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ABSTRACT
We present the quantum theory of the Penning trap in terms of individual x and y radial modes of
the motion of a single charged particle in the trap, and demonstrate how the conventional rotating
frame used to examine these individual dynamics fails in the quantum regime. In solving the radial
Hamiltonian in the {x , y} basis, we show how canonical transformation of the variables must take
place after quantization, in order that these separate motions can be consistently tracked. This is in
contrast to previous work. The results of the discussion lend themselves to a fully quantum treatment
of mode coupling in the trap, leading to an avoided crossing between the coupled energy levels
of the system. Exploiting the algebraic structure of the problem allows employment of a dressed-
atom formalism within quantum Penning trap theory, and future applications resulting from this are
proposed.
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1. Introduction

The fundamental theory of the Penning trap has been
studied extensively and successfully (1–4), laying down
the framework of a device responsible for the most precise
value of the g-factor (5) and mass (6) of the electron, with
far reaching and ever expanding applications (7–10). The
power of this particular ion trap must surely lie in its
inherent simplicity; the static electric and magnetic fields
used for confinement produce a Hamiltonian which is
exactly solvable by a number of methods (2).

This paper is motivated by the pursuit of quantum
information processing by confinement of single elec-
trons in Penning traps (8, 11–14). Electrons are highly
suitable candidates for the implementation of quantum
logic (15), and the use of Penning traps for their con-
finement further takes advantage of the high precision
of measurement enabled in this trap (16), and the well-
controlled decoherence effects it offers (1). Furthermore,
the implementation of the Penning trap as a quantum
radar through quantum illumination protocols (17–22)
is a possibility enabled by the unique design of the Geo-
nium Chip trap (10, 23, 24), which can only follow from
a consistent quantum theory. A further motivation of
this work is the possibility of quantum interferometry
through the manipulation of the adiabatic potential in
the trap (25), for which knowledge of the x and y motions
in the quantum regime is essential.

CONTACT B. M. Garraway b.m.garraway@sussex.ac.uk

The principal method of diagonalizing the classical
{x, y} basis before quantization of canonical variables (4)
and treating the quantized radial motion in terms of cy-
clotron (+ ) and magnetron (− ) modes is the most well-
established. This method lends itself well to the descrip-
tion of the radial dynamics as that of a two-dimensional
isotropic oscillator rotating around the z-axis (2), form-
ing an epicyclic curve in the x, y plane. In this paper,
we discuss how combining the separate x and y motions
in this way, before quantization, disguises the nature of
these individual motions in the quantum regime, and
leads to a misguided interpretation of the potential energy
in the system. We hold the non-conservative force con-
tributed by the magnetic field responsible, and propose
an alternative approach to the quantum treatment when
knowledge of individual spatial modes is desirable. This
motivates the use of sets of Schwinger boson angular
momentum algebra within the Penning trap (26). Such
methods have been employed in Penning trap theory
in (27), but in the present work they are used to enable
a fully quantum treatment of the Penning trap in the
dressed-atom formalism (28, 29).

The paper is divided into six main sections. In
Section 2, we review the classical Penning trap Hamilto-
nian, and the transformation to a frame rotating around
the z-axis. Section 3 examines the quantum Hamiltonian
and transformation to this frame in the {x, y} basis, and

© 2017 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
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2 F. CRIMIN ET AL.

discusses how this approach fails when interpreting in-
dividual x and y dynamics for low energy states. Section
4 then presents a novel approach in solving the quantum
theory of the Penning trap, and discusses the advantage
of this formulation over the conventional approach (1–
4). Section 5 examines how the devised methods can
be employed in a quantum mode coupling calculation,
and proposes some future applications which exploit the
results of the calculation. We summarize the outcomes
and their future implications in Section 6.

2. The classical theory of the Penning trap

2.1. The Hamiltonian

Confinement of charged particles in a Penning trap is
provided a static electric field �E = − �∇φ(�r) and axial
magnetic field �B = |�B|êz . In an ideal circular Penning
trap, the associated electric potential of the former pro-
vides the quadrupole

φ(�r) = U0

(
z2 − x2 + y2

2

)
, (1)

where the units of U0 are Vm−2, and the sign of this field
curvature depends upon the charge of the trapped par-
ticle(s). Beginning with the Lagrangian for a (positively)
charged particle of mass m and charge q in the presence
of static electric and magnetic fields with associated po-
tentials φ(�r), �A(�r):

L = 1
2

m�v2 − qφ(�r) + q�v · �A(�r). (2)

We find the form of the conjugate momenta, pi = δL
δvi

=
mvi + qAi, and the subsequent Hamiltonian:

H = �v · �p − L
= 1

2m
(�p − q�A(�r))2 + qφ(�r). (3)

In the Coulomb gauge �∇ · �A(�r) = 0 (30) the convenient
vector potential �A(�r) = 1

2
�B × �r is chosen (1) to produce

the components

Ax = −1
2

By, Ay = 1
2

Bx, Az = 0. (4)

In this paper, the trapping of a single electron is consid-
ered, and inserting (4) into (3), the classical Hamiltonian
of the electron of charge q = −e in this ideal configura-
tion is given by

H = 1
2m

(
p2

x + p2
y + p2

z

)
+ ωc

2
(xpy − ypx)

+ 1
2

m
(ω1

2

)2
(x2 + y2) + 1

2
mω2

z z2, (5)

Figure 1. The classical radial motion of a charged particle in the
circular Penning trap traces out an epicyclic curve (1) in the x-y
plane. The cyclotron motion of frequency ω+ is superposed onto
a slow magnetron drift orbit with frequency ω−. The relative size
of the orbits is not drawn to scale.
where

ωc = |q||�B|
m

, ωz =
√

2qU0

m
, ω1 =

√
ω2

c − 2ω2
z .

(6)

The motion in the radial plane is now conventionally de-
coupled by canonical transformation (2), and the Hamil-
tonian is written in terms of three distinct harmonic con-
tributions: the cyclotron (+), axial (z), and magnetron
(−) motions. As a consequence of the crossing of the
electric and magnetic fields, the magnetron motion is
unstable, and must therefore be minimized to prevent the
electron striking the edge of the trap (31). The frequencies
of the radial modes are given explicitly by

ω+ = 1
2
(
ωc + ω1

)
, ω− = 1

2
(
ωc − ω1

)
. (7)

We identify xpy − ypx in (5) with the z component of
canonical angular momentum, so that the radial part of
the classical Hamiltonian is that of a cranked harmonic
oscillator (32), a two-dimensional harmonic oscillator
with an additional rotation of the plane around the z-
axis at the frequency ωc/2. The harmonic motion of the
x and y components in the Hamiltonian are at the same
frequency ω1/2. The epicyclic curve traced by the classical
expectation values (1) comprises a fast (typically ∼GHz)
cyclotron orbit superposed upon a slow magnetron drift
(∼kHz), as shown in Figure 1. This motion is then super-
posed upon simple harmonic oscillation along the z-axis.

Crucially, the harmonic frequency of the x, y oscilla-
tors, ω1/2, does not match the cranking frequency, ωc/2
in (5). This arises from the necessity of providing axial
confinement in the trap: the Laplace equation dictates
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that we cannot provide a static potential minimum along
the z-axis alone (30), and a fraction of the axial trap-
ping frequency must be added to the radial one. As a
result ωc → ω1, and the Landau levels (33) of the mag-
netic field become non-degenerate. This has significant
consequences for the expectation values of the quantum
system, further discussed in Section 3.3.

2.2. The classical rotating frame

An operation which greatly simplifies Hamiltonian (5) is
the time-dependent transformation to the frame rotating
around the z-axis (2). We begin by defining the change
of coordinates of the system:

x → x cos �t − y sin �t,
y → x sin �t + y cos �t. (8)

This describes rotation around the z-axis at frequency �,
in the same anticlockwise direction as the rotation caused
by the force on the electron in the magnetic field. In this
frame, the Hamiltonian becomes

H → 1
2m

(
p2

x + p2
y + p2

z

)
+
(

1
2

ωc − �

)
(xpy − ypx)

+ m
2

(ω1

2

)2
(x2 + y2) + 1

2
mω2

z z2, (9)

and the canonical momenta of the radial motion:

px → mẋ + my
(

1
2

ωc − �

)
,

py → mẏ − mx
(

1
2

ωc − �

)
. (10)

By a judicious choice of � = ωc/2, the angular momen-
tum term is removed from the Hamiltonian:

H �=ωc/2−→ H� = 1
2m

(p2
x + p2

y + p2
z)

+ m
2

(ω1

2

)2
(x2 + y2) + 1

2
mω2

z z2,

(11)

and from (10), the canonical momenta likewise reduce
to a purely kinetic form (2). Thus the rotating frame
Hamiltonian (11) reveals an isotropic oscillator in the
radial plane, along with the original axial motion. In Sec-
tion 3.3, the calculation is repeated for a quantized system
in an {x, y} radial basis, revealing surprising inconsisten-
cies in the expectation values of the system resulting from
this treatment.

Other interesting choices of the frequency � are the
slow magnetron drift ω− and the reduced cyclotron fre-

quency ω+ (2). Plugging the former into (9):

H �=ω−→ Hω− = 1
2m

(
p2

x + p2
y + p2

z

)
+ m

2

(ω1

2

)2 (
x2 + y2)

+ ω1

2
(
xpy − ypx

)+ 1
2

mω2
z z2. (12)

The radial part of this Hamiltonian is identical to that
of an electron in a magnetic field with Larmor frequency
ω1/2 (33); the rotating frame at this frequency appears
to remove any effects of the electric field. The choice
� = ω+ similarly reduces the radial part of H to the
Landau Hamiltonian with the opposite sign of angular
momentum:

H �=ω+→ Hω+ = 1
2m

(
p2

x + p2
y + p2

z

)
+ m

2

(ω1

2

)2 (
x2 + y2)

− ω1

2
(
xpy − ypx

)+ 1
2

mω2
z z2. (13)

This is the effective Hamiltonian of a positron particle in
a magnetic field with Larmor frequency ω1/2 (2).

Our interest in this paper is on the separate dynamics
of the x and y motions, so we will focus on the choice of
frequency � = ωc/2 which effectively decouples them.

3. Rotating frame approach

3.1. The quantum Hamiltonian

Imposing the canonical commutation relations [q̂i, p̂j] =
i�δij upon canonically conjugate classical variables qi and
pj allows construction of a set of quantum creation and
annihilation operators. In the present work, their form is
determined by the straightforward approach of writing
the quantized version of the classical Hamiltonian (5) in
terms of individual x, y and z degrees of freedom:

âx = 1√
2�

(√
mω1

2
x̂ + i

√
2

mω1
p̂x

)
,

â†
x = 1√

2�

(√
mω1

2
x̂ − i

√
2

mω1
p̂x

)
, (14)

ây = 1√
2�

(√
mω1

2
ŷ + i

√
2

mω1
p̂y

)
,

â†
y = 1√

2�

(√
mω1

2
ŷ − i

√
2

mω1
p̂y

)
, (15)

âz = 1√
2�

(√
mωz ẑ + i

1√
mωz

p̂z

)
,
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4 F. CRIMIN ET AL.

â†
z = 1√

2�

(√
mωz ẑ − i

1√
mωz

p̂z

)
. (16)

These obey the appropriate commutation relations [âx ,
â†

x] = [ây , â†
y] = [âz , â†

z ] = 1, with all other commuta-
tors going to zero, and enable us to write the quantized
Hamiltonian:

Ĥ = �
ω1

2

(
â†

xâx + 1
2

)
+ �

ω1

2

(
â†

y ây + 1
2

)

− i�
ωc

2

(
â†

xây − â†
y âx

)
+ �ωz

(
â†

z âz + 1
2

)
. (17)

Throughout this paper, we will primarily use the no-
tation of Equations (14)–(17), of the {x, y} basis. We
note that the more conventional approach of canonical
transformation followed by quantization (1–4) effectively
combines the x and y creation and annihilation operators
in the following way:(

â+
â−

)
= 1√

2

(
1 −i

−i 1

)(
âx
ây

)
,(

â†+
â†−

)
= 1√

2

(
1 i
i 1

)(
â†

x
â†

y

)
, (18)

in order to write (17) in the more conventional form (1):

Ĥ = �ω+
(

â†+â+ + 1
2

)
− �ω−

(
â†−â− + 1

2

)

+ �ωz

(
â†

z âz + 1
2

)
. (19)

Use of the combined modes (18) is from now on referred
to as use of, or treatment in, the {+, −} basis.

3.2. The quantum rotating frame

The analogous quantum transformation to the rotating
frame introduced in Section 2.2 is achieved by the unitary
operator

Û(t) = exp
{

i
�

�tL̂z

}
, (20)

where

L̂z ≡ x̂p̂y − ŷp̂x = −i�(â†
xây − â†

y âx). (21)

Rearranging (14), it is straightforward to check that Û(t)
produces the same effect upon x̂ as the classical transfor-
mation upon the x coordinate:

Û(t) x̂ Û†(t) = Û(t)

(√
�

mω1
(â†

x + âx)

)
Û†(t)

=
√

�

mω1

(
â†

x cos �t − â†
y sin �t

+ âx cos �t − ây sin �t
)

≡ x̂ cos �t − ŷ sin �t. (22)

This is identical, minus the hats, to Equation (8). The
time-dependent unitary transformation of a general
Hamiltonian Ĥ is given by (34)

Ĥ → Û(t)ĤÛ†(t) + i� ˙̂U(t)Û†(t), (23)

and inserting (17) accordingly, leads to

Ĥ → �
ω1

2

(
â†

xâx + 1
2

)
+ �

ω1

2

(
â†

y ây + 1
2

)

− i�
(ωc

2
− �

) (
â†

xây − â†
y âx

)
+ �ωz

(
â†

z âz + 1
2

)
.

(24)

Again, the choice � = ωc/2 reveals

Ĥ �=ωc/2−→ Ĥ� = �
ω1

2

(
â†

xâx + 1
2

)

+ �
ω1

2

(
â†

y ây + 1
2

)

+ �ωz

(
â†

z âz + 1
2

)
, (25)

which is a three-dimensional quantum harmonic oscil-
lator in the rotating frame, whose expansion in terms of
quantum canonical variables matches exactly (11). The
analysis so far appears consistent with Section 2.2, and
supports the interpretation of the quantum dynamics as
completely analogous to the classical one. Examination
of the solutions of Ĥ in the following section reveals that
this is not the case.

Following from the classical discussion, the choices
� = ω− and ω+ reduce the quantum rotating Hamilto-
nian (24) to that of a Landau system (33) of an electron
and positron, respectively. In both cases, only one set of
operators are needed to write the quantum Hamiltonian
of this frame in diagonal form. These correspond exactly
to the cyclotron and magnetron mode operators of con-
ventional Penning trap theory (27).

3.3. States and expectation values

3.3.1. Fock states
The rotating Hamiltonian (25) admits Fock state solu-
tions of the form |ψ�〉 = Û(t)|ψ〉 = |nx , ny , nz〉: trivial
eigenstates of the three-dimensional quantum harmonic
oscillator (34). The time-dependent unitary transforma-
tion of Ĥ leads to the following expectation value of
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the transformed Hamiltonian Ĥ� with respect to the
transformed solution |ψ�〉:

〈ψ�|Ĥ�|ψ�〉
= 〈ψ�|

[
Û(t)ĤÛ†(t) + i� ˙̂U(t)Û†(t)

]
|ψ�〉

= 〈ψ�|Û(t)ĤÛ†(t)|ψ�〉
+ i�〈ψ�| ˙̂U(t)Û†(t)|ψ�〉. (26)

Inserting the time-dependent unitary transformation op-
erator (20), we use the result

i� ˙̂U(t)Û†(t) = −ωc

2
L̂zÛ(t)Û†(t) (27)

in order to write:

〈ψ�|Ĥ�|ψ�〉 = 〈ψ |Ĥ|ψ〉 − ωc

2
〈ψ�|L̂z |ψ�〉. (28)

Assuming solutions |ψ�〉 = |nx , ny , nz〉, and therefore
|ψ〉 = Û†(t)|nx , ny , nz〉, and further making use of the
results [

Ĥ, Û(t)
]

= 0 (29)

and

〈nx , ny , nz |â†
xây − â†

y âx|nx , ny , nz〉 = 0, (30)

leads to the expectation value of the Hamiltonian in the
lab frame:

〈Ĥ〉 = �
ω1

2
(
nx + ny + 1

)+ �ωz

(
nz + 1

2

)
. (31)

Due to the integer nature of the quantum numbers, this
does not agree with the expectation value of the Hamilto-
nian written in the conventional basis (19) with respect to
the Fock states |n+, n−, nz〉 for general quantum numbers
of the two bases. The expectation value (31) fails to count
the non-degenerate energy contribution of the Landau
levels. This is formally written:

〈nx , ny , nz |Û(t) Ĥ Û†(t)|nx , ny , nz〉

= 〈n+, n−, nz |Ĥ|n+, n−, nz〉. (32)

Since Hamiltonians (17) and (19) are identical upon re-
placement of operators {âx , ây} → {â+, â−}, we identify
the following:

|n+, n−, nz〉 
= Û†(t)|nx , ny , nz〉. (33)

The conclusion we may draw from this is as follows.
The radial part of the classical Hamiltonian (5) of the

Penning trap describes an isotropic oscillator in the plane
of frequency ω1/2, which itself rotates around the z-axis
at ωc/2. The quantum treatment however, reveals that so-
lutions of the Penning trap are not rotating Fock states of
the x and y modes. Transformation to the rotating frame
in the {+, −} basis can be found to show that the Fock
states of the rotating frame are again the states |n+, n−〉
with additional time dependence of exp{iωct/2 (n+ −
n−)}. However, this isotropic oscillation should not be
split into x and y modes on a quantum level. It follows
that interpretation of the individual x and y dynamics
of the electron in the Penning trap for quantum states
cannot be achieved by use of the rotating frame, as would
appear logical from the classical calculation of Section 2.2.
The semi-classical solutions are discussed below.

3.3.2. Coherent states
It is appropriate to discuss three-mode coherent state
solutions of the Penning trap, which most closely repre-
sent the classical dynamics (35), for traps held at finite
temperature. Such states of the cyclotron and magnetron
modes, |α+, α−, αz〉, have been discussed in detail for the
Penning trap in (27), but in the present work they are
instead formed in the {x, y} basis of the radial modes. A
general single-mode coherent state |α〉 is generated by
the action of the Glauber displacement operator D̂(α) =
exp (αâ† − α∗â) on the vacuum state |0〉 (34). The three-
mode state in the present situation accordingly results
from D̂(αx�)D̂(αy�)D̂(αz�) acting on the three-mode
vacuum state in the rotating frame as follows

|ψ�〉 = D̂(αx�)D̂(αy�)D̂(αz�)|0x0y0z〉
= |αx�αy�αz�〉. (34)

The complex amplitudes have been defined

αx� = |αx� | exp iϕx� , αy� = |αy� | exp iϕy� ,
αz� = |αz� | exp iϕz�. (35)

We employ the results of the Heisenberg equations of
motion (34)

i�
d
dt

Â(t) =
[
Â, Ĥ

]
+ i�

∂

∂t
Â(t), (36)

inserting the rotating frame Hamiltonian (25) to produce

â†
x(t) = exp

(
i
ω1

2
t
)

â†
x(0), â†

y(t) = exp
(
i
ω1

2
t
)

â†
y(0).

(37)

Using this, and the general result α(t) = 〈α|â(t)|α〉, the
expectation value of the Hamiltonian Ĥ in the lab frame
in these states is straightforward to compute from (28):
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6 F. CRIMIN ET AL.

〈Ĥ〉 = �
ω1

2
(|αx� |2 + |αy� |2)

+ �ωz |αz� |2 + �ωc |αx� ||αy� | sin (ϕy� − ϕx�)

+ �

2
(ω1 + ωz). (38)

The sinusoidal term represents the energy of the non-
degenerate Landau levels, which clearly contributes to
the expectation value only for non-zero phase difference,
ϕx� − ϕy� , between the individual x and y motions in the
rotating frame. Again rearranging the operator defini-
tions in (14) and (15), we further compute the expectation
values of the radial motions in the lab frame resulting
from this rotating frame transformation:

〈x̂(t)〉 =
√

�

mω1
[|αx� | (cos (ω+t − ϕx�)

+ cos (ω−t + ϕx�)
)− |αy� | (sin (ω+t − ϕy�)

+ sin (ω−t + ϕy�)
)],

〈ŷ(t)〉 =
√

�

mω1
[|αx� | (sin (ω+t − ϕx�)

+ sin (ω−t + ϕx�)
)

+ |αy� | (cos (ω+t − ϕy�) + cos (ω−t + ϕy�)
)].

(39)

The appearance of the frequencies ω+ and ω− is con-
vincing, and the form of the expectation values seems to
resemble the classical (23) and semi-classical (27) expec-
tation values from the literature. However, the results in
(39) can only reduce to classical expectation values (23) if
the complex amplitude phase difference is strictly given
by ϕx� − ϕy� = π/2. If this condition holds, then the
sum and difference of the amplitudes |αx� | and |αy� |
represent the amplitudes of the cyclotron and magnetron
motions in the trap, respectively. The phase condition can
be interpreted such that the solutions only agree when
the remaining radial motion in the rotating frame is truly
circular. In a similar way to the Fock states discussed
above, we can identify the following for general coherent
states of the lab and rotating frames:

|α+, α−, αz〉 
= Û†(t)|αx� , αy� , αz�〉. (40)

That is, coherent states of the individual x and y mo-
tions rotating around the z-axis are not eigenstates of the
Penning trap Hamiltonian.

4. Two-mode transformation approach

This section examines a different approach in solving the
Penning trap Hamiltonian (17) written in the {x, y} basis.
This is motivated by the shortcomings of the rotating

frame in keeping track of the separate dynamics of the
two degrees of freedom.

4.1. The Schrödinger equation

From Hamiltonian (5), the time independent Schrödinger
equation of the Penning trap is

Ĥψ = Eψ =
[
− �

2

2m

(
∂̂2

x + ∂̂2
y + ∂̂2

z

)
+ 1

2
m
(ω1

2

)2
(x̂2 + ŷ2) + 1

2
mω2

z ẑ2

−i�
ωc

2

(
x̂∂̂2

y − ŷ∂̂2
x

)]
ψ. (41)

The appropriate transformation to render this separable
is the following change of canonical operators from the
lab frame:

x̂ → 1√
2

(
x̂ − 2

mω1
p̂y

)
, ŷ → 1√

2

(
ŷ − 2

mω1
p̂x

)
,

p̂x → 1√
2

(
p̂x + mω1

2
ŷ
)

, p̂y → 1√
2

(
p̂y + mω1

2
x̂
)

.

(42)

This produces a new Hamiltonian, Ĥ → Ĥ′ which re-
sults in the Schrödinger equation:

Ĥ′ψ ′ = Eψ ′ =
[(

− �
2

2mx
∂̂2

x + 1
2

mxω2+x̂2
)

−
(

− �
2

2my
∂̂2

y + 1
2

myω2−ŷ2
)

+
(

− �
2

2m
∂̂2

z + 1
2

mω2
z ẑ2
)]

ψ ′, (43)

where we have defined effective masses for the x and y
motions:

mx = 1
2

ω1

ω+
m, my = 1

2
ω1

ω−
m. (44)

This enables Ĥ′ to be written in the correct canonical
form of three independent harmonic oscillators. It details
a harmonic oscillator of frequency ω+ along the x̂ axis
where the electron has effective mass mx , and a negative
one with frequency ω− along ŷ with effective mass my ,
and the axial motion remains unchanged. We can write
the total wavefunction:

ψ ′ = ψ ′
x(x)ψ ′

y(y)ψz(z), (45)

where

ψ ′
x(x) =

∞∑
n=0

ψ ′
n(x, mx , ω+),
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ψ ′
y(y) =

∞∑
n=0

ψ ′
n(y, my , ω−),

ψz(z) =
∞∑

n=0

ψn(z); (46)

ψ ′
n(x, mx , ω+)

=
((mxω+

π�

) 1
4 1

2
n
2
√

n!
× exp

(
−mxω+x2

2�

)
Hn

[
x
√

mxω+
�

])
,

ψ ′
n(y, my , ω−)

=
((myω−

π�

) 1
4 1

2
n
2
√

n!

× exp

(
−myω−y2

2�

)
Hn

[
y
√

myω−
�

])
,

ψn(z) =
(mωz

π�

) 1
4 1

2
n
2
√

n!
× exp

(
−mωzz2

2�

)
Hn

[
z
√

mωz

�

]
, (47)

and Hn are the standard Hermite polynomials. Following
from the definitions of mx and my , these wavefunctions
further simplify by noting

mxω+ = myω− = m
ω1

2
, (48)

so that the radial wavefunctions of the canonically trans-
formed system are solutions to the isotropic harmonic
oscillator of frequency ω1/2. It is quite remarkable that
although the solution in this frame is given by the stan-
dard solution to harmonic oscillators of frequency ω1/2
and mass m along the x and y axes, the Schrödinger equa-
tion and Hamiltonian must involve the separate effective
masses and frequencies for each direction. In this way,
the effect of the magnetic field responsible for the initial
coupling of the radial modes is manifest as an effective
mass along the separate x and y axes of the trap.

The canonical transformation in (42) is of similar form
to the change of classical canonical variables detailed
in (4, 27). In this latter case, this change of coordinates
takes place before quantization, forming {q+, p+} and
{q−, p−} classical canonical variables. These variables are
then quantized to form the standard creation and annihi-
lation operators of the cyclotron and magnetron modes
(27). It is a subtle distinction, but this change of vari-
ables before or after quantization will prove significant,
as discussed in Section 4.4.

4.2. The quantum mode operator transformation

The quantum mode operator analogue of the transfor-
mation defined in Equation (42) is unitary rotation by
the operator

Û1 = exp
{

− iπ
4

(â†
xây + â†

y âx)

}
= exp

{
− i

�

π

2
Î1

}
,

(49)
where we have defined Î1 = �

2 (â†
xây + â†

y âx), as it refers to
the first component of a set of Schwinger boson angular
momentum vectors of the quantized x and y modes (26).
This set is further discussed in Section 4.4. We accord-
ingly refer to the frame obtained through this transforma-
tion as the Î1 frame, and note that it is none-other than a
two-mode symmetric beamsplitter transformation (36).
Using Equations (14) and (15), its effect upon the x̂
operator is explicitly calculated

exp
{

− i
�

π

2
Î1

}
x̂ exp

{
i
�

π

2
Î1

}

=
√

�

mω1

(
1√
2

(â†
x + âx) + i√

2
(â†

y − ây)

)

= 1√
2

(
x̂ − 2

mω1
p̂y

)
, (50)

verifying that it yields an identical result to (42). The
other transformations follow analogously. Applying Û1
to Hamiltonian (17):

Ĥ′ = Û1ĤÛ†
1

= �ω+
(

â†
xâx + 1

2

)
− �ω−

(
â†

y ây + 1
2

)

+ �ωz

(
â†

z âz + 1
2

)
. (51)

This is of course identical to the well-known quantum
Penning trap Hamiltonian in (19) upon the replacement
of subscripts x → + and y → −. The interpretation of
this more conventional form is that the x and y coordi-
nates are replaced by the conjugate + and − ones in the
reference frame of the laboratory, by the classical canoni-
cal transformation detailed in (4, 27). In the present work
however, the interpretation is that the coordinate system,
and the whole Hamiltonian, are rotated to a frame of
reference remote from the lab.

4.3. States and expectation values

4.3.1. Fock states
The transformed Hamiltonian Ĥ′ admits Fock state so-
lutions of the form

Û1|φ〉 = |φ′〉 = |nx , ny , nz〉. (52)
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8 F. CRIMIN ET AL.

It is straightforward to perform the inverse transforma-
tion of this solution to find |φ〉, a corresponding solution
in terms of quantized x and y modes in the lab frame.
The general result is:

|φ〉 = Û†
1 |nx , ny , nz〉

= 1√
nx! ny! nz !

[
â†

x + iâ†
y√

2

]nx

×
[

iâ†
x + â†

x√
2

]ny [
â†

z
]nz |0x0y0z〉, (53)

so that the first few quantum states in the {x, y} basis in
the lab frame are explicitly given by

Û†
1 |0x0y0z〉 = |0x0y0z〉,

Û†
1 |1x0y0z〉 = 1√

2

(|1x0y0z〉 + i|0x1y0z〉) ,

Û†
1 |2x2y0z〉
= 1

4

(√
3(|0x4y0z〉 + |4x0y0z〉) − √

2|2x2y0z〉
)

,

... . (54)

It is straightforward to determine the relationship be-
tween the above states of the {x, y} basis and the solutions
in terms of the more conventional Penning trap basis,
|n+, n−, nz〉 (1). The energy expectation values of the
eigenstates (54) are found to be:

〈0x0y0z |Û1 Ĥ Û†
1 |0x0y0z〉 = �

ω1

2
= 〈0+0−0z |Ĥ|0+0−0z〉,

〈1x0y0z |Û1 Ĥ Û†
1 |1x0y0z〉 = �

(ω1

2
+ ω+

)
= 〈1+0−0z |Ĥ|1+0−0z〉,

〈2x2y0z |Û1 Ĥ Û†
1 |2x2y2z〉 = 5�

ω1

2
= 〈2+2−0z |Ĥ|2+2−0z〉,

(55)

where, on the right-hand side, the corresponding expec-
tation values of the Hamiltonian in an appropriate state of
the {+, −} basis is written. It is clear that the expectation
value of the state Û†

1 |nx , ny , nz〉 match exactly those in
the state |n+, n−, nz〉, where n+ = nx , n− = ny :

〈nx , ny , nz |Û1 Ĥ Û†
1 |nx , ny , nz〉

= 〈n+, n−, nz |Ĥ|n+, ny , nz〉. (56)

In other words, we identify that the general eigenstates in
(53) are degenerate with |n−, n+, nz〉. Since the vacuum
states of the two bases each occupy a different state space

however, we cannot write that the state Û†
1 |nx , ny〉 is equal

to |n+, n+〉.

4.3.2. Coherent states
The rotated Hamiltonian Ĥ′ also admits coherent state
solutions in the Î1 frame:

|αx
′αy

′, αz〉 = D̂(αx
′)D̂(αy

′)D̂(αz)|0x0y0z〉, (57)
αx

′ = |αx
′| exp iϕx′ , αy

′ = |αy
′| exp iϕy′ ,

αz = |αz | exp iϕz , (58)

and transforming these back to the lab frame reveals:

Û†
1 |αx

′, αy
′, αz〉 = |αx , αy , αz〉, (59)

where

αx = αx
′ + iαy

′
√

2
, αy = αy

′ + iαx
′

√
2

. (60)

Thus, the Hamiltonian in the lab frame (17) admits co-
herent state solutions with complex amplitudes modified
from those in the Î1 frame. Using (51) and (36) to de-
termine the time dependence of the operators, we again
calculate the expectation values of the radial coordinates
for these coherent states:

〈x̂(t)〉 =
√

2�

mω1

(|αx
′| cos (ω+t − ϕx′)

− |αy
′| sin (ω−t + ϕy′)

)
,

〈ŷ(t)〉 =
√

2�

mω1

(|αy
′| cos (ω−t + ϕy′)

+ |αx
′| sin (ω+t − ϕx′)

)
. (61)

These reduce identically to the classical expectation val-
ues in the lab frame of the Penning trap (23) if we associate
|αx

′| and |αy
′| with the amplitudes of the cyclotron and

magnetron motions, respectively. We had found that the
x and y coherent state solutions resulting from the rotat-
ing frame treatment of Section 3.3 must satisfy a specific
phase difference of ±π/2 in order to match the classical
solutions, whereas the above result following the two-
mode Î1 operator transformation is more general.

4.4. Comparison of the rotating frame and
two-mode transformation

4.4.1. The Schwinger boson operators
Motivated by (27), the following angular momentum-like
operators of the Penning trap are identified:

Î0 = �

2

(
â†

xâx + â†
y ây

)
,
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Î1 = �

2

(
â†

xây + â†
y âx

)
,

Î2 = − i�
2

(
â†

xây − â†
y âx

)
,

Î3 = �

2

(
â†

xâx − â†
y ây

)
, (62)

where (26)[
Îi, Îj

]
= i�εijkÎk,

[
Î0, Îi

]
= 0; {i, j, k} = 1, 2, 3.

(63)

The SU(2) Lie algebra of these Schwinger boson oper-
ators can be obtained from any two-dimensional har-
monic oscillator system (26), but the current set I are now
examined in the context of the Penning trap Hamiltonian
in the {x, y} basis.

4.4.2. The canonical transformation
It is clear that the second component operator, Î2, in
(62) is identically half of the z component of angular
momentum in (21):

Î2 ≡ 1
2

L̂z . (64)

Moreover, Section 4.2 revealed that the quantum oper-
ator responsible for the unitary transformation of the
canonical operators x̂, ŷ, p̂y , p̂z in (42) is the two-mode
operator Î1 (49). Rewriting Hamiltonian (17) in terms of
the operator set (62):

Ĥ = ω1

(
Î0 + �

2

)
+ ωc Î2 + �ωz

(
â†

z âz + 1
2

)
, (65)

it is clear that the diagonal form, Ĥ′ (51), is effectively
achieved by the transformation

exp
{

− i
�

π

2
Î1

}
Î2 exp

{
i
�

π

2
Î1

}
= Î3. (66)

That is, the cyclotron and magnetron modes of the Pen-
ning trap are the outputs of the two-mode transformation
operator. This is also apparent from (18), since the rota-
tion matrix (of the annihilation operators) is identically
exp ((− iπ/4)σ̂1)), where σ̂1 is the first component Pauli
matrix.

In the classical regime, the cyclotron and magnetron
modes are formed by canonical transformation to reveal
an epicyclic orbit, as discussed in Section 2.1. In the
rotating frame of this orbit, the centripetal force from
the rotation balances exactly the Lorentz force from the
magnetic field (37) and the dynamics become that of two
simple harmonic oscillators.

In the quantum treatment, the formation of the Pen-
ning trap modes from the x and y degrees of freedom nec-
essarily involves a rotation by Î1. This is not immediately
apparent if this canonical transformation occurs before
quantization. Thus, when the rotating frame is employed
in trying to again separate these motions, the rotation
operator Î2 does not commute with Î1, resulting in the
inconsistencies encountered in Section 3. The nature of
the motion induced by the magnetic field is responsible
for this. It is inherently different from circular motion
resulting from appropriately chosen phase conditions in
a two-dimensional harmonic oscillator: the separate x
and y motions in the harmonic contribution, Î0 in (65),
cannot be added to those in Î2 in a straightforward way.
Thus, the energy contribution of Landau levels resulting
from the magnetic field can never be interpreted as a
potential energy along real spatial axes, but instead as
coming from the dynamics of an effective mass in a
rotated frame of the trap (Section 4.1).

5. Mode coupling in the Penning trap

Coupling of the motional modes of an electron in a Pen-
ning trap is a well-established technique for the resonant
conversion of these modes to enable easier detection of
the oscillator frequencies (27). This method was first
employed as a means of cooling the magnetron degree
of freedom (16). ‘Motional Sideband Cooling’ (31) has
since become an invaluable technique in Penning trap
experiments, enabling further control and detection of
the particle’s motion. In (29), the cyclotron and axial
modes of a single N+

2 ion in a Penning trap are coupled
by a radio-frequency field. A classical calculation demon-
strates how the resulting energy of the coupled system can
be treated in the dressed-atom formalism (28), with an
avoided crossing structure emerging between the ‘dressed
modes’ of the system. This section discusses the quantum
analogue of the coupling in the circular Penning trap,
where again ideas are borrowed from the dressed-atom
approach. The beginning of the calculation is motivated
by a similar method used to study the application of an
octupolar potential in (27).

It should be noted that the calculation below can be
modified to the conventional {+, −} basis in a straight-
forward way. In fact, all results for this basis can be found
by the replacement of x to + in the operator subscripts,
with the distinction being that they ‘occur’ in a different
reference frame than the one described below.

5.1. Transformation of the coupling field

Cyclotron-axial coupling requires an electric field of the
same frequency as the frequency difference between the

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
Su

ss
ex

 L
ib

ra
ry

] 
at

 0
0:

50
 2

1 
D

ec
em

be
r 

20
17

 



10 F. CRIMIN ET AL.

two sets of ladder states (1). Following (29), this frequency
will be denoted ωp and a classical quadrupole field with
strength εp of the form

Ep(t) = Re
(
εpeiωpt) (xêz + zêx) (67)

is applied in the lab. Such a field (with εp ∈ �) has an
associated potential

Vp(t) = −εp cos (ωpt)(xz). (68)

This potential is quantized by the replacement of x and z
by their quantum operator counterparts. The expression
is then expanded, using (14) and (16), in terms of creation
and annihilation operators of the two modes, to produce:

V̂p(t) = −εp cos (ωpt)
�

m
1√

2ω1ωz

× [â†
x(t)â†

z(t) + â†
x(t)âz(t) + â†

z(t)âx(t)
+ âx(t)âz(t)

]
. (69)

Since the âx and â†
x operators do not have an explicit time

dependence in the frame of reference of the laboratory,
V̂p(t) must be rotated to by the two-mode transformation
operator Û1 (49) where it can be added to the rotated
Hamiltonian (51). This produces:

V̂ ′
p(t) ≡ Û1 V̂p(t) Û†

1

= −εp cos (ωpt)
�

m
1√

2ω1ωz

×
[(

â†
x(t) − iâ†

y(t)√
2

)
â†

z(t)

+
(

â†
x(t) − iâ†

y(t)√
2

)
âz(t)

+ â†
z(t)

(
âx(t) + iây(t)√

2

)

+
(

âx(t) + iây(t)√
2

)
âz(t)

]
. (70)

The time dependence of the operators follows
immediately from (36) and (51) when we transform to
an interaction picture. They are inserted into the trans-
formed potential, and additionally the cosine function is

expanded into exponential form:

=⇒ V̂p
′′
(t) = − �

4m
1√

ω1ωz
εp
(
eiωpt + e−iωpt)

×
{
â†

xâ†
zei(ω++ωz)t + â†

xâzei(ω+−ωz)t

+ â†
z âxei(ωz−ω+)t + âxâze−i(ω++ωz)t

− iâ†
y â†

zei(ωz−ω−)t − iâ†
y âze−i(ω−+ωz)t

+ iâ†
z âyei(ωz+ω−)t + iâyâzei(ω−−ωz)t

}
.

(71)

Now the coupling frequency is defined

ωp = ω+ − ωz + δ, (72)

and multiplied through the pairs of operators in (71) to
produce:

V̂p
′′
(t) = − �

4m
1√

ω1ωz
εp

{
â†

xâ†
z

[
ei(2ω++δ)t + ei(2ωz−δ)t

]

+ â†
xâz

⎡
⎣ei(2ω+−2ωz+δ)t + e−i(δ)t︸ ︷︷ ︸

RWA

⎤
⎦

+ â†
z âx

⎡
⎣ei(δ)t︸︷︷︸

RWA

+ei(2ωz−2ω+−δ)t

⎤
⎦

+ âxâz[e−i(2ωz−δ)t + e−i(2ω++δ)t]
− iâ†

y â†
z

[
ei(ω1+δ)t + ei(2ωz−ωc−δ)t

]
− iâ†

y âz[ei(ω1−2ωz+δ)t + e−i(ωc+δ)t]
+ iâ†

z ây

[
ei(ωc+δ)t + ei(2ωz−ω1−δ)t

]
+iâyâz[ei(ωc−2ωz+δ)t + e−i(ω1+δ)t]

}
. (73)

The detuning of the coupling field, δ, is small (δ ∼ 0). In
this way, the choice of the coupling frequency ωp leads to
only two terms which are not oscillating at GHz or MHz
frequencies, and by a second-level rotating wave approx-
imation (RWA), or secular approximation (38), only the
terms marked ‘RWA’ in (73) remain. This produces:

V̂ ′′
p (t) = − �

4m
1√

ω1ωz
εp{â†

z âxeiδt + â†
xâze−iδt}. (74)

The total coupled Hamiltonian in the frame of (51) is
given by adding the energy of the electron in this poten-
tial, as it appears in this frame to the rotated Hamiltonian
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(51):

Ĥp
′ = Ĥ′ − eV̂ ′

p(t)

= �ω+
(

â†
xâx + 1

2

)
− �ω−

(
â†

y ây + 1
2

)

+ �ωz

(
â†

z âz + 1
2

)
+ �ξ{â†

z âxeiωpt + â†
xâze−iωpt},

(75)

where the effective coupling strength ξ is defined

ξ = e
4m

1√
ω1ωz

εp. (76)

5.2. Removing the time dependence and dressing

The explicit time dependence is removed from Hamil-
tonian (75) by transformation to the Interaction pic-
ture (34), achieved by application of the unitary operator

Û ′
δ(t) = exp

{
−i

ωp

2
(n̂z − n̂x)t

}
. (77)

This leads to

Ĥpt
′ = Û ′

δ(t)Ĥp
′Û ′†

δ (t) + i� ˆ̇U ′
δ(t)Û ′†

δ (t)

= �ω+
(

â†
xâx + 1

2

)
+ �ωz

(
â†

z âz + 1
2

)

− �ω−
(

â†
y ây + 1

2

)
+ �ξ(â†

xâz + â†
z âx) + �

ωp

2
(n̂z − n̂x). (78)

The Hamiltonian Ĥpt
′ is now rewritten in terms of oper-

ators of the dressed modes

â†
α = cos

θ

2
â†

z − sin
θ

2
â†

x , âα = cos
θ

2
âz − sin

θ

2
âx ,

â†
β = cos

θ

2
â†

x + sin
θ

2
â†

z , âβ = cos
θ

2
âx + sin

θ

2
âz ,

(79)

where

θ = arctan
[

2ξ

δ

]
. (80)

This produces

Ĥ′
pt = �εα

(
n̂α + 1

2

)
+ �εβ

(
n̂β + 1

2

)

− �ω−
(

â†
y ây + 1

2

)
, (81)

with the frequencies of the dressed modes given by

εα = (ω+ + ωz) + �

2
, εβ = (ω+ + ωz) − �

2
, (82)

� =
√

4ξ 2 + δ2. (83)

The ‘dressing’ by the oscillatory field (67) is equivalent
to a rotation through an angle θ around the local y-
axis of the trap. This axis takes the form of the second
component of a set of Schwinger boson operators formed
from the operators of the x and z modes. This idea is
further discussed in the following section.

5.3. The avoided crossing

In complete analogy to the angular momentum-like
operators defined in (62), the following set J are defined:

Ĵ0 = �

2
(
â†

z âz + â†
xâx
)

,

Ĵ1 = �

2
(
â†

z âx + â†
xâz
)

,

Ĵ2 = − i�
2
(
â†

z âx − â†
xâz
)

,

Ĵ3 = �

2
(
â†

z âz − â†
xâx
)

, (84)

which obey the appropriate modification of the commu-
tation relations (63). The sign of the second and third
components has been chosen such that

Ĵ2 = 1
2

L̂y ≡ 1
2
(
ẑp̂x − x̂p̂z

)
, (85)

and in this way the set J is defined in the same sense
of rotation as I . The coupled Hamiltonian (78) before
dressing is rewritten:

Ĥ′
pt = ω0Ĵ0 + δĴ3 + 2ξ Ĵ1 + �ω0

2

− �ω−
(

â†
y ây + 1

2

)
, (86)

where ω0 = ω+ + ωz . In order to examine only the
coupled spectrum, the magnetron motion is dropped to
form:

Ĥd = Ĥ′
pt + �ω−

(
â†

y ây + 1
2

)
= ω0Ĵ0 + δĴ3 + 2ξ Ĵ1 + �ω0

2
. (87)
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12 F. CRIMIN ET AL.

Figure 2. Left: The expectation values of the coupled Hamiltonian in the Fock states |nx , nz〉, as given in (89). These are the so-called
‘bare’ states of the system. Right: Expectation values of the coupled Hamiltonian in the ‘dressed’ states |nαnβ〉. The effects of the dressing
are the formation of an avoided crossing between the l = nz − nx sub-levels of the system at the point δ = 0. The size of the splitting
is dependent on the electric coupling field strength in (67), where the renormalized strength ξ is defined in Equation (76) (not shown to
scale).

The quantum numbers N = nz + nx and l = nz − nx are
defined so that (26):

Ĵ0|nx , nz〉 = �

2
N |nx , nz〉,

Ĵ3|nx , nz〉 = �

2
l|nx , nz〉, (88)

where N = 0, 1, 2, 3, ..., and l = −N , −N + 2, ..., N −
2, N . The expectation value of Ĥd in the Fock state
|nx , nz〉 is given by:

〈Ĥd〉 = �ω0

2
(N + 1) + �

2
δ l. (89)

We similarly rewrite the dressed Hamiltonian (81):

Ĥ′
pt = (εβ + εα)

2
(
n̂β + n̂α

)+ (εβ − εα)

2
(
n̂β − n̂α

)
+ �ω0

2
− �ω−(â†

y ây + 1
2

)

= ω0Ĵαβ
0 + �Ĵαβ

3 + �ω0

2
− �ω−

(
â†

y ây + 1
2

)
,

(90)

where Ĵαβ
0 and Ĵαβ

3 are the zeroth and third components
of the set of Schwinger boson operators of the dressed
modes of the coupled x and z motions. Dropping the
magnetron contribution to define Ĥd in terms of the set
Jαβ :

Ĥd = ω0 Ĵαβ
0 + �Ĵαβ

3 + �ω0

2
. (91)

Comparing (87) and (91), it is straightforward to see the
effects of this ‘dressing’: the degeneracy of the l levels
at the point δ = 0 is lifted by the non-zero value of
� = √

4ξ 2 + δ2. This is shown pictorially in Figure 2,
where the expectation values of the bare and dressed
Hamiltonians have been plotted as a function of δ for
the first few total quantum numbers N . The plot shows
how an avoided crossing occurs at the point δ = 0 due to
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the dressing of the modes (28). The size of the splitting is
given by 2�ξ , and accordingly varies with the strength of
the applied field in (67). In comparing the results of the
above quantum calculation to the classical one in (29),
it is clear that the dressed-atom formalism is directly
applicable to the quantum system.

It is convenient to describe the coupling as taking place
between the axial and cyclotron energy levels, which is
logical language based on the ladder diagrams that can be
drawn for the independent harmonic oscillator modes of
the Penning trap (1). The above analysis however, reveals
that it is more appropriate to describe the coupling as
taking place between the combined sub-levels, l, of the
system. This can be seen explicitly in the figure, as the
avoided crossings take place between adjacent values of l.
In the present case, there are N avoided crossings formed
at the point δ = 0 for each N when the system is dressed.

5.4. The dressed-atom formalism in the Penning
trap

The realization of the dressed levels and the formation
of the avoided crossing in the above calculation results
from treating the cyclotron and axial modes as a com-
bined system. The simple structure of the Penning trap
Hamiltonian (19) can be exploited, and the system treated
as three, two-dimensional sub-systems, each with its own
Schwinger boson algebra, in a consistent way. This allows
exploration of dressed-atom techniques (25) within the
Penning trap in general, and offers new possibilities in
terms of theoretical investigation. For example, a sim-
ple modification of the coupling frequency in (67) can
produce a Penning trap Hamiltonian of a Landau-Zener-
Stückelberg system (39, 40). Fourier transforms of the
interference patterns resulting from the induced driving
of this Hamiltonian can extract information on the en-
ergy level spectrum, and can provide a tool with which
to study the interaction of the system with the trapping
fields and with the environment (41). Such capabilities in
the Penning trap have obvious appeal.

Furthermore, the treatment of the calculation in the
{x, y} basis following from Section 4 enables direct access
to the spatial degrees of freedom in the trap through
this well-known experimental technique. Through this,
manipulation of the trapping potential, without modi-
fication of the basic trap design, is an ongoing topic of
investigation.

6. Summary

In this paper, we closely examined the processes used
to solve the Penning trap Hamiltonian. In order to keep

track of the individual dynamics of the x and y motions in
a consistent way, it was shown how the transformation of
the canonical coordinates should take place after quan-
tization. The frame rotating around the z-axis, conven-
tionally used to achieve this, was shown to lead to incon-
sistent results in the quantum regime in Section 3. This
promoted the use of a set of Schwinger boson angular
momentum operators in the Penning trap, and inspired
the results of the quantum avoided crossing in the mode
coupling calculation in Section 5. The treatment demon-
strates how such techniques can be employed in further
calculation, offering new possibilities of theoretical and
experimental research in the Penning trap.
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