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Choice by lexicographic semiorders

Paola Manzini
School of Economics and Finance, University of St. Andrews and IZA

Marco Mariotti
School of Economics and Finance, University of St. Andrews

In Tversky’s (1969) model of a lexicographic semiorder, a preference is generated
via the sequential application of numerical criteria by declaring an alternative x

better than an alternative y if the first criterion that distinguishes between x and
y ranks x higher than y by an amount exceeding a fixed threshold. We generalize
this idea to a fully fledged model of boundedly rational choice. We explore the
connection with sequential rationalizability of choice (Apesteguia and Ballester
2010, Manzini and Mariotti 2007) and we provide axiomatic characterizations of
both models in terms of observable choice data.
Keywords. Lexicographic semiorders, bounded rationality, revealed preference,
choice.

JEL classification. D0.

1. Introduction

Lexicographic heuristics have gained much attention in the study of decision making
in several fields: in psychology (e.g., Tversky 1969, 1972, Gigerenzer and Todd 1999);
in positive economics (e.g., Rubinstein 1988, Leland 1994, Manzini and Mariotti 2007,
Apesteguia and Ballester 2010); in normative economics (e.g., Tadenuma 2002, 2005;
Houy and Tadenuma 2009); in marketing science (e.g., Kohli and Jedidi 2007, Yee et al.
2007). Medina et al. (2011) note that the Talmud contains arguments in favor of a lexi-
cographic ranking of the rationales used to adjudicate between pairs of alternatives.

The explanation for this success is obvious: lexicographic procedures look appeal-
ingly simple and realistic since they eschew the complex trade-offs between several cri-
teria of classical decision makers. Alternatively, the lack of trade-offs may also seem to
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constitute a disadvantage (especially among economists). Price may be the most impor-
tant criterion in the purchase of a house from a set of suitable houses. Yet who would
be prevented by a difference of a few bucks from selecting a house in a much more de-
sirable neighborhood? Arguably, very few people would be so uncompromising as to
ignore any significant improvement in one dimension because of an arbitrarily small
loss in the most important dimension. When modelling boundedly rational behavior,
the rigid application of simple “rules of thumb” (such as buy the cheapest house among
the acceptable ones) may look even less realistic than the trade-offs of textbook utility
maximization.

In other words, it is reasonable that, even in a boundedly rational heuristic, criteria
that detect significant differences between the alternatives under consideration should
override criteria that do not. In this paper we study a model of choice that formalizes
this intuition. Note that a number of “basic criteria” could be aggregated into a single,
more complex criterion to which our observations on the house buyer above would nev-
ertheless still apply: if the agent constructs an index which trades off price and location,
that index constitutes a new criterion, for which it may be unwise not to ignore small
differences in favor, say, of house size and so on.1 Only a fully rational decision maker
would be able to pack together all possible trade-offs in a single criterion. However, in
a more realistic model of decision making, there is a limit to the number of simultane-
ous trade-offs the decision maker is able to carry out. Thus, it seems plausible to expect
the decision maker to rely on a lexicographic list of “slack” criteria. The choice proce-
dure we propose can explain observed “anomalies,” while at the same time preserving a
convincing flexibility.

Considerations of this kind have already led some of the researchers mentioned
above2 to build models of preference or binary choice based on the application of nu-
merical criteria where small differences in the values of criteria are ignored.3 However,
such models leave unanswered the issue of choice from more complex sets (e.g., bud-
get sets). They do not study choice functions. If binary preferences are derived from
a boundedly rational procedure, the issue of associating such preferences with higher
order choices is far from trivial: on the one hand, it may be impossible to maximize
the preference (when it is cyclical); on the other hand, it may be inappropriate to even
consider maximization when the issue is one of bounded rationality.

We focus on Tversky’s (1969) fruitful notion of lexicographic semiorder, in which a
preference is generated by the sequential application of numerical criteria by declaring
an alternative x better than an alternative y if the first criterion that distinguishes be-
tween x and y ranks x higher than y by an amount exceeding a fixed threshold. Our first
contribution is to define a choice procedure (choice by lexicographic semiorder) based
on Tversky’s idea.

1As another example, in Manzini and Mariotti (2006) we propose a multicriterion model of choice over
time in which the first criterion is the exponentially discounted value, which trades off the time and size of
a monetary reward.

2Tversky (1969), Rubinstein (1988), and Leland (1994).
3A difference being small is often interpreted as “similarity.”
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Tversky himself considered lexicographic semiorders appealing but restrictive as a
model of preference.4 In fact, this judgement is shown to be somewhat pessimistic. Even
when the agent is endowed with very rudimental discriminatory abilities (being only
able to classify criteria values in “good,” “neutral,” and “bad,” where just good and bad
are rankable), the model can account for a very rich variety of behaviors. In particular,
when only binary choices are involved (as, for example, in several voting models5), the
model is shown to be completely unrestrictive, provided that the set of alternatives is not
too large (Proposition 1). More generally, the model can explain any set of choice data
satisfying the weak axiom of revealed preferences (WARP) (Proposition 2): since such
choices may not satisfy the strong axiom of revealed preferences (SARP), they may be
highly “irrational” in that they exhibit strict revealed preference cycles.

The model turns out to be connected with another, much more general looking, no-
tion of boundedly rational choice, namely sequentially rationalizable choice (Manzini
and Mariotti 2007): an arbitrary number of arbitrary asymmetric binary relations (ra-
tionales) is applied sequentially to single out an alternative. On any finite domain,6 the
lexicographic semiorder model restricts choice data the same way as the sequential ra-
tionalizability model under the additional assumption that the rationales used in the
latter are acyclic (Proposition 3).

We note, however, that the clause “on any finite domain” is key. When this clause
is relaxed, even marginally, by allowing a countably infinite number of finite choice
sets, the equivalence breaks down in a major way: even the use of only two rationales
may produce behaviors that cannot be generated by any number of semiorders and any
number of discriminations (Proposition 4). So, the two models are, in general, clearly
distinct.

Next, we characterize choice by lexicographic semiorders in terms of a new contrac-
tion consistency condition (Reducibility), at the same time providing an algorithm to
construct the semiorders (Theorem 1).

Our technique leads straightforwardly to a relaxation of Reducibility which charac-
terizes sequential rationalizability (Theorem 2). This result, while quite tangential to the
main line of enquiry of this paper, is of independent interest, since the characteriza-
tion of sequential rationalizability proves to be a hard problem, which we left open in
Manzini and Mariotti (2007). Our results in this respect build on and complement those
by Apesteguia and Ballester (2010), who are the first to draw attention to the restriction
of sequential rationalizability to acyclic rationales and to provide a characterization for
it on finite domains. In the Appendix, we work out one of their examples of sequentially
rationalizable choices to construct the rationales with our algorithm. Our work can also
be fruitfully seen as an extension of the approach in Mandler et al. (2012): we discuss
this relation in the concluding section.

4See Section 3.
5See, e.g., Kalandrakis (2010) and the references therein for a recent example. We discuss Kalandrakis’

work more fully in Section 3.1.
6That is, a domain including a finite number of finite sets.
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2. Lexicographic semiorders: Preferences and choice

Fix a nonempty set X . A semiorder (Luce 1956) is an irreflexive7 binary relation P on X

that satisfies two additional properties.

1. (x� y)� (w�z) ∈ P implies (x� z) ∈ P or (w� y) ∈ P .

2. (x� y) ∈ P and (y� z) ∈ P imply (x�w) ∈ P or (w�z) ∈ P .

Given the irreflexivity of P , each of 1 or 2 imply that P is also transitive.8 So a
semiorder is a very special type of strict partial order. The appeal of semiorders is that
they can be interpreted as a simple threshold model of (partial) rankings: on suitable
domains, P is a semiorder if and only if there exists a real-valued function f on X and a
number σ ≥ 0 such that (x� y) ∈ P if and only if f (x) > f(y)+ σ . Here f (x) is the “value”
of the alternative x and σ is the amount by which the value of one alternative x must
exceed the value of another alternative y for x to be declared superior to y. The fact that
σ is fixed makes this a very parsimonious model of binary preferences.9

Tversky (1969) essentially proposes a lexicographic procedure, which extends the
use of semiorders, to make binary comparisons between alternatives in a set X .
There exists an ordered sequence f = (f1� � � � � fn) of real valued functions on X and
a σ > 0 such that x is declared better than y if and only if, for the first i for which
|fi(x)− fi(y)| >σ , we have fi(x) > fi(y) + σ . The idea is that the agent compares al-
ternatives along several dimensions. As in our opening example, dimensions are ranked
in order of importance, and a later dimension is considered only if all previous dimen-
sions failed to discriminate between the two alternatives under consideration. In other
words, the agent examines the dimensions lexicographically: as soon as a dimension i

is found for which one alternative x is superior to another alternative y by an amount
exceeding the threshold σ , x is declared better than y. When such an i is found, no
dimension j that comes later in the order has any bearing, regardless of the size of the
differences between the alternatives in these subsequent dimensions. That σ is chosen
to be the same for all fi is not a relevant issue, since even if we had different σi, the fi
and σi can always be rescaled so as to choose σi = 1. Given f and σ , this procedure can
be used to generate a revealed preference relation �(f�σ) on pairs of alternatives.10

Suppose now that the agent wants to apply the procedure to produce a selection out
of choice sets S larger than the binary ones. There are several ways to do so, some of
which are, however, problematic. One could, for example, start from the binary revealed
preference relation and use either of the following two plausible methods.

• The choice from S is the set of the maximal elements of �(f�σ).

7Irreflexivity: for all x ∈ X , (x�x) /∈ P .
8Transitivity: for all x� y� z ∈X , (x� y) ∈ P , (y� z) ∈ P ⇒ (x� z) ∈ P .
9In an interval order (Fishburn 1970), characterized by condition 1 alone, the threshold σ is allowed to

vary with the alternatives being compared, being a function σ :X → R+. This makes for a much richer
structure. See, e.g., Fishburn (1985).

10Rubinstein (1988) proposes a related but distinct procedure. This procedure is recently studied exper-
imentally by Binmore et al. (2008).
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• The choice from S is the top cycle (or the uncovered set) of �(f�σ) restricted to
each S.11

Unfortunately, the preference relation �(f�σ) may be cyclic: this “anomalous” feature
was indeed the very point of Tversky’s introduction of the procedure. So the first method
above may not be well defined if a nonempty-valued choice function is desired. The
second method above borrows the ideas of authors such as Ehlers and Sprumont (2008)
and Lombardi (2008), who use weaker notions of maximization to produce choices out
of nonstandard preferences formed of asymmetric and complete binary relations (tour-
naments). These methods would, for example, select the entire set S = {x1�x2� � � � � xn}
whenever x1 �(f�σ) x2 �(f�σ) · · · �(f�σ) xn �(f�σ) x1.

Here we pursue a different natural way to extend Tversky’s idea. The method we
suggest is, on the one hand, more in line with the procedural (as opposed to maximizing)
nature of Tversky’s approach, and, on the other hand, can produce a unique selection
even from the awkward cycles discussed above. The reason for these two features is
that the method, unlike the others suggested, preserves and uses the information on the
order in which the dimensions are considered.

We impose no arbitrary uniform bound on the number of dimensions that the agent
is allowed to consider. Nevertheless, we insist that the procedure always halts in a finite
number of steps in any choice situation.

Our proposed procedure works via a process of sequential elimination. Formally, let
� be a domain of choice sets, where each S in � is a nonempty subset of X . A choice
function on � is a function c :� → X such that c(S) ∈ S for all S ∈ �. A choice set S that
has the form S = {x} for some x ∈ X is called trivial. A collection C ⊆ � of choice sets is
trivial if each S ∈ C is trivial.

An ordered sequence f = (fi)i∈I , where I is either an interval of numbers {1� � � � � n}
or the entire set of natural numbers N, together with a σ > 0 is a lexicographic semiorder
on X , denoted (f1� f2� � � � �σ) = (fi�σ)i∈I . We abuse terminology and directly call each fi
a semiorder, although strictly speaking fi is a numerical representation of it.

Given a choice set S ⊆X and a lexicographic semiorder (fi�σ)i∈I , define inductively
the following “survivor sets” Mi(S), for all i > 0:

M0(S) = S

Mi(S) = {s ∈Mi−1(S) | ∀s′ ∈Mi−1(S) fi(s)+ σ ≥ fi(s
′)}�

This sequence of sets captures the procedure the agent follows to arrive at a final selec-
tion from the choice set S: at every round i, he looks for alternatives in the current sur-
vivor set Mi−1(S) that are judged worse than some other alternative in Mi−1(S) accord-
ing to the Tversky procedure described before. He discards all such inferior alternatives
(if any), generating the next survivor set Mi(S) and so on.

11More precisely, let P|S denote the restriction to S of a complete asymmetric binary relation P de-
fined on X . (Completeness: For all x� y ∈ X , either (x� y) ∈ P or (y�x) ∈ P . Asymmetry: For all x� y ∈ X ,
(x� y) ∈ P ⇒ (y�x) /∈ P .) Let (P|S)t denote the transitive closure of P|S. The top cycle of P in S is the set of
maximal elements of (P|S)t in S. Define the covering relation C(P�S) of P in S by (x� y) ∈ C(P�S) if and
only if x� y ∈ S and either (x� y) ∈ P or there exists z ∈ S such that (x� z) ∈ P and (z� y) ∈ P . The uncovered set
of P in S is the set of maximal elements of C(P�S) in S.
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Definition 1. A choice function c is a choice by lexicographic semiorder (cles) if there
exists a lexicographic semiorder (fi�σ)i∈I such that, for all S ∈ �, there is a j ∈ I for which
{c(S)} =Mj(S) =Mk(S) for all k≥ j. In this case, we say that (fi�σ)i∈I induces c.

That is, for a cles c, the iterative elimination procedure described before stops on any
choice set S after a finite number of steps, yielding precisely the alternative that c picks
in S. Note that, in spite of this property of “finite termination,” there might not exist any
fixed j that works for all S. When such a j exists, which means that I can be chosen to be
finite, we say that c is a choice by finite lexicographic semiorder.12

Basic semiorders

A semiorder fi is basic if it ranges only in {−1�0�1} and σ = 1. A lexicographic semiorder
(fi�σ)i∈I is basic if each fi is basic. So with a basic lexicographic semiorder, the agent
has only very limited power of discrimination. Essentially, on each dimension he can
perform only a rough classification of alternatives into good ones (those x for which
fi(x) = 1), bad ones (fi(x) = −1), and neutral ones (fi(x) = 0): a good alternative beats a
bad one (on the given dimension) and a neutral alternative neither beats a bad one nor
is beaten by a good one.

A basic lexicographic semiorder can be denoted simply as f = (fi)i∈I . To emphasize
that the survivor sets Mi(S) are obtained from the basic lexicographic semiorder f , we

write them as Mf
i (S).

Example. Let X = {x� y� z} and let � = {{x� y}� {y� z}� {z�x}�X}. Let c({x� y}) = c(X) = x,
c({y� z}) = y, and c({x�z}) = z. This is a choice function by basic lexicographic
semiorder. To see this, let f1(x) = 0, f1(y) = 1, f1(z) = −1, f2(x) = 1, f2(y) = −1, f2(z) = 0,
f3(x) = −1, f3(y) = 1, and f3(z) = 1. Observe how different (unique) choices from X can
be obtained by permuting the order of the fi. ♦

3. Characterization

Tversky thought that the model of binary choice by lexicographic semiorders, while use-
ful to explain the anomaly of cyclical preferences, had a narrow scope otherwise. He
writes (Tversky 1969, p. 40):

. . . despite its intuitive appeal, it is based on a noncompensatory principle that is likely to
be too restrictive in many contexts.

Following this logic, one might conjecture that the version with basic semiorders,
with its minimal concession to discriminatory powers, is even more restrictive. We study
this issue, highlighting the role of the domain of c.

We begin by observing that when restricted to binary choices (interpretable as pos-
sibly incomplete preferences) as in the original application, the cles model is, in fact,

12Aside from this twist, we could also call the model “semiorder sequentially rationalizable choice,” fol-
lowing the terminology we initiated in Manzini and Mariotti (2007). However, we prefer to use the Tversky
terminology, in recognition of the priority of his idea.
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completely unrestrictive provided that the set X is not too large. We state this result
separately because of its interest, although it is a particular case of the more general
Proposition 2 below.

Proposition 1. Let c be defined on a domain � such that S ∈ � implies S = {x� y}
for some distinct x� y ∈ X . Let X be countable. Then there exists a basic lexicographic
semiorder that induces c.

As noted, more generally all choice data satisfying a classical revealed preference
axiom can be generated by a cles.

WARP. If x= c(S), y ∈ S, and y = c(T) for some S�T ∈ �, then x /∈ T .

Proposition 2. Let c satisfy WARP. Let X be countable. Then there exists a basic lexico-
graphic semiorder that induces c.

Proof. Enumerate the elements in X with a bijection b from N (or an interval of N of
cardinality equal to |X| if X is finite) to X . Define a basic lexicographic semiorder as
follows. For all x� y ∈X , let

fb−1(y)(x) =
⎧⎨
⎩

1 if x= y

−1 if ∃S ∈ � such that x �= y = c(S) and x ∈ S

0 otherwise�

Let c(S) = x �= y ∈ S. WARP and the definition of f imply that, for all z ∈X with b−1(z) <

b−1(x), fb−1(z)(x) = 0 if z = y and that fb−1(z)(y) ≤ 0 whenever fb−1(z)(x) = −1. Therefore,
x ∈ Mi(S) for all i < b−1(x). And since fb−1(x)(x) = 1 and fb−1(x)(y) = −1 for all y ∈ S with
y �= x, {x} = Mb−1(x)(S) =Mk(S) for all k≥ b−1(x). �

Because WARP does not imply SARP on general domains,13 a cles can explain cycli-
cal patterns of strict revealed preference, generalizing Example.

To pinpoint the restrictions on behavior implied by the cles, we recall some defini-
tions.

Definition 2. A choice function c is sequentially rationalizable whenever there exists
an ordered list {Pi}i∈I of asymmetric relations, with Pi ⊆ X×X for i ∈ I, such that, defin-
ing recursively,

M∗
0 (S) = S

M∗
i (S) = {x ∈M∗

i−1(S) | ∀y ∈M∗
i−1(S) (y�x) /∈ Pi}

for all S ∈ � there is a j ∈ I such that

{c(S)} =M∗
j (S) =M∗

k(S) for all k≥ j�

13SARP says that the revealed preference relation Pc , given by x Pc y ⇔ ∃S ∈ � :x= c(S), y ∈ S, is acyclic.
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In that case we say that {Pi}i∈I sequentially rationalizes c. Each Pi is a rationale.14

Two specializations of sequential rationalizability are the following.

Definition 3. A choice function is a rational shortlist method (RSM) if it is sequentially
rationalizable with two rationales. A choice function is acyclic sequentially rationaliz-
able if it is sequentially rationalizable by rationales that are acyclic.

Sequentially rationalizable choice functions and RSMs are defined in Manzini and
Mariotti (2007). The restriction to acylic rationales for the finite case is studied by
Apesteguia and Ballester (2010). Evidently, the cles model we are considering in this
paper is a restriction of sequential rationalizability by constraining the rationales to
be semiorders. Both acyclic and standard sequential rationalizability constitute at first
sight a much more general model, because the rationales are not required to have any
threshold structure and can thus apparently accommodate more sophisticated discrim-
inations. But in fact, for arbitrary finite domains, the behaviors that can be generated
by the lexicographic semiorder model and those that can be generated by the acyclic
sequential rationalizability model are just the same. And we need look no further than
basic semiorders to yield this equivalence.

On the other side of the coin, the restriction to finite domains is not merely a con-
venience for the inductive argument used in the proof, but it is necessary for the equiv-
alence to hold. When the restriction is relaxed even marginally (by retaining the finite-
ness of each choice set but allowing for a countable number of choice sets), the model
of acyclic sequential rationalizability suddenly appears to be far more general than the
lexicographic semiorder model: even only two acyclic rationales suffice to produce be-
haviors that cannot be induced by any basic lexicographic semiorder. And increasing
the discriminatory ability of the agent is to no avail: the basic restriction is inessential
for this result.

These assertions are made precise in the next two results. In the case of the domain
consisting of all finite subsets, the first result can also be derived from Theorem B.1 in
Apesteguia and Ballester (2010), as we explain below. We present here a different method
of proof that highlights the importance of the domain and is instructive in this respect.

Proposition 3. Let X be finite. Then a choice function c is acyclic sequentially rational-
izable if and only if it is induced by a basic lexicographic semiorder.

Proof. A semiorder is an acyclic rationale, so it suffices to prove the “only if” part of
the statement. Given acyclic rationales (P1� � � � �PK), recall Definition 2 of survivor sets
M∗

i (S). We show that, for any domain �, there exists a basic lexicographic semiorder

14This definition slightly extends the one we originally gave (Manzini and Mariotti 2007), and has the
same format of the definition of a lexicographic semiorder. In the original definition we considered a finite
ordered list P1� � � � �PK of asymmetric relation with the {c(S)} = M∗

K(S) for all S ∈ �. While still imposing
finite termination on each choice set, the current definition disposes with the assumption that there exists
a uniform bound K on the number of rationales needed to rationalize a given choice function.
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f = (fi)i∈I such that, for all S ∈ �, there is a j ∈ I such that M∗
K(S) = M

f
j (S) = M

f
k(S) for

all k≥ j. This proves the assertion in the statement.
The proof is by induction on the sum of the cardinalities of the sets S in �, which we

denote by n(�) = ∑
S∈� |S|. If n(�) = 1, the claim is obviously true. Take now n(�) > 1. If

� is trivial, then the claim is also obviously true, so assume � is not trivial, and without
loss of generality assume in addition that P1 is nonempty on some S ∈ � (otherwise just
exclude P1 and renumber the remaining Pi). By the acyclicity of P1 and the finiteness
of X , there exist S ∈ � and x� y ∈ S such that (x� y) ∈ P1 and (y� z) /∈ P1 for all z ∈ ⋃

S∈� S
with y� z ∈ T for some T ∈ � (in words, y is P1-dominated in some choice set and it does
not P1-dominate any element that appears together with y in any choice set). Fix those
x and y, and define

�′ = {S | {x� y} � S ∈ �}
∪ {S | S = T \ {y} for some T ∈ � such that {x� y} ⊆ T }�

Because a T as in the right-hand member of the union above exists by construc-
tion, n(�′) < n(�). So by the inductive hypothesis, there exists a basic lexicographic

semiorder f = (fi)i∈I such that, for all S ∈ �′, there is a j ∈ I such that M∗
K(S) = M

f
j (S) =

M
f
k(S) for all k ≥ j. Now consider the basic lexicographic semiorder g = (gi)i∈I ′ defined

by

gi = fi−1 for all i > 1

g1(x) = 1� g1(y) = −1 and g1(z)= 0 for all z �= x� y�

Thus, for all S ∈ � such that {x� y} ⊆ S, Mg
1 (S) = S \ {y} ∈ �′ and consequently M∗

K(S \
{y}) = M

g
j+1(S) = M

g
k(S) for all k ≥ j + 1 (this follows by the second line of the displayed

definition of g and the fact that M∗
K(S \ {y}) = M

f
j (S \ {y}) = M

f
k(S \ {y}) for all k ≥ j).

Moreover, clearly for all S ∈ � such that {x� y} ⊆ S, M∗
K(S) = M∗

K(S \ {y}). Therefore, for
all S ∈ �, M∗

K(S) =M∗
K(S \ {y}) =M

g
j+1(S)= M

g
k(S) for all k≥ j + 1. �

Proposition 4. There exist rational shortlist methods using acyclic rationales that are
not induced by any lexicographic semiorder.

Proof. Let X = {1�2� � � �}, let � be the collection of finite subsets of X , and let c be
uniquely defined as the RSM rationalized by the two acyclic rationales

P1 = {(i� i+ 1) | i ∈ X}
and

P2 = {(j� i) | j > i+ 1}�
We show that c is not induced by any lexicographic semiorder. By way of contra-

diction, suppose that (fα�σ)α∈I is a lexicographic semiorder that induces c. Let i� j ∈ X

be such that f1(j) > f1(i) + σ . Such an i and j exists without loss of generality, pos-
sibly by renumbering the fα so that f1 is the first fα for which f1(k

′) > f1(k) + σ for
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some k�k′ ∈ X . Also note that i �= 1, since the application of the rationales yields
c({1�2� � � � � l}) = 1 for all l ∈ X . It must be that j = i − 1 (that is, i is eliminated by i − 1
in the first step in any set that contains both of them). Otherwise suppose first that
j > i. Then c({i� i + 1� i + 2� � � � � j}) = i is contradicted by i /∈ M1({i� i + 1� i + 2� � � � � j}).
Alternatively, suppose that j < i− 1. Then c({j� i}) = i is contradicted by i /∈M1({j� i}).

Thus, f1(i−1) > f1(i)+σ . Since c({i−1� i+1}) = i+1, it must be that, letting n be the
first α for which Mα({i−1� i+1}) �= {i−1� i+1}, we have fn(i+1) > fn(i−1)+σ . Applying
this fact to S = {i − 1� i� i + 1}, we have that if n = 1, then M1(S) = {i + 1}, contradicting
c(S) = i− 1. If instead n > 1, then either f1(i) > f1(i+ 1)+σ , in which case we also have
f1(i − 1) > f1(i + 1) + σ , contradicting c({i − 1� i + 1}) = i + 1, or this is not the case, so
that c(S) = c(M1(S)) = c({i−1� i+1}) = i+1. In both cases we have a contradiction with
c(S) = i− 1.15 �

Some observations are in order. Apesteguia and Ballester (2010) define a simple ra-
tionale P as a relation of the type P = {(x� y)} for some x and y in X . That is, a simple
rationale relates only one pair of alternatives. Our notion of ‘basic’ refers instead to the
number of discriminations the agent is able to make, rather than to the number of pairs
ranked by the relation (which may be high). However, Apesteguia and Ballester (2010)
show that, for the case of the domain consisting of all subsets of a finite set X , sequen-
tial rationalizability with acyclic rationales is equivalent to sequential rationalizability
with simple rationales. The ranking made by a simple rationale P = {(x� y)} can be ex-
pressed with a basic semiorder (though not vice-versa), by setting f (x) = 1, f (y) = −1,
and f (z) = 0 for all other z. Therefore, as observed above, Proposition 3 can be derived
by their result in the case of full domain.

While a simple rationale can be expressed by means of a single semiorder, there is no
upper bound to the number of simple rationales needed to express a basic semiorder.
For example, the rationale P = {(x� y) | y ∈ X \ {x}}, for a fixed x, is a single basic
semiorder for any n, which is nevertheless decomposed into (n − 1) distinct simple ra-
tionales.16

Proposition 4 shows that the domain restriction |X| < ∞ of Theorem B.1 of
Apesteguia and Ballester (2010) is necessary. Their result establishes that on the do-
main of all nonempty subsets of a finite set X , the only crucial distinction is between
the asymmetry and the acyclicity (a strengthening of asymmetry) of the rationales: fur-
ther strengthening acyclicity to transitivity, for example, produces no further behavioral
restriction. Proposition 4 shows that on larger domains, the move from acyclicity to tran-
sitivity (semiorders) crosses another important threshold: the transitivity of the agent’s
discriminatory power alone suffices to rule out behaviors allowed by acyclic rationales.
This remains true no matter how limited that power is.

15Observe that it is at this step of the proof that the domain assumption bites, for {i − 1� i� i + 1} and
{i− 1� i+ 1} might not be well defined if we did not have the entire integer set at our disposal.

16In recent work, Mandler (2009) studies in detail the general issue of the minimum number of ratio-
nales needed to express a given arbitrary preference relation (interpretable as the base relation of a choice
function) using the procedure of sequential rationalizability. His main result is that a “rational agent” (an
agent with complete and transitive preferences) never needs more, and sometimes needs fewer, rationales
than a nonrational agent.
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3.1 “Revealed preference” characterization

How can an external observer establish whether a set of choice data (i.e., a choice func-
tion c) can be generated by the procedure we propose? The key to answering this ques-
tion is to consider the behavior of c over restricted domains of choice, as well as on the
domain � of the definition of c. The method we suggest can be viewed as an extension of
techniques used in standard analysis of rationalizability of choice functions on special
domains. For example, in recent work, Kalandrakis (2010) studies the rationalizability
of a set of binary voting choices on Euclidean policy space by means of a quasiconcave
utility function. He identifies rationalizability conditions with the following format: for
every subdomain of choice C , there exists an “extreme alternative” (i.e., not obtainable
as a convex combination of other alternatives) x such that x is never chosen from choice
sets in the collection C . The interpretation is that x is a least preferred alternative among
those appearing in the choice problems in C . This permits the ultimate construction of
a (quasiconcave) utility function.

Let us see how analogous ideas can work in our setting. Because our model does
not involve the simple maximization of preferences, we cannot hope to identify “least
preferred” alternatives. But if the agent were really using our lexicographic procedure,
in any subdomain C , we should at least be able to identify alternatives x and y such
that x makes y “C -irrelevant”: namely, if x and y belong to some S in C , removing y

from S has no effect on the final choice from S (so that, in particular, y is never chosen
if x is available). This alternative y is simply one of the alternatives the agent would
eliminate with the first semiorder that he applies on C , say fC , and x is an alternative
with fC(x) > fC(y) + σ . In other words, given any C , an agent following our procedure
should always implicitly indicate at least one pair (x� y) where x makes y C -irrelevant.

To illustrate, take any choice function c (defined on a possibly large domain �) for
which c({x� y}) = c({x�z}) = x, c({x� y� z}) = y. Consider the subdomain C = {{x� y}�
{x�z}� {x� y� z}}. Because the agent has chosen x both from {x� y} and {x�z}, so that x is
not made C -irrelevant by either of the other alternatives, the agent is “indicating” that,
even if he were using a lexicographic heuristic, the first rationale that is active on C would
not eliminate x. Similarly, because c({x� y� z}) �= c({x�z}) and c({x� y� z}) �= c({x� y}), so
that neither y nor z are C -irrelevant, the agent is also indicating that the first active
rationale would not eliminate y or z. Thus, no alternative can be eliminated and we
can conclude that the agent cannot possibly be choosing according to our lexicographic
procedure.

The remarkable thing is that the following axiom, which formalizes this intuition,
is not only necessary, but turns out to embody all the observable implications of the
model.

Reducibility. For every nonempty C ⊆ �, there exist S ∈ C and x� y ∈ S such that, for all
T ∈ C ,

(T \ {y}) ∈ C� x ∈ T ⇒ c(T) = c(T \ {y})�
A choice function that satisfies Reducibility is called reducible.
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If x makes y C -irrelevant, we cannot identify from choice data alone why this is the
case. It could simply be that x is better than y (e.g., superior by any criterion). But it
could also be that x is pizza, y is steak tartare, and you simply ignore steak tartare in any
restaurant that also offers pizza (although you may or may not choose pizza). Here, pizza
might be a negative signal about the kitchen’s sophistication, so that you are induced to
ignore sophisticated items on the menu, even if you may end up not choosing the signal
item itself.17

Obviously, one extreme way of satisfying Reducibility is the existence of a “best” al-
ternative. If c is a choice function that maximizes an ordinary strict preference relation,
an alternative that is chosen from an S in C trivially makes C -irrelevant any alternative
that is not chosen from S. In fact, in standard theory “irrelevant” is essentially synony-
mous with “unchosen.” Therefore, c is reducible in the standard case.

Reducibility relaxes the standard requirement that all rejected alternatives need to
be made C -irrelevant on all C (via the single preference relation) by the “best” (chosen)
alternative, and it does so in two ways. First, some rejected alternatives may not be
made C -irrelevant. And, second, an alternative may be made C -irrelevant by some other
alternative that itself is not chosen. In other words, Reducibility requires just a bare
skeleton of preference to survive.

An example of a reducible nonstandard choice function is the three-cycle of choice:
X = {x� y� z}, c(X) = c({x� y}) = x, c({y� z}) = y, c({x�z}) = z. Here y makes z C -irrelevant
when either X or {y� z} is in C , and Reducibility is satisfied vacuously otherwise. Ob-
serve that the choice from the grand set does not make either y or z C -irrelevant for C
coinciding with the full domain.

On the contrary, the choice function c in the proof of Proposition 4 (where c is se-
quentially rationalizable but not cles) is not reducible. In that example, Reducibility fails
on the collection C = �. To see this, observe that no i can make i + 1 C -irrelevant, since
we would have the contradiction c({i� i+1� i+2}) = i �= i+2 = c({i� i+2}). Also, i+1 can-
not make i C -irrelevant for c({i� i + 1}) = i. Moreover, no two nonadjacent alternatives
i and j with j > i + 1 are suitable either. It cannot be that j makes i C -irrelevant since
c({j� j − 1� � � � � i+ 2� i}) = i, and it cannot be that i makes j C -irrelevant since c({i� j}) = j.
This reasoning also highlights the role that infinite domains play in separating lexico-
graphic semiorders from sequentially rationalizable choice.

Reducibility is easily seen to be a weakening of a standard contraction consistency
axiom. Consider the following formulation.

Independence of Irrelevant Alternatives (IIA). Let C ⊆ �. Then c(S) = c(S \ {y})
for all y ∈ S \ {c(S)} for all S ∈ C such that S \ {y} ∈ �.

Now consider the following weakening (where we highlight in boldface the addi-
tional conditions).

17In this example, pizza plays a symmetric role to that of frog legs in the celebrated example by Luce and
Raiffa (1957) (a decision maker chooses steak when frog legs are on the menu and salmon when they are
not). In Luce and Raiffa’s example, frog legs are a positive signal about the quality of the restaurant, so that
the decision maker is induced by the presence of frog legs on the menu to choose a high quality item, even
if not frog legs themselves.
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Reducibility (Restated). Let C ⊆ �. Then for some x ∈ X , c(S) = c(S \ {y}) for some
y ∈ S \ {c(S)} for all S ∈ C such that S \ {y} ∈ � and S � x.

While standard IIA requires the choice to be unchanged if any unchosen alternative
is removed from any set, Reducibility requires this to hold only for some alternative and
for some sets (those containing x). Because IIA is so strong, the fact that if it holds, it
must hold on the entire domain � as well as on any subcollection C , usually does not
need to be made explicit.

Below we establish that Reducibility identifies all the observable implications of the
lexicographic semiorder procedure and that basic lexicographic semiorders cover ex-
actly the same ground as general lexicographic semiorders.

Theorem 1. Let X be finite. Let c be a choice function defined on the domain � of all
finite subsets of X . Then the following statements are equivalent.

(i) The function c is a choice by lexicographic semiorder.

(ii) The function c is reducible.

(iii) The function c is a choice by basic lexicographic semiorder.

Proof. (i) ⇒ (ii). Let c be induced by the lexicographic semiorder (fi�σ)i∈I and let C ⊆ �

be any nontrivial collection of choice sets. Let

j = min{i | Mi(S) �= S for some S ∈ C}

(j is well defined because of the single valuedness of c).18

Let T ∈ C be such that Mj(T) �= T . Fix x� y ∈ T such that fj(x) > fj(y) + σ . For any
S ∈ C , either {x� y} � S, in which case Reducibility holds vacuously, or {x� y} ⊆ S. In this
latter case (which holds at least for S = T ), for any z ∈ S, if fj(y) > fj(z) + σ , then also
fj(x) > fj(z)+ σ . Therefore Mj(S) =Mj(S \ {y}), implying c(S) = c(S \ {y}).

(ii) ⇒ (iii). Let c be a reducible choice function on �. We first provide an algorithm
to construct a basic lexicographic semiorder for any choice function, then show that this
semiorder induces c.

The algorithm proceeds by recursively defining a sequence of collections {Ci}i∈I and
an associated sequence of pairs {xi� yi}i∈I , where I is the interval {0�1� � � � � n} for some n.
Let C0 = � and let x0� y0 ∈ X be any two alternatives such that, for all S ∈ C0, x0� y0 ∈ S ⇒
c(S) = c(S \ {y0}) (alternatives such as x0 and y0 exist by Reducibility, and S \ {y0} ∈ �

by assumption). For 0 < i, define recursively xi� yi ∈ X as any two alternatives such that
(xi� yi) �= (xj� yj) for all j < i, and

for all S ∈
⋂
j<i

Cj : xi� yi ∈ S ⇒ c(S) = c(S \ {yi})

18For choice correspondences one would change the qualifier “not all S in C are singletons” with “not all
of them are such that c(S)= S.”
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and

Ci =
⋂
j<i

Cj

∖ {
S ∈

⋂
j<i

Cj

∣∣∣ {xi� yi} ⊆ S

}
�

For all i, let fi(xi) = 1, fi(yi) = −1, fi(z) = 0 for all z ∈ X \ {xi� yi}, and σ = 1. Because
X is finite, for any i, unless S ∈ Ci+1 ⇒ |S| = 1 (i.e., unless Ci is a trivial collection), it is
true by Reducibility that Ci �= Ci+1. Therefore, S ∈ ⋂

i∈I Ci ⇒ |S| = 1.
This defines a basic lexicographic semiorder f = (fi)i∈I . As we show below, f in-

duces c. Recall the definition of the survivor sets Mi(S).
Fix S ∈ �. Suppose by induction that c(S) ∈ Mi(S). It must be that Mi(S) ∈ Ci. Other-

wise, there would exist k ≤ i such that fk(xk) = 1, fk(yk) = −1, and {xk� yk} ⊆Mi(S) ∈ Ck,
contradicting the definition of Mi(S). If also Mi(S) ∈ Ci+1, then {xi+1� yi+1} � Mi(S) and
so we have immediately c(S) ∈Mi+1(S). IfMi(S) /∈ Ci+1, then (since Mi(S) ∈ Ci) it must be
{xi+1� yi+1} ⊆ S. It cannot be yi+1 = c(S) since, by construction of the sequence {xi� yi}i∈I ,
c(S) = c(S \ {y1}) = · · · = c(S \ {y1� � � � � yi+1}). Therefore, c(S) ∈Mi+1(S).

We now show that for all s ∈ S \ {c(S)}, there exists a k such that s /∈ Mk(S). If
not, let

⋂
i∈I Mi(S) = T and let s ∈ T . The definition of T implies that, for all i ∈ I,

{xi� yi} � T (otherwise xi� yi ∈Mi(S), which is impossible by construction since fi(xi) = 1
and fi(yi) = −1). Therefore, T ∈ ⋂

i∈I Ci. But this is a contradiction with c(S) �= s ∈ T and
c(S) ∈ T , since, as observed before, T ∈ ⋂

i∈I Ci implies |T | = 1.
(iii) ⇒ (i). Trivial. �

Remark 1. The proof of Theorem 1 implies, in fact, an even more general result. The
only feature of a lexicographic semiorder that we use in the proof is transitivity. There-
fore, the same characterization would hold even for procedures that use generic partial
orders at each stage of elimination.

3.2 Sequentially rationalizable choice

Theorem 1 can be used together with Proposition 3 to provide a characterization of
acyclic sequential rationalizability:

Corollary 1. Let X be finite and let � be the set of all nonempty subsets of X . Then a
choice function on � is acyclic sequentially rationalizable if and only if it is reducible.

In short, then, while acyclic sequential rationalizability and lexicographic
semiorders coincide on finite sets, they are nested for choice functions defined over
more general domains (see Proposition 4). This observation prompts the natural ques-
tion, What types of behavior can be explained by the sequential rationalizability model
but not by the lexicographic semiorder model? To this aim, we introduce a weakening
of Reducibility.

Weak Reducibility. For every nonempty C ⊆ �, there exists S ∈ C and a collection of
pairs {xi� yi}i=1�2����, with xi� yi ∈ S for all i, such that, for all T ∈ C ,

T
∖ ⋃

i:xi∈T
{yi} ∈ C ⇒ c(T) = c

(
T

∖ ⋃
i:xi∈T

{yi}
)
�
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A choice function that satisfies Weak Reducibility is called weakly reducible.

The only difference between Reducibility and Weak Reducibility is that in the lat-
ter, the single pair (x� y) is replaced by a collection {xi� yi}i=1�2���� of pairs. In other words,
compared to a reducible choice function, a choice function that is only weakly reducible
is such that some alternatives that are not individually C -irrelevant (the removal of
any one of those alternatives does affect choice) may nevertheless be “collectively” C -
irrelevant (their collective removal from a choice set has no relevance for choice).

We show that the choice functions that are sequentially rationalizable but not cles
are exactly those that are only weakly reducible but not reducible.

Theorem 2. Let X be finite. Let c be a choice function defined on the domain � of all fi-
nite subsets of X . Then c is sequentially rationalizable if and only if it is weakly reducible.

Proof. Necessity. Let c be sequentially rationalizable with rationales {Pi}i∈I and let
C ⊆ �. Let

j = min{i | M∗
i (S) �= S for some S ∈ C}�

Let A = {(x� y) | x� y ∈ S for some S ∈ C and (x� y) ∈ Pj}; A is nonempty by the defini-
tion of j. Enumerate the pairs in A to obtain {xi� yi}i∈J , where J is the finite inter-
val {1�2� � � � � n} for some n. Let j(S) = min{j | Mj(S) = Mk(S) for all k ≥ j}. Note that
j is well defined since c is sequentially rationalizable. It follows straightforwardly that
M∗

j(S)
(S) = M∗

j(S)
(S \ ⋃

i:xi∈S{yi}) for all S ∈ C . The sequential rationalizability of c thus

implies that c(S) = c(S \ ⋃
i:xi∈S{yi}).

Sufficiency. Let c be weakly reducible. We construct the rationales explicitly. Let
C0 = � and define recursively

Pi = {(xji� yji)}j=1�����n(i)

where {xji� yji}j=1�����n(i) is any collection of pairs such that

c(S) = c

(
S

∖ ⋃
j:xji∈S

{yji}
)

∀S ∈ Ci−1

Ci = {S ∈ Ci−1 | S =M∗
i (T ) for some T ∈ Ci−1}�

The Pi are well defined by Weak Reducibility. Similarly to the proof of Theorem 1, unless
S ∈ Ci+1 ⇒ |S| = 1 (i.e., unless Ci is a trivial collection), it is true by Weak Reducibility that
Ci �= Ci+1. Therefore, S ∈ ⋂

i∈I Ci ⇒ |S| = 1. We show that {Pi}i∈I , where I is the interval
{1�2� � � � � n} for some n, sequentially rationalize c.

Let x= c(S). Whenever S ∈ Ci−1 for some i, it cannot be (y�x) = Pi, since c(S) �= c(S \
({x} ∪A)) for any A ⊆ X , contradicting the definition of Pi. This implies that x ∈M∗

i (S)

for all i.
We now show that for all y ∈ S \ {c(S)} there exists a k such that y /∈ Mk(S). If

not, let
⋂

i∈I Mi(S) = T and let y ∈ T . The definition of T implies that, for all i ∈ I,
{xji� yji}j=1�����n(i) � T (otherwise xji� yji ∈ Mi(S), which is impossible by construction
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since (xji� yji) ∈ Pi). Therefore, T ∈ ⋂
i∈I Ci. But this is a contradiction to c(S) �= y ∈ T

and c(S) ∈ T , since, as observed before, T ∈ ⋂
i∈I Ci implies |T | = 1. �

Theorems 1 and 2 are interesting in themselves, as Manzini and Mariotti (2007) left
the characterization of sequential rationalizability an open problem.

Apesteguia and Ballester (2010) pioneered a solution to that problem, in so doing
offering key insights. Their characterization of acyclic sequential rationalizability is
in terms of a condition called Independence of One Irrelevant Alternative (IOIA). To
quickly sketch that condition, we need to define some auxiliary terms. A binary selector
is a function f that associates to every feasible set S, including at least two alternatives
to a binary feasible set in S. A binary selector f that satisfies certain consistency proper-
ties19 is called consistent. Then IOIA requires that c(S)= c(S\(f (S)\{c(f (S))})) for some
consistent binary selector. While this condition may appear involved, its broad logic is
simple, as it essentially imposes a two-stage structure on the choice function c. This is
convenient because it reduces the problem of detecting an arbitrarily long sequential
structure on c to that of detecting a far simpler construction. Thus, IOIA and Reducibil-
ity, which by our results and those of Apesteguia and Ballester (2010) are equivalent
conditions in the finite case, highlight different aspects of sequential rationalizability.
In both cases, the key idea is to somehow identify the sequence by which eliminations
are made. Roughly speaking, both axioms try to identify the next step in the elimination
process: IOIA’s consistent binary selector tells which pair gets compared next out of any
given set; Reducibility tells which pair gets compared next out of a given set of sets.20

As we already noted, in the case of finite domains, what really matters is the move
from asymmetric to acyclic rationales—further strengthening the discriminatory power
of each criterion to transitivity implies no additional restrictions for observed behavior.
However, when moving to larger domains, this conclusion no longer holds. More pre-
cisely, for the case of countable domains, we already saw (Proposition 4) that there are
RSMs with acyclic rationales that are not cles; in addition, the proof of Proposition 4 can
be easily modified to show that there are choice functions that are RSM’s with acyclic ra-
tionales but that cannot be induced by any sequence of transitive rationales.21 Further-
more, it can be shown that there are choice functions that are sequentially rationalizable

19We refer the reader to Apesteguia and Ballester (2010) for a precise statement of the definition, which
requires substantially more notation extraneous to the purposes of this paper.

20We are grateful to Bart Lipman for suggesting this interpretation of the relation between the two con-
ditions. An explicit proof of the equivalence between the two conditions in the finite case, as well as an
example of their nonequivalence in the infinite case, is available from the authors upon request.

21Take the c function induced by the RSM in the proof of Proposition 4 and suppose, by way of con-
tradiction, that Q1� � � � �QK is a list of transitive rationales that rationalizes c. For any two alternatives i

and j, let k(i� j) = min{k | (i� j) ∈ Qk or (j� i) ∈ Qk}. Fix some i and j such that (i� j) ∈ Q1, and observe
that j �= 1, for otherwise c({1�2� � � � � l}) = 1 for all l ∈ X could not be retrieved. Moreover, it must be
that i = j − 1: if either i < j − 1 or i = j + 1, then the choice c({i� j}) = j could not be retrieved, while if
i > j + 1, then c({j� j + 1� � � � � i}) = j could not be retrieved. So (i� i + 1) ∈ Q1, and since Q1 is transitive, it
must be (i + 2� i) /∈ Q1, for otherwise (i + 2� i + 1) ∈ Q1 and c({i + 1� i + 2}) = i + 1 could not be retrieved.
But then if (i + 1� i + 2) ∈ Q1, we cannot retrieve c({i� i + 2}) = i + 2, since by transitivity (i� i + 2) ∈ Q1,
while if (i + 1� i + 2) /∈ Q1 we cannot retrieve c({i� i + 1� i + 2}) = i (observe that (i + 2� i) ∈ Qk(i�i+2) since
c({i� i+ 2})= i+ 2).
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by means of transitive rationales, but not by a lexicographic semiorder.22 In sum, for
domains with countable X , we have that sequential rationalizability by means of asym-
metric rationales is more permissive than when acyclic rationales are used, which is, in
turn, more permissive than in the case when transitive rationales are required, and, in
turn, cles are even more restrictive in terms of observable choice behavior.

The challenge ahead is to provide characterizations in this vein for very general do-
mains, including, for example, those of standard consumer theory. This remains an
open question. Of course, in domains that are not finite, if one insists on finite termina-
tion on each set, the procedure underlying choice by lexicographic semiorder only leads
to a unique selection only if (at least some of) the criteria are capable of eliminating an
infinite number of alternatives. For those domains, one may have to accept, in general,
that a choice correspondence, instead of a choice function, is the appropriate primitive.
In particular, imagine that the procedure studied so far describes only a preselection
of suitable alternatives (a shortlist), while a final unique choice might be delegated, for
example, to a standard complete and transitive criterion that picks from the shortlist.
Such a procedure still has the merit of replacing the computation of explicit trade-offs
with basic comparisons until a stage where the choice set has been suitably reduced. In
the light of Remark 1, on the domain we study the behavioral restrictions imposed by
the modified procedure still include Reducibility (because of the transitivity of the final
criterion).23

4. Concluding remarks

We have focussed especially on the most minimalist version of the model we are propos-
ing, which attributes to the agent very weak powers of discrimination (basic lexico-
graphic semiorders). On finite domains, this version is coextensive with a natural re-
striction of the seemingly far more general sequentially rationalizable choice model
of Manzini and Mariotti (2007). On broader domains, the model restricts choice data
more narrowly than even a stripped down version of sequential rationalizability (ratio-
nal shortlist methods).

The Reducibility condition delimits exactly the restrictions on choice behavior that
our theory implies. The weakening of Reducibility we study illustrates the additional
behaviors admitted by sequential rationalizability tout court.

22We are grateful to Gil Riella for providing us with an example. As the example is rather lengthy, we omit
it from the paper; however, details are available from the authors upon request.

23For a concrete illustration, consider the case of choice under uncertainty. A class of decision criteria
that has gained attention because of their applicability to realistic situations is that of “quantile maximiza-
tion” (see Rostek 2010). Such criteria generalize classical criteria such as maximin by allowing the use of
any other quantile of the induced distribution, instead of the worst outcome. For the reasons we discussed,
however, it is hard to imagine that a decision maker ignores any other aspect of a gamble except, say, its
median utility. Rather, if the difference in the median outcomes of two gambles is not too large, he is likely
to look at some other quantile, and so on. This procedure, which sequentially uses quantiles of interest
to discard gambles, is likely to achieve a significant reduction of a choice set. After that reduction, the use
of a cardinal, mean-based criterion to single out a gamble may be far more appealing, because its lack of
robustness (which justifies the use of ordinal criteria first) becomes less of a drawback in small sets.



18 Manzini and Mariotti Theoretical Economics 7 (2012)

While we argue that Reducibility has more than a whiff of plausibility, we have es-
chewed defending it as an a priori compelling property of bounded rationality. The
appeal of the theory stems mostly from its psychological basis, its tractability, and its
testability. Our main aim was to extend Tversky’s idea into a model of choice and to
tease out the observable implications of the model, in the spirit of the revealed prefer-
ence approach (see Caplin 2008, Gul and Pesendorfer 2008, Rubinstein and Salant 2008
for methodological discussions of this issue). Reducibility is an easily interpretable and
operationally workable concept (as demonstrated by our workouts) and, as such, we
believe it fulfills this role. Our approach is thus in the same spirit as a recent body of
work that seeks to characterize models of boundedly rational choice in terms of direct
axioms on choice behavior (e.g., Masatlioglu and Ok 2005, 2006, Cherepanov et al. 2008,
Masatlioglu and Nakajima 2011, Tyson 2008, Masatlioglu et al. forthcoming, Salant and
Rubinstein 2008, Eliaz et al. 2009, in addition to those already discussed).

The present work is also related to the “checklist” model of choice in Mandler et al.
(2012). In that model, an agent goes through an ordered checklist of properties (unary
relations), at each step eliminating the alternatives that do not have the specified prop-
erty. For example, the agent who wishes to buy a house looks first for houses in a cer-
tain location, then for those in that location with a minimum square footage, and so
on until a final selection is made. A choice by basic lexicographic semiorder could be
interpreted as a weakening of a choice by checklist, in which the membership of a prop-
erty is allowed to have three values instead of only two. On this interpretation, fi(x) = 1
(resp., fi(x) = −1) means that x definitely has (resp., does not have) property i, while
fi(x) = 0 means that x neither fully has nor fully does not have property i (it falls in a
“grey area” or “is neutral” with respect to that property). For example, a house’s location
may neither be entirely convenient (e.g., close to both spouses’ workplaces) nor entirely
inconvenient (far from both spouses’ workplaces).

Because (on certain domains) choosing by checklist is exactly equivalent to maxi-
mizing a utility function (as shown in Mandler et al. 2012), a choice by lexicographic
semiorder can also be seen as a versatile but minimal departure from the standard
model of rational choice.

Appendix

It is instructive to see how the algorithm to construct the rationales of Theorem 2 works.
We use an example provided by Apesteguia and Ballester (2010). The grand set of alter-
natives is X = {α�β�γ�δ�ε�ϕ}. The inverse image of the choice function (i.e., the collec-
tion of sets from which each alternative is chosen) is

c−1(α) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

{α�β�γ�δ�ε}�
{α�β�γ�ε}� {α�β�γ�δ}� {α�β�δ�ε}� {α�γ�δ�ε}�
{α�β�δ}� {α�δ�ε}� {α�β�γ}� {α�β�ε}� {α�γ�ε}�
{α�β}� {α�ε}� {α�δ}

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
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c−1(β) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

{β�γ�δ�ε�ϕ}�
{β�γ�δ�ε}� {β�δ�ε�ϕ}� {β�γ�ε�ϕ}�
{β�γ�δ}� {β�δ�ε}� {β�γ�ε}� {β�ε�ϕ}�
{β�δ}� {β�γ}� {β�ε}

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

c−1(γ) =

⎧⎪⎨
⎪⎩

{γ�δ�ε�ϕ}� {α�γ�δ�ϕ}�
{α�γ�ϕ}� {α�γ�δ}� {γ�δ�ε}� {γ�δ�ϕ}�
{α�γ}� {γ�δ}� {γ�ϕ}

⎫⎪⎬
⎪⎭

c−1(δ) = {{β�δ�ϕ}� {δ�ε�ϕ}� {δ�ε}� {δ�ϕ}}

c−1(ε) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
X� {α�β�γ�ε�ϕ}� {α�β�δ�ε�ϕ}� {α�δ�γ�ε�ϕ}�
{α�β�ε�ϕ}� {α�γ�ε�ϕ}� {α�δ�ε�ϕ}�
{α�ε�ϕ}� {γ�ε�ϕ}�
{γ�ε}� {ε�ϕ}

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

c−1(ϕ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

{α�β�δ�γ�ϕ}�
{α�β�γ�ϕ}� {β�γ�δ�ϕ}� {α�β�δ�ϕ}�
{α�β�ϕ}� {β�γ�ϕ}� {α�δ�ϕ}�
{α�ϕ}� {β�ϕ}

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
�

The base relation Pc = {(a�b) ∈X ×X | a = c({a�b})} is thus

Pc =
{
(α�β)� (α�ε)� (α�δ)� (δ�ε)� (δ�ϕ)� (β�δ)� (β�γ)� (β�ε)�

(γ�α)� (γ�δ)� (γ�ϕ)� (ε�γ)� (ε�ϕ)� (ϕ�α)� (ϕ�β)

}
�

If the rationales Pi and the collections Ci−1 are built according to the algorithm in the
proof of Theorem 2, obviously it can never be (a�b) ∈ Pc ∩Pi for any a and b such that b is
chosen from some S ∈ Ci−1 that also contains a. Consequently, we are going to construct
the rationales by first ruling out as potential members of Pi all such pairs; then we verify
whether the residual subcollection of pairs in Pc that have not yet been “allocated” to
any previous rationale Pj , j < i, satisfy the requirement in the Weak Reducibility axiom,
removing more pairs if necessary until we have the largest collection that satisfies the
axiom.

Beginning with C0 = �, inspection of the inverse images reveals that the only can-
didate pairs are (α�β), (α�δ), (β�γ), (γ�δ), (ε�ϕ), and (ϕ�α), since for all other pairs
(a�b) ∈ Pc it is always the case that b is chosen in some set where a is present.

However, δ is also the only alternative such that, when it is removed from sets
that also contain α, leaves choice unchanged. To see this, observe that (α�β) /∈ P1,
since, e.g., α = c({α�β�γ}) �= c({α�γ}) = γ; (β�γ) /∈ P1, since, e.g., ϕ = c({β�γ�δ�ϕ}) �=
c({β�δ�ϕ}) = δ; (γ�δ) /∈ P1, since, e.g., γ = c({γ�δ�ε}) �= c({γ�ε}) = ε; (ε�ϕ) /∈ P1, since,
e.g., ε = c({α�ε�ϕ}) �= c({α�ε}) = α; and (ϕ�α) /∈ P1, since, e.g., ε = c({α�β�ε�φ}) �=
c({β�ε�φ}) = β.

Consequently,

P1 = {(α�δ)}�
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The domain thus reduces from C0 to C1 as indicated in the display that follows (sim-
ply remove all sets containing α and δ), where observe that the first line is a subcollection
of c−1(α), the second line is a subcollection of c−1(β), and so on:

C1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{α�β�γ�ε}� {α�β�γ}� {α�β�ε}� {α�γ�ε}� {α�β}� {α�ε}
{β�γ�δ�ε�ϕ}� {β�γ�δ�ε}� {β�δ�ε�ϕ}� {β�γ�ε�ϕ}�

{β�γ�δ}� {β�δ�ε}� {β�γ�ε}� {β�ε�ϕ}� {β�δ}� {β�γ}� {β�ε}
{γ�δ�ε�ϕ}� {α�γ�ϕ}� {γ�δ�ε}� {γ�δ�ϕ}� {α�γ}� {γ�δ}� {γ�ϕ}
{β�δ�ϕ}� {δ�ε�ϕ}� {δ�ε}� {δ�ϕ}
{α�β�γ�ε�ϕ}� {α�β�ε�ϕ}� {α�γ�ε�ϕ}� {α�ε�ϕ}� {γ�ε�ϕ}� {γ�ε}� {ε�ϕ}
{α�β�γ�ϕ}� {β�γ�δ�ϕ}� {α�β�ϕ}� {β�γ�ϕ}� {α�ϕ}� {β�ϕ}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
�

Next, observe that α and ϕ are chosen in the presence of γ, so that our algorithm
prescribes (γ�α) /∈ P2 and (γ�ϕ) /∈ P2. Moreover, β is chosen in the presence of ϕ; γ is
chosen in the presence of ε; δ and ε are chosen in the presence of β; ε is chosen in
the presence of α; and ϕ is chosen in the presence of δ. This leaves only (α�β), (β�γ),
(γ�δ), (δ�ε), (ε�ϕ), and (ϕ�α) as potential members of P2 (which appear in boldface in
the above display), and it is easy to verify that indeed the whole collection of “candidate
pairs”

P2 = {(α�β)� (β�γ)� (γ�δ)� (δ�ε)� (ε�ϕ)� (ϕ�α)}
is such that c(S) = c(S \ ⋃

i:xi∈S yi) for all S ∈ C1 as in the definition of Weak Reducibil-
ity. Note also that Reducibility fails on the collection C1: no set contains α and δ,
and by the same considerations contained in the previous paragraphs, the only pairs
of alternatives that might satisfy Reducibility are {α�β}, {β�γ}, {γ�δ}, {δ�ε}, {ε�ϕ}, and
{ϕ�α}. However, none of them does: first of all, because all these binary sets are in
C1, the “losing” alternative must be the one that is not chosen in pairwise sets; in
addition, (x2� y2) /∈ {(α�β)� (β�γ)� (γ�δ)� (ε�ϕ)� (ϕ�α)}, since the same sets for which
c(S) �= c(S \ {y2}) when checking C0 are also in C1, while x2� y2 �= δ�ε, since, e.g.,
β = c({β�γ�δ�ε�ϕ}) �= c({β�γ�δ�ϕ}) = ϕ.

Going back to our algorithm, the construction of P2 yields

C2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

{α�γ�ε}� {α�ε}
{β�δ}� {β�ε}
{α�γ}� {γ�ϕ}

{β�δ�ϕ}� {δ�ϕ}
{γ�ε}
{β�ϕ}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭
�

For the next step, we note that δ is chosen in the presence of β; α is chosen in the
presence of γ. So one can verify that all together the remaining candidate pairs provide
a suitable P3, that is,

P3 = {(α�ε)� (ε�γ)� (β�ε)� (δ�ϕ)� (ϕ�β)� (γ�ϕ)}�
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As a consequence, the subdomain reduces to

C3 = {{β�δ}� {α�γ}}

so that we can build the final rationale

P4 = {(β�δ)� (γ�α)}�

It is straightforward to double check that P1, P2, P3, and P4 so defined sequentially
rationalizes c.
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