic foci showed no change in TRACTISS, in contrast to the TEARS study. The pathological correlate of the hypoechoic areas observed on ultrasound in PSS is uncertain. In TEARS, there was a correlation between histological focus score and SGUS score, suggesting that hypoechoic areas represent areas of inflammatory cell infiltrate. Furthermore, both high baseline SGUS score and high numbers of infiltrating B cells were predictive of non-response. However, opposite findings on B cell infiltration and rituximab responsiveness have been reported by Delli et al, and in a cohort of patients with suspected PSS there was only a modest agreement between the same SGUS score and biopsy. Therefore, it remains possible that the highest grades of hypoechoic lesions might reflect damage as well as inflammation in a subset of patients, explaining why we observed no change in their size or number.

Our results suggest that glandular definition was an important domain driving change in TUS. While there is a pragmatic attractiveness in simplified scores focusing on hypoechoic areas for diagnosis, our data encourage the collection of a wider range of features/domains in clinical trials as there is yet much to learn about the responsiveness of US to effective treatments in PSS.

The clinical significance of our findings is uncertain. TRACTISS did not meet its primary endpoint, and no association between TUS improvement and salivary flow was found. We also found no apparent inverse association between salivary flow rates and TUS at baseline, in contrast to previous cross-sectional studies, which may reflect our small sample size given that previously reported correlations were only fair to moderate. Furthermore, the improvement in the glandular definition domain was only of marginal statistical significance.
We used a novel composite score, designed to be comprehensive but also pragmatic, but which predated the EULAR pSS working group reference atlas. Other limitations include the small number of subjects and the multiplicity of statistical comparisons, for which we did not adjust our nominal significance levels. Although the sonographers in this study were experienced in SGUS, ultrasound machines were not standardised between centres, and some domains, especially the definition domain, can be difficult to assess. Intraobserver and interobserver reliability was not studied and could have impacted our findings; further standardisation of SGUS in PSS is urgently required. Arguably, however, the ability to distinguish treatment arms despite such standardisation may increase the relevance of our findings.

There is good reason to believe that rituximab monotherapy may stimulate new autoimmune B cells through elevation in BLYS levels and may be inefficient at depleting tissue B cells. The fact that we observed a difference in TUS between study arms despite these limitations encourages further research on B cell depletion therapy in PSS, including use of combination therapies, and on SGUS as an imaging biomarker.

REFERENCES

Clinical and epidemiological research

Effect of rituximab on a salivary gland ultrasound score in primary Sjögren's syndrome: results of the TRACTISS randomised double-blind multicentre substudy

Benjamin A Fisher, Colin C Everett, John Rout, John L O'Dwyer, Paul Emery, Costantino Pitzalis, Wan-Fai Ng, Andrew Carr, Colin T Pease, Elizabeth J Price, Nurhan Sutcliffe, Jimmy Makdissi, Anwar R Tappuni, Nagui S T Gendi, Frances C Hall, Sharon P Ruddock, Catherine Fernandez, Claire T Hulme, Kevin A Davies, Christopher John Edwards, Peter C Lanyon, Robert J Moots, Euthalia Roussou, Andrea Richards, Linda D Sharples, Michele Bombardieri and Simon J Bowman

Ann Rheum Dis 2018 77: 412-416 originally published online December 23, 2017

Updated information and services can be found at:
http://ard.bmj.com/content/77/3/412

These include:

References
This article cites 26 articles, 7 of which you can access for free at:
http://ard.bmj.com/content/77/3/412#ref-list-1

Open Access
This is an Open Access article distributed in accordance with the terms of the Creative Commons Attribution (CC BY 4.0) license, which permits others to distribute, remix, adapt and build upon this work, for commercial use, provided the original work is properly cited. See:
http://creativecommons.org/licenses/by/4.0/

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections
Open access (665)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/