Identification of ion-channel modulators that protect against aminoglycoside-induced hair-cell death

Article (Supplemental Material)

This version is available from Sussex Research Online: http://sro.sussex.ac.uk/id/eprint/71475/

This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher's version. Please see the URL above for details on accessing the published version.

Copyright and reuse:
Sussex Research Online is a digital repository of the research output of the University.

Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available.

Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

http://sro.sussex.ac.uk
Supplemental Figure 1: Zebrafish assays for potential otoprotective compounds.

(A, B) Assay testing the ability of Tocriscreen library compounds to block FM1-43FX from entering hair cells of zebrafish lateral line neuromasts. (A) Control larvae treated with 3 μM FM1-43FX, (B) larvae treated with 100 μM of compound 13143 and 3 μM FM1-43FX. (C,D) Assay testing the ability of compounds to block loading of 25 μM of Texas Red-conjugated neomycin (TR-Neo). (C) Control larvae treated with 25 μM TR-Neo, (D) larvae treated with 100 μM of compound 13143 and 25 μM TR-Neo. (E-H) Assay testing the ability of compounds to protect against neomycin-induced cell death. Hair cells were pre-loaded with 3 μM Yo-Pro-1. (E) Neuromast of a control larva, (F) neuromast of a larva treated with 6.25 μM of neomycin, (G) neuromast of a larva treated with 25 μM of compound 13143 and 6.25 μM of neomycin, (H) neuromast of a larva treated with 25 μM of compound 13218 and 6.25 μM of neomycin. Compound 13218 provides full protection; compound 13143 is partially protective. Representative neuromasts from the trunk (posterior) lateral line are shown in each panel. Images are representative of n = 3 independent experiments with approximately 3 fish per well. Scale bar = 25 μm.
Supplemental Figure 2: Percentage survival of hair cells for each cochlea treated with an otoprotective compound. Black circles represent cochleae treated with 5 µM gentamicin and red squares represent cochleae treated with 5 µM gentamicin and either 10 or 50 µM of otoprotective compound. Data are cell counts plotted as a percentage of control. Dotted line represents the threshold above which a compound is considered protective. Number of independent experiments detailed in Supplemental Table 1.
Supplemental Figure 3: Compounds providing protection against gentamicin-induced hair-cell loss in mouse cochlear cultures at a concentration of 10 µM. Cochlear cultures from P2 pups were treated for 48 h with (A) 0.5% DMSO (n = 67), (B) 5 µM gentamicin and 0.5% DMSO (n = 67) or (C-O) 5 µM gentamicin and 10 µM of compounds (C) 13087 (n = 6), (D) 13097 (n = 6), (E) 13104 (n = 7), (F) 13142 (n = 8), (G) 13143 (n = 8), (H) 13150 (n = 6), (I) 13154 (n = 5), (J) 13170 (n = 5), (K) 13190 (n = 6), (L) 13196 (n = 5), (M) 13218 (n = 7), (N) 13222 (n = 10) and (O) 13228 (n = 7). Cultures were labelled with TRITC-phalloidin and images were acquired from the basal coil. Samples are representative. A compound was considered protective if it protected in ≥60% of tests. Asterisks identify compounds that damage hair bundles (only compound 13170 in this assay) while arrows indicate specific examples of some of the damaged bundles. Scale bar = 50 µm.
Supplemental Figure 4: Effects of compounds (50 µM) on mouse cochlear hair cells in the absence of gentamicin. Cultures prepared from P2 pups were treated for 48 h with either (A) 0.5% DMSO (n = 2) or (B-N) 50 µM compound as indicated (n = 2 for all compounds). Cultures were labelled with TRITC-phalloidin and images were acquired from the basal coil. Asterisks identify compounds that damage hair bundles. Scale bar = 50 µm.
Supplemental Figure 5: Antimicrobial activity of gentamicin in the presence of otoprotective compounds. Box-whisker plots of percentage difference in survival of (A) *Pseudomonas aeruginosa*, (B) *Staphylococcus aureus* and (C) *Klebsiella pneumoniae* (measured by ATP luminescence) in the presence of 2.2 μM gentamicin and 11 μM of the 13 otoprotective compounds (ratio of 1:5) compared to compound-free gentamicin control. Each compound was tested with 3 technical replicates and 3 independent biological replicates. Thick line = median, boxes = interquartile range (IQR), whiskers = an additional 1.5x IQR; means shown as filled circles, outliers shown as open circles.
Supplemental Figure 6: Reduction of gentamicin-induced hair-cell loss in zebrafish larvae with otoprotectants at a concentration of 50 µM. Zebrafish larvae (4 dpf) were treated for 5 h with either E3 control (A), 10 µM gentamicin (B), or (C-L) 10 µM gentamicin and 100 µM of compound as indicated. Neuromasts were pre-labelled with 3 µM Yo-Pro-1. n = 3 independent experiments with 3 or more fish per well. Representative images of individual neuromasts shown. Scale bar = 25 µm.