University of Sussex
Browse
1757482x17746921.pdf (661.12 kB)

Multi-phase CFD-conjugate heat transfer for spray cooling in the non-boiling regime

Download (661.12 kB)
journal contribution
posted on 2023-06-09, 08:31 authored by M Langari, Z Yang, Julian DunneJulian Dunne, S Jafari, J-P Pirault, Christopher Long, Jisjoe Thalackottore Jose
A numerical study is described to predict, in the non-boiling regime, the heat transfer from a circular flat surface cooled by a full-cone spray of water at atmospheric pressure. Simulations based on coupled Computational Fluid Dynamics and Conjugate Heat Transfer are used to predict the detailed features of the fluid flow and heat transfer for three different spray conditions involving three mass fluxes between 3.5 and 9.43 kg/m2s corresponding to spray Reynolds numbers between 82 and 220, based on a 20 mm diameter target surface. A two-phase Lagrange-Eulerian modelling approach is adopted to resolve the spray-film flow dynamics. Simultaneous evaporation and condensation within the fluid film is modelled by solving the mass conservation equation at the film-continuum interface. Predicted heat transfer coefficients on the cooled surface are compared with published experimental data showing good agreement. The spray mass flux is confirmed to be the dominant factor for heat transfer in spray cooling, where single-phase convection within the thin fluid film on the flat surface is identified as the primary heat transfer mechanism. This enhancement of heat transfer, via single-phase convection, is identified to be the result of the discrete random nature of the droplets disrupting the surface thin film.

Funding

Evaporative Cooling of Internal Combustion Engines; G1473; EPSRC-ENGINEERING & PHYSICAL SCIENCES RESEARCH COUNCIL; EP/M005755/1

History

Publication status

  • Published

File Version

  • Published version

Journal

Journal of Computational Multiphase Flows

ISSN

1757-482X

Publisher

SAGE Publications

Issue

1

Volume

10

Page range

33-42

Department affiliated with

  • Engineering and Design Publications

Research groups affiliated with

  • Dynamics, Control and Vehicle Research Group Publications

Full text available

  • Yes

Peer reviewed?

  • Yes

Legacy Posted Date

2017-10-31

First Open Access (FOA) Date

2018-01-25

First Compliant Deposit (FCD) Date

2017-10-31

Usage metrics

    University of Sussex (Publications)

    Categories

    No categories selected

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC