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Practice	Points	
	

1. Facial	expression	is	a	key	pain-related	behaviour	that	may	unlock	the	
answer	to	an	automatic	objective	pain	measurement	tool.		

2. Several	facial	movements	occur	frequently	when	describing	the	facial	
expression	of	pain.			

3. The	facial	expression	of	pain	shows	consistency	across	ages,	genders,	
cognitive	states	and	different	types	of	pain	and	may	correlate	with	self-
report	of	pain.	

4. Computer	imaging	has	introduced	a	novel	approach	to	assessing	pain	
perception,	via	the	automatic	recognition	of	specific	facial	expressions	
attributed	to	pain.	This	has	some	intrinsic	limitations,	including	as	the	
detrimental	effect	from	participant	movement.		

5. Facial	electromyography	is	an	alternative	method	to	detect	facial	muscle	
activity.	Its	ability	to	measure	muscle	tone	may	demonstrate	an	improved	
correlation	to	pain	intensity,	but	the	concept	has	not	been	proven.		

6. If	facial	electromyography	or	other	technology	could	be	refined	to	
accurately	measure	pain	intensity,	it	could	be	combined	with	advances	in	
sensor	technology	and	artificial	intelligence	to	create	a	field	rich	for	
research	and	technical	innovation	and,	ultimately,	clinical	use.	 

	
	
 



	
Abstract	
Currently	clinicians	observe	pain-related	behaviours	and	use	patient	self-report	
measures	in	order	to	determine	pain	severity.	This	paper	reviews	the	evidence	
when	facial	expression	is	used	as	a	measure	of	pain.	We	review	the	literature	
reporting	the	relevance	of	facial	expression	as	a	diagnostic	measure,	which	facial	
movements	are	indicative	of	pain,	and	whether	such	movements	can	be	reliably	
used	to	measure	pain.	We	conclude	that	although	the	technology	for	objective	
pain	measurement	is	not	yet	ready	for	use	in	clinical	settings,	the	potential	
benefits	to	patients	in	improved	pain	management,	combined	with	the	advances	
being	made	in	sensor	technology	and	artificial	intelligence,	provide	
opportunities	for	research	and	innovation.	 
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How	pain	is	ultimately	perceived	is	the	result	of	a	complex	interplay	of	sensory,	
cognitive,	social	and	emotional	drivers	that	vary	between	individuals	[1].		Since	
the	experience	and	the	manifestation	of	pain,	including	verbal	reports,	can	be	
ascribed	as	highly	subjective,	there	is	a	genuine	desire	in	searching	for	diagnostic	
tools	that	provide	more	objective	measures.	To	date,	clinicians	have	relied	upon	
observing	pain-related	behaviours	to	grade	a	patient’s	extent	of	suffering.	Facial	
expression	exemplifies	one	of	these	pain-related	behaviours	and	there	is	a	
growing	interest	in	its	objective	measurement.	The	focus	of	this	article	is	to	
review	current	advances	in	technology	working	towards	an	objective	measure	of	
pain	through	facial	expression.	The	ability	to	record	the	pain	experience	in	such	
a	way	would	bring	a	myriad	of	clinical	advantages.		These	include	improved	
assessment	of	pain	in	non-communicative	patients,	better	targeting	of	potential	
treatments	and	more	accurate	assessment	of	their	efficacy.	It	may	also	enhance	
our	understanding	of	pain,	thereby	assisting	towards	new	pharmacological	and	
non-pharmacological	analgesic	breakthroughs.		
	
While	the	practice	of	observing	facial	expression	is	a	common	method	for	
clinicians	to	assess	the	presence	or	absence	of	pain	[2],	its	interpretation	can	be	
influenced	by	numerous	factors,	such	as	age	and	dementia	[3].	In	addition,	
similar	studies	demonstrate	that	healthcare	professionals	exposed	to	a	high	
number	of	painful	facial	expressions	over	time	develop	an	exaggerated	bias.	This	
attitude	shift,	labelled	a	‘recalibration’	phenomenon,	signifies	the	desensitization	
of	healthcare	professionals	to	the	severity	of	pain	being	experienced	by	the	
patients.	Moreover,	several	other	factors	can	influence	this	judgment	bias,	such	
as	ethnicity,	associated	motivations	including	opiate	seeking	behaviour	or	the	
general	likeability	of	the	observed	individual	[4-6].	Overall,	healthcare	
professionals	observing	facial	expression	are	at	risk	of	underestimating	patients’	



pain	and	can,	as	a	result,	undertreat	it.	
	
Pain	measurement	tools	can	aid	the	clinician	in	estimating	a	patient’s	pain.	A	
wide	range	are	available	including	those	for	different	ages	(e.g.	Preverbal	Early	
Verbal	Paediatric	Pain	Scale	and	Doloplus-2	Scale),	clinical	environments	(e.g.	
Critical	Care	Pain	Observation	Tool)	or	cognitive	states	(e.g.	Abbey	Pain	Scale),	
but	most	remain	un-validated	and	lack	reliability	data	[7-12].	Rather	than	
objectively	measuring	facial	expression,	pain	measurement	tools	often	infer	
information	from	the	patients’	expressions	[3,11,13,14].	In	general,	it	seems	the	
fewer	facial	characteristics	that	are	empirically	described	in	the	tool	(e.g.	
‘clenched	teeth’	vs.	‘Grimace;	brows	drawn	together,	eyes	partially	closed,	
squinting’),	the	less	reliable	and	more	variable	the	pain	estimates	[12,15].	
However,	unless	formally	trained	in	assessing	facial	activity,	assessor-mediated	
variability	is	likely	to	result	from	subjective	interpretation	of	discrete	facial	
movements.	
	
Emerging	technology	capable	of	recording	facial	muscle	movement	opens	the	
opportunity	for	acquiring	data	that	is	unaffected	by	exposure	bias	or	
interpretation	variation.	More	importantly,	in	the	context	of	pain	assessment,	
automatic	facial	expression	recognition	is	being	explored	as	a	method	to	provide	
an	objective	measure	of	pain	perception.	Examples	of	such	tools	include	
computer	image	analysis	[16–24]	and	facial	electromyography	techniques	[25],	
although	the	latter	is	still	in	its	infancy.	
	
The	aim	of	this	narrative	review	is	to	explore	current	methods	being	developed	
to	measure	facial	expression	of	pain	and	the	feasibility	of	their	clinical	use.	A	
summary	of	the	literature	exploring	facial	expression	of	pain	and	its	usefulness	
as	a	marker	of	pain	is	included.	Available	articles	were	identified	by	structured	
computerized	searches	of	MEDLINE	and	CINAHL	databases	using	search	terms	
FACE,	FACIAL	EXPRESSION,	FACIAL	MUSCLES,	FACIAL	PAIN,	PAIN,	EMOTIONS,	
STIMULUS,	VISUAL	ANALOGUE	SCALE,	PAIN	MEASUREMENT,	TOOL	and	SCORE.	
The	date	range	was	initially	limited	to	2000	onwards	to	provide	studies	detailing	
the	most	recent	advances.	However	studies	with	historical	significance	before	
this	date	were	reviewed	and	have	been	included	where	relevant.		
	
	
How	are	facial	expressions	measured?		
	
Ekman	and	Friesen	devised	the	Facial	Action	Coding	System	(FACS)	[26]	which	
describes	facial	movements	in	terms	of	46	action	units	(AUs)	resulting	from	
underlying	muscle	activity.	Although	described	as	an	objective	measurement	of	
facial	activity,	the	FACS	is	limited	to	what	is	clearly	visible	to	observers	and	
ignores	subtle	or	invisible	changes	(i.e.	muscle	tone).	It	is	also	open	to	a	degree	of	
assessor	interpretation	and	takes	over	40	hours	to	learn	and	accurately	use.		
	
	
	
	
	



Which	facial	movements	display	the	expression	of	pain?	
	
Researchers	attempted	to	describe	the	adult	and	infant	facial	expression	of	pain	
(FEP)	in	terms	of	the	FACS	and	initially	12	AUs	were	identified	[27–31].	But	
these	occurred	inconsistently	and	in	several	combinations.	In	later	studies	the	
concept	of	a	core	expression	of	pain	(CEP)	began	to	develop,	with	a	group	of	AUs	
frequently	being	observed	in	response	to	a	painful	stimulus	(see	figure	1)	[25,32-
35].	Table	1	summarizes	the	studies	that	demonstrate	this	concept	and	the	facial	
AUs	involved.	Facial	actions	involving	AU4,	AU6/7	and	AU9/10	occur	the	most	
consistently.	Note	that	as	previously	described,	AU	6	and	7	and	AU	9	and	10	are	
paired	as	the	facial	activity	and	muscular	bases	of	the	movements	are	similar	
[31].	It	is	also	the	author’s	opinion	that	AU	43	(eyes	closed)	or	AU	45	(blink)	
could	be	used	interchangeably,	based	upon	assessor	interpretation.			
	
	
	

  Facial	Actions	(AU)	

Study	 Description	 4	 6/7	 9/10	 25-27	 43	(or	
45)	

Grunau	&	Craig	(1987)	
[29]	

‘pain	expression’	 ✓	 ✓	 ✓	 ✓	  

Prkachin	(1992)	[31]	 ‘general	pain	expression’	 ✓	 ✓	 ✓	  ✓	
Peters	et	al	(2002)	[28]	 ‘core	facial	actions’	 ✓	 ✓	 ✓	 ✓(27)	  
Wolf	et	al	(2005)	[25]	 ‘key	muscles’	 ✓	 ✓	  ✓	(25)	  
Kunz	et	al	(2007)	[34]	 ‘pain-relevant	AU’	 ✓	 ✓	 ✓	   
Prkachin	&	Solomon	
(2008)	[32]	

‘core	pain	expression’	 ✓	 ✓	 ✓	 ✓	  

Kunz	et	al	(2008)	[33]	 ‘pain-relevant	AU’	 ✓	 ✓	 ✓	  ✓	(45)	
Rahu	et	al	(2013)	[35]	 ‘core	facial	actions’	 ✓	 ✓	 ✓	(9)	  ✓	
	
Table	1.	Summary	of	studies	suggesting	the	concept	of	a	CEP	and	the	associated	AUs.	AU,	action	
unit;	CEP,	core	expression	of	pain.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
Figure	1.	Model	demonstrating	the	AUs	making	up	the	CEP.	AU	4,	brow	lower;	AU	6/7,	eyes	
tighten;	AU	9,	nose	wrinkle;	AU	10,	upper	lip	raise;	AU	25-27,	mouth	opening	lips	part;	AU	43,	
eyes	close.	AU,	action	unit;	CEP,	core	expression	of	pain.	
	
	
On	initial	comparison	of	the	AUs	forming	the	CEP	to	those	seen	in	other	
emotions,	the	combination	appears	distinct	[36].	However,	there	is	considerable	
overlap	in	the	AUs	involved	in	the	facial	expressions	of	CEP,	sadness	and	anger.	
This	could	make	distinction	of	these	emotions	difficult.	
	
	
Can	facial	expressions	of	pain	reliably	measure	pain?	
	
The	above	select	literature	supports	the	argument	that	FEP	may	be	a	sensitive	
marker	of	pain,	in	following	the	notion	of	a	CEP.	However,	to	be	of	greatest	
benefit	to	all	pain	sufferers,	FEP	needs	to	be	reliable	across	different	patient	age	
groups,	genders,	cultures	and	types	of	pain.	In	addition,	for	FEP	to	be	used	as	a	
method	to	estimate	pain	intensity,	a	correlation	between	FEP	and	self-reported	
levels	of	pain	must	exist.	
	
Our	analysis	of	the	literature	identified	several	studies	that	report	a	significant	
correlation	between	facial	expression	and	self-reported	pain.	Prkachin	and	
Mercer	(1992),	observed	a	direct	relationship	between	the	intensity	of	active	
AUs	(5	point	system)	during	painful	shoulder	movements	with	self-reported	
sensory	and	affective	pain	scales	[30].	In	addition,	Kunz	and	colleagues	(2004)	
demonstrated	a	significant	relationship	between	an	increasing	pressure	stimulus	
and	both	self-report	and	facial	expression	of	pain	[37].	Moreover,	Prkachin	and	
Solomon	(2008)	described	the	CEP	as	a	reliable	phenomenon	with	good	short-
term	reproducibility	giving	it	stability	as	a	potential	measure	of	pain	[32].	These	
authors	further	found	that	pain	facial	expression	and	self	reports	of	pain	were	
significantly	related.		Finally,	Peters	and	colleagues	(2002)	also	found	that	
combining	the	most	consistently	occurring	facial	actions	from	the	Neonatal	
Facial	Coding	System	(NFCS)	into	a	single	index	increased	specificity	for	pain	
assessment	in	the	neonatal	post-operative	period	[27].	This	suggests	reducing	



the	facial	expressions	of	pain	to	the	core	expression	of	pain,	and	defining	the	
intensity	of	these	AUs,	could	produce	a	reliable	measure	of	pain.		
However,	several	studies	also	demonstrated	no	significant	correlation	between	
facial	expression	and	self-reported	pain	[27,38,39].	This	discrepancy	in	findings	
may	be	the	result	of	the	attempt	to	define	the	multidimensional	experience	of	
pain	in	a	uni-dimensional	way.		
	
Studies	to	date	reveal	that	FEP	is	not	significantly	affected	by	age	[28,29,33],	
gender	[14,29,40,39],	dementia	[34,39]	or	different	types	of	experimental	pain	
[30].	AUs	associated	with	the	CEP	remain	predominant	in	the	majority	of	these	
studies.		In	contrast,	though,	any	evidence	that	FEP	is	mirrored	across	different	
ethnicities	is	lacking	[14].		
 
Interestingly,	evidence	suggests	that	sedation	may	not	affect	FEP.	The	work	by	
Rahu’s	group	(2013)	demonstrated	that	patients	who	were	sedated	with	opioid,	
benzodiazepine	or	propofol	retained	the	core	expression	of	pain.	[35].	These	
results	suggest	that	FEP	could	be	useful	in	measuring	pain	in	sedated	patients.	
	
	
What	technology	is	available	to	detect	FEP?	
	
The	majority	of	work	for	the	automatic	recognition	of	FEP	has	revolved	around	
computer	image	analysis.	Measurement	of	facial	activity	from	still	images	or	
video	recordings	requires	several	sequential	processes.	Initially	basic	analysis	
involves	face	localization,	tracking	and	adjustment	for	head	pose	and	
illumination.	Secondly,	feature	extraction	aims	to	convert	pixel	data	to	that	
representative	for	variations	in	shape,	colour	and	texture.		Finally,	classification,	
or	expression	recognition,	is	simply	facial	action	detection	by	recognizing	active	
AUs	[23,41].		
	
	
One	method	that	enables	automatic	recognition	of	active	AUs	is	based	on	
machine-learning	techniques	and	makes	use	of	artificial	intelligence	algorithms.		
Once	the	initial	images	have	been	adjusted	and	converted,	the	relevant	facial	
feature	data	are	filtered	and	input	into	machines	which	have	learnt	to	recognise	
AUs	through	training	on	large	databases	of	FACS-labeled	images	[23,42,43].	An	
alternative	method	tracks	manually-marked	feature	points	across	sequential	
images,	allowing	an	estimation	of	pain	intensity:	the	greater	the	distance	moved	
by	the	feature	point,	the	more	intense	the	AU	[44,45].	
	

	
Table	2	summarizes	published	studies	where	technology	designed	to	detect	FEP	
has	been	applied	to	investigative	research.	Studies	using	computer-based	
systems	to	recognise	FEP	were	largely	conducted	in	neonates	or	children.	In	a	
2006	study,	three	face	classification	techniques	were	trained	and	tested	on	
photographs	to	assess	the	ability	of	the	system	to	differentiate	between	painful	
and	non-painful	facial	expressions	[19].	The	best	system	classifier	in	this	study	
had	an	88%	recognition	rate.	Although	an	early	form	of	machine-based	facial	
recognition,	it	highlighted	some	of	the	clinical	feasibility	issues	associated	with	



this	method,	particularly	the	temporal	uncoupling	that	occurs	when	still	images	
are	taken	and	individually	processed	by	hand	before	analysis.	A	2015	study	used	
the	Computer	Expression	Recognition	Toolbox	(CERT)	[23]	to	develop	a	model	
that	could	detect	and	measure	post-operative	pain	in	children	that	had	
undergone	an	appendicectomy	[21].	The	CERT	is	trained	on	5	large	databases	
[23]	and	was	used	on	this	occasion	to	identify	14	pain-related	AUs	from	video	
recordings.		The	model	demonstrated	good	accuracy	in	detecting	the	presence	of	
pain,	but	estimating	its	intensity	was	only	moderately	correlated	to	self-report	
[21].	Issues	highlighted	from	this	study	were	that	children	had	to	be	positioned	
and	remain	relatively	still	in	front	of	a	camera	to	enable	capture	of	suitable	
images.		Lighting	also	had	to	be	optimized.		Although	accurate	in	detecting	pain,	
correlation	with	reported	pain	intensity	was	limited	and	it	highlighted	problems	
with	using	this	technology	in	a	clinical	environment.		
	
A	2015	study	assessed	the	ability	of	newly	developed	software,	based	on	the	
principle	of	facial	point	tracking,	to	recognize	5	NFCS	identified	pain-related	
facial	actions	in	neonates	[46].	The	sensitivity	and	specificity	of	the	software	to	
detect	pain	was	100%	when	assessed	using	images	obtained	during	a	painful	
procedure.	However,	the	concordance	of	the	software	with	the	painful	situation	
was	assessed	using	only	90	out	of	the	5644	images	obtained	and	equated	only	to	
the	presence	or	absence	of	pain,	rather	than	intensity.	As	with	the	previous	
studies,	participant	movement	is	poorly	tolerated	and	with	software	dependent	
on	analyzing	distance	moved	by	tracked	points,	this	becomes	even	more	
intolerant	to	participant	or	camera	movement	[46].			
	
Study	 Technology	

detecting	FEP	 Subjects	 Stimulus	 Study	findings	 Limitations	of	
technology	

Wolf	(2005)	
[25]	

Facial	
electromyogram	
(measuring	9	
facial	muscles)	

10	male	
adults	

Laser	pulses	 Significant	activation	of	
2	groups	of	facial	
muscles	–	orbicularis	
oculi/	corrugator	
supercilii	and	
mentalis/depressor	
anguli	oris		

Only	a	pilot	study.	
No	described	
correlation	
between	pain	
intensity	and	
muscle	activity.	

Brahnam(2006)	
[19]	

Machine	
recognition	of	
facial	expression	
from	photographs	

26	
Caucasian	
neonates	
(13	boys)	

Transport,	air	
stimulus,	
friction,	heel	
puncture	

88%	automatic	
recognition	rate	of	pain	
vs.	non-pain	states	

Not	clinically	
practical	–	each	
image	needs	
manually	
processing	prior	to	
analysis	

Heiderich	
(2015)	[46]	

Automatic	
recognition	of	
NFCS	using	facial	
point	tracking	
from	sequential	
still	images	

30	
neonates	

Intramuscular	
injection,	heel	
lancing,	
venipuncture	

100%	sensitivity	and	
specificity	of	automatic	
detection	of	pain	during	
painful	procedure	

Intolerant	to	
camera	movement	
once	images	
calibrated.	
Unable	to	detect	
pain	intensity.	

Sikka	(2015)	
[21]	

Computer	vision	
machine	learning-
based	technique	

50	
children	
(5-18	
years)	

<24	hours	post	
laparoscopic	
appendicectomy	

Good-excellent	
detection	of	pain	vs.	no-
pain.	Moderate	
correlation	between	
pain-intensity	estimate	
and	self-report.	

Frontal	camera	
with	15°	tolerance.	
Moderate	ambient	
lighting	needed.	
Intolerant	to	rapid	
subject	motion.	

	
Table	2.	Studies	where	automatic	facial	recognition	of	pain	has	been	applied	to	investigative	
research.		FEP,	facial	expression	of	pain;	NFCS,	Neonatal	Facial	Coding	System.	
	
Progress	has	been	made	in	an	attempt	to	develop	computer	software	capable	of	
overcoming	the	issue	of	non-frontal	facial	alignment	[20,24].	However,	



movement	error	remains	a	limitation,	making	its	use	in	the	clinical	setting	
questionable.	Another	fundamental	limitation	is	the	fact	that	computer	image	
analysis	still	relies	on	the	assumption	that	muscle	contraction	causes	visible	
facial	movements.	As	Ekman	queried	in	his	paper	first	describing	the	FAC,	it	
ignores	the	invisible	movements	such	as	muscle	tone	that	may	give	more	
detailed	information	about	pain	intensity	[26].		
	
	
Facial	EMG	and	the	evidence	for	its	practical	use.	

	
An	alternative	method	to	detect	facial	muscle	activity	is	facial	EMG	(fEMG).	As	
reviewed	by	Dimberg	(1990),	consistent	fEMG	reactions	occur	in	response	to	
different	visual	emotional	stimuli,	allowing	emotions	of	fear,	happiness	and	
anger	to	be	distinguished	[47].	However,	until	recently	there	have	not	been	any	
studies	identifying	FEP	through	muscle	activity	detectable	by	fEMG	[25].		
	
Dimberg	highlighted	the	advantages	of	fEMG	in	detecting	facial	muscle	actions	
from	fEMG	studies	[47].	Firstly,	fEMG	signal	is	instantaneously	detected	and	
recorded	and	not	reliant	upon	large	amounts	of	time	to	interpret	facial	activity	
or	process	videoed	facial	images.	Secondly,	fEMG	provides	an	objective	
measurement	of	muscle	activity.	This	compares	favourably	with	computer	image	
analysis	that,	as	previously	described,	uses	software	trained	on	databases	of	
manually	and	therefore	subjectively	labeled	images.	Thirdly,	fEMG	allows	
detection	of	muscle	activity	that	is	too	small	to	be	seen	visibly.	The	potential	
relevance	of	this	is	demonstrated	by	the	fact	that	invisible	facial	muscle	activity	
is	detected	during	imagery	of	different	emotions	[47].	But	it	remains	unknown	if	
intensity	of	muscle	activity	translates	to	a	sensitive	measure	of	pain	intensity.	
Lastly,	an	advantage	that	fEMG	has	over	current	methods	of	computer	image	
analysis	is	that	the	participant’s	face	does	not	have	to	be	kept	in	alignment	with	
the	camera	or	at	a	set	distance.	This	could	make	it	a	feasible	tool	for	use	in	the	
clinical	setting.		
	
There	has	only	been	one	study	measuring	FEP	by	fEMG	methods	(see	table	2).	
Wolf’s	group	(2005)	conducted	a	pilot	study	to	test	a	new	EMG	method	in	which	
the	recording	of	facial	muscle	activity	was	related	to	the	previously	identified	
AUs	making	up	expression	of	pain	[25].	Where	fEMG	methods	had	previously	
been	unsuccessful	in	reaching	a	balance	in	sufficient	sensitivity	and	selectivity,	
this	study	was	able	to	record	activity	in	9	facial	muscles	simultaneously.	As	a	
result	participants	exposed	to	a	painful	stimulus	showed	significant	activities	in	
corrugator	supercilli	(AU4)	and	orbicularis	oculi	muscle	(AU7)	as	well	as	muscle	
groups	initiating	mouth	movement	(mentalis	and	depressor	anguli	oris).	
Encouragingly,	these	authors	found	that	the	facial	pattern	of	pain	differed	from	
that	demonstrated	in	their	previous	work	exploring	facial	expressions	associated	
with	joy,	disgust	and	appetence	[48].	However,	as	previously	mentioned,	the	
distinction	of	CEP	from	anger	and	sadness	may	be	more	challenging.	
	
	
	
	



What	potential	problems	can	be	foreseen	using	facial	EMG	techniques?		
The	process	of	recording	fEMG	signals	is	composed	of	3	stages	including	
electrode	selection	and	placement,	EMG	recording	and	signal	conditioning	[49].		
Electrodes	can	either	be	needle	or	surface	type.	However,	needle	electrodes	are	
invasive	and	therefore	unsuitable	for	routine	use	so	will	not	be	considered	
further.	Surface	electrodes,	in	turn,	are	non-invasive,	safe	and	easy	to	use,	but	
may	irritate	and	thus	be	poorly	tolerated.		In	addition	they	are	prone	to	crosstalk	
from	other	surrounding	muscles,	making	it	difficult	to	measure	signals	from	
specific	muscles.	However,	crosstalk	can	be	considerably	improved	by	filtering	
out	EMG	signals	originating	from	distant	muscles	and,	as	seen	in	the	study	by	
Wolf	et	al,	fEMG	technique	can	overcome	the	issue	of	selectivity	[25].	Correct	
electrode	placement	is	required	to	measure	the	appropriate	muscle	activity	and	
to	minimise	crosstalk.	As	the	optimal	placement	is	in	the	midline	of	the	muscle	
belly,	anatomical	variations	in	facial	muscles	may	be	a	complicating	factor	that	
needs	to	be	addressed	[50].	Also,	to	minimize	inaccuracies	in	data	acquisition,	an	
expert	in	facial	anatomy	and	fEMG	would	be	required.		
	
During	EMG	recording,	the	small	amplitude	signals	can	easily	be	affected	by	
extrinsic	electrical	noise.	Many	forms	of	such	noise	can	be	found	in	the	clinical	
environment,	such	as	those	created	by	electrostatic,	electromagnetic	radiation	or	
noise	from	power-lines	and	electrical	equipment.	In	addition,	noise	can	also	
result	from	what	is	defined	as	motion	artifact,	generally	caused	from	the	
electrode	moving	over	the	skin.	
	
Measures	to	overcome	some	of	these	potential	artifacts	include	signal	
conditioning	or	the	application	of	filters.	The	former	is	the	final	part	of	the	EMG	
recording	process	and	its	role	is	to	clean	up	the	EMG	and	improve	the	signal	to	
noise	ratio.		Filters,	in	turn,	are	applied	to	remove	background	electrical	
interference	and	allow	signal	amplification	in	the	range	of	frequencies	at	which	
the	facial	muscles	operate	[49].	It	is	yet	to	be	proved,	however,	whether	these	
techniques	are	able	to	eliminate	noise	sufficiently	when	attached	to	a	moving	
patient.	
	
Conclusion	
A	combination	of	4	facial	movements	makes	up	the	CEP.	This	combination	
appears	unique	to	the	experience	of	pain,	differentiating	it	from	other	key	facial	
expressions,	although	some	overlap	with	emotions	such	as	sorrow	or	anger	may	
exist.	As	the	FEP	does	not	appear	to	be	affected	by	factors	such	as	participant	
age,	gender,	or	the	presence	of	dementia	or	sedation,	the	CEP	may	have	universal	
application.	Although	the	identification	of	the	FEP	is	a	sensitive	marker	for	the	
presentation	of	pain,	evidence	of	a	correlation	between	FEP	intensity	and	
reported	pain	intensity	is	currently	limited.		
This	review	has	focused	on	novel	systems	of	measuring	facial	expressions	as	an	
example	of	objectively	assessing	pain,	namely	the	FACS	system.	While	novel,	this	
elaborate	system	requires	prolonged	specialist	training	to	become	proficient	in	
its	use	prior	to	being	able	to	confidently	identify	and	code	facial	movements.	



Although	it	is	an	improvement	upon	simple	observation	of	facial	expressions,	it	
can	be	open	to	interpretation	error.		Furthermore,	it	is	limited	somewhat	by	only	
being	able	to	score	facial	movements	that	are	clearly	visible	and	attempting	to	
grade	the	intensity	of	the	AU	by	sight	alone	adds	further	to	the	subjectivity	of	the	
measure.	
Despite	its	drawbacks,	automated	recognition	of	FEP	has	been	used	in	
investigative	research.		The	underlying	principle	is	to	replace	a	human	facial	
action	coder	with	a	computer-based	system,	relying	on	the	automatic	recognition	
of	facial	movements	that	are	interpreted	from	optimally	processed	images.	This	
should	minimise	interpretation	error,	which	in	turn	improves	data	quality.		
Unfortunately,	before	computer-based	FEP	recognition	can	be	reliably	
introduced	into	the	clinical	setting,	its	limitations	need	to	be	overcome.	It	is	
intolerant	to	participant	movement	and	the	systems	were	trained	on	human-
coded	databases,	which	are	inherently	limited.		Like	the	operator-based	systems,	
computer-based	systems	can	only	measure	visible	movements	and	the	ability	to	
measure	pain	intensity	is	weak.		The	accuracy	of	these	systems	further	decreases	
if	other	expressions	of	emotion	and	speech	are	introduced	[51].	It	is	likely	that	
computer	systems	for	image	analysis	could	eventually	be	developed	to	overcome	
patient	movement.	However,	its	underlying	principle	for	measuring	the	FEP	and	
correlating	it	to	pain	intensity	could	remain	fundamentally	flawed,	limiting	it	to	
provide	a	binary	measure	only	i.e.	pain	or	no-pain	state.			
Theoretically,	fEMG	reveals	several	advantages	as	a	method	for	detecting	FEP	in	
the	clinical	setting	over	computer	image	analysis:	it	is	a	purely	objective	measure	
of	facial	activity;	it	is	able	to	detect	changes	in	muscle	tone	as	wells	as	gross	facial	
movements;	it	is	not	reliant	on	a	correct	orientation	between	participant	and	
camera	to	work.	However,	due	to	the	paucity	of	work	on	fEMG	in	the	clinical	
setting	to	detect	FEP,	these	advantages	have	not	yet	been	demonstrated.	Facial	
EMG	may	be	subject	to	similar	issues	of	movement	intolerance,	limited	ability	to	
measure	pain	intensity	and	performance	degradation	associated	with	speech	
movements	or	other	non-pain	expressions.	In	addition,	anatomical	variations	
both	in	the	size	of	faces	and	in	the	precise	location	of	the	muscles	are	further	
issues	that	would	need	to	be	tackled.	Novel	machine	learning	algorithms	and	
multi-sensor	arrays	have	improved	the	spatial	resolution	of	fEMG,	which	
partially	address	these	technical	issues	[52].		
	
	
Future	Perspective		
Technology	continues	to	improve	and	evolve.	If	future	research	were	to	
demonstrate	its	ability	to	accurately	measure	pain	intensity,	its	application	
would	be	wide-ranging.	First,	it	would	allow	improvements	in	pain	measurement	
and	treatment	in	non-communicative	patients.	This	could	extend	from	infants	
and	adults	with	cognitive	impairment	to	patients	in	the	post-operative	period	
and	those	on	intensive	care	who	are	sedated.		
Secondly,	it	could	be	incorporated	into	perioperative	closed-loop	delivery	
systems,	such	as	those	delivering	anaesthesia.	The	last	decade	has	seen	
increasing	interest	in	this	area	with	the	aim	to	automate	administration	of	
anaesthesia,	titrating	it	against	the	recorded	depth	of	anaesthesia,	thus	freeing	
the	anaesthetist	to	concentrate	on	the	management	of	perioperative	physiology	



[as	exemplified	by	53].	Depth	of	anaesthesia	measurement	uses	bispectral	index	
(BIS),	whereas	intra-operative	pain	measurement,	currently	relies	on	
haemodynamic	information	as	an	indirect	measure	of	pain	[54].	This	method	is	
obviously	limited	by	the	effect	of	pharmacological	or	surgical	interventions	on	
the	cardiovascular	parameters.	A	method,	which	could	detect	pain	intensity,	
albeit	in	a	non-paralysed	patient,	through	facial	muscle	tone,	could	significantly	
improve	closed-loop	anaesthesia	delivery	systems.		
Advances	in	sensor	technologies	such	as	capacitive	sensing,	signal	processing	
and	miniaturisation	are	enabling	novel	applications	in	research,	healthcare	and	
beyond	[55].	In	particular,	there	is	great	potential	for	wearable	sensing	systems	
to	enable	multimodal	data	acquisition	allowing	behavioural	and	physiological	
signals	to	be	fused.	Furthermore,	advances	in	machine	learning	algorithms	have	
enabled	much	more	accurate	detection	of	facial	expressions	and	novel	
technologies	are	currently	being	developed	with	the	aim	of	measuring	facial	
muscle	activity	through	sensors	embedded	into	wearable	devices	[56].			
	
In	summary,	the	technology	for	objective	pain	measurement	is	currently	far	from	
ready	for	use	in	the	clinical	setting.	However,	the	potential	benefits	to	patients	in	
improved	pain	management,	combined	with	the	advances	being	made	in	sensor	
technology	and	artificial	intelligence,	make	this	field	a	rich	area	for	continued	
research	and	technical	innovation.		
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