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A LAGRANGIAN SCHEME FOR THE SOLUTION OF NONLINEAR
DIFFUSION EQUATIONS USING MOVING SIMPLEX MESHES

JOS�E A. CARRILLO, BERTRAM D�URING, DANIEL MATTHES, AND DAVID S. MCCORMICK

Abstract. A Lagrangian numerical scheme for solving nonlinear degenerate Fokker{Planck
equations in space dimensions d � 2 is presented. It applies to a large class of nonlinear di�u-
sion equations, whose dynamics are driven by internal energies and given external potentials,
e.g. the porous medium equation and the fast di�usion equation. The key ingredient in our
approach is the gradient ow structure of the dynamics. For discretization of the Lagrangian
map, we use a �nite subspace of linear maps in space and a variational form of the implicit
Euler method in time. Thanks to that time discretisation, the fully discrete solution inherits
energy estimates from the original gradient ow, and these lead to weak compactness of the
trajectories in the continuous limit. Consistency is analyzed in the planar situation, d = 2. A
variety of numerical experiments for the porous medium equation indicates that the scheme
is well-adapted to track the growth of the solution’s support.

1. Introduction

1.1. Nonlinear Fokker{Planck equations. We study a variational Lagrangian discretization
of the following type of initial value problem:

@t� = �P (�) +r � (�rV ) on R>0 � Rd; (1.1a)

�(�; 0) = �0 on Rd: (1.1b)

This problem is posed for the time-dependent probability density function � : R�0 �Rd ! R�0,
with a given initial density �0. We assume that the pressure P : R�0 ! R�0 can be written in
the form

P (r) = rh0(r)� h(r) for all r � 0; (1.2)

for some non-negative and convex h 2 C1(R�0) \ C1(R>0), and that V 2 C2(Rd) is a non-
negative potential without loss of generality. Problem (1.1) encompasses a large class of di�usion
equations, such as | for power-type nonlinearities P (r) = rm and vanishing potential V � 0
| the heat equation (m = 1), porous medium equations (m > 1) and fast di�usion equations
(m < 1). By a slight abuse of notation, we refer to (1.1) with more general P and non-vanishing
V as nonlinear Fokker{Planck equations. In this paper, we assume a degenerate di�usion, that
is h(0) = h0(0) = 0, and a con�ning potential, that is V is convex, not necessarily strict. For
technical reasons, we further need to assume that

lim
s!1

sh00(s) = +1: (1.3)
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Since our particular spatio-temporal discretization of the initial value problem (1.1) is based
on the Lagrangian representation of its dynamics, and on its variational formulation, we briey
recall both of them now.

1.2. Lagrangian formulation. Equation (1.1) can be written as a transport equation,

@t�+r �
�
�v[�]

�
= 0; (1.4a)

with a velocity �eld v that depends on the solution � itself,

v[�] = �r
�
h0(�) + V

�
: (1.4b)

Various further evolution equations can be written in the form (1.4a), such as non-local aggre-
gation equations (see, e.g., Ambrosio et al. [1]); Keller-Segel type models (see, e.g., Blanchet
et al. [6]); and also fourth order thin �lm equations (see, e.g., Otto [35]) or quantum equations
(see, e.g., Gianazza et al. [22]). To simplify the presentation, we stick to equations of nonlinear
Fokker{Planck type (1.1a).

The system (1.4) naturally induces a Lagrangian representation of the dynamics, which can
be summarized as follows. Below, the reference density � is a probability density supported on
some compact set K � Rd, and we use the notation G#� for the push-forward of � under a map
G : K ! Rd; the de�nition is recalled in (2.1).

Lemma 1.1. Assume that � : [0; T ] � Rd ! R�0 is a smooth positive solution of (1.1). Let
G0 : K ! Rd be a given map such that G0

#� = �0. Further, let G : [0; T ]� Rd ! Rd be the ow
map associated to (1.4b), satisfying

@tGt = v[�t] �Gt; G(0; �) = G0; (1.5)

where �t := �(t; �) and Gt := G(t; �) : Rd ! Rd. Then, at any t 2 [0; T ],

�t = (Gt)#�: (1.6)

In short, the solution G to (1.5) is a Lagrangian map for the solution � to (1.1). This
fact is an immediate consequence of (1.4a); for convenience of the reader, we recall the proof
in Appendix A. Subsequently, (1.6) can be substituted for � in the expression (1.4b) for the
velocity, which makes (1.5) an autonomous evolution equation for G:

@tGt = �r
�
h0
�

�
det DGt

��
�Gt �rV �Gt: (1.7)

A more explicit form of (1.7) is derived in (5.2).

1.3. Variational structure. It is well-known (see Otto [36] or Ambrosio, Gigli and Savar�e [1])
that (1.1) is a gradient ow for the relative Renyi entropy functional

E(�) =
�

Rd

�
h(�(x)) + V (x)�(x)

�
dx; (1.8)

with respect to the L2-Wasserstein metric on the space Pac
2 (Rd) of probability densities on Rd

with �nite second moment. It appears to be less well known (see Evans et al. [21], Carrillo and
Moll [14], or Carrillo and Lisini [13]) that also (1.7) is a gradient ow, namely for the functional

E(Gj�) := E(G#�) =
�

K

�
eh
�

det DG
�

�
+ V �G

�
�d!; eh(s) := s h(s�1); (1.9)

on the Hilbert space L2(K ! Rd; �) of square integrable maps from K to Rd. We shall discuss
these gradient ow structures in more detail in Section 2 below.



LAGRANGIAN SCHEME FOR NONLINEAR DIFFUSION 3

1.4. Discretization and approximation results. Our discretization in space is based on the
Lagrangian formulation. Instead of numerically integrating (1.1a) to obtain the density � directly,
we approximate the associated Lagrangian maps G that satisfy (1.7): speci�cally, we assume that
a simplicial decomposition T of K is given, and we restrict G to the �nite dimensional subspace
AT of continuous maps from K to Rd that are piecewise linear with respect to T . A posteriori,
we recover an approximation of � via (1.6). That ansatz for the Lagrangian maps corresponds
to a simple geometric picture: the induced densities are piecewise constant on triangles whose
vertices move in time.

For the discretization in time, we exploit the aforementioned variational structure of (1.7):
namely, we adopt the celebrated minimizing movement scheme that is known to provide a robust
approximation of gradient ows. In the context at hand, this scheme reads as follows: let a time
step � > 0 and an initial condition G0

� 2 AT be given. (Here and below, � symbolizes the
space-time mesh generated by T on K and � on R>0.) Then the nth time iterate Gn� 2 AT
| that serves as our approximation of G(n� ; �) | is chosen inductively for n = 1; 2; : : : as the
minimizer in the respective problem

1
2�
kG�Gn�k

2
L2(K!Rd;�) + E(Gj�) �! min; (1.10)

where the minimization is carried out over the �nite dimensional space AT . With the sequence
(Gn�)n=0;1;::: of approximating Lagrangian maps at hand, we de�ne piecewise-constant-in-time
interpolations for the derived density e�� and velocity ev� as usual via

e��(t) = (Gn�)#�; ev�(t) =
Gn� �G

n�1
�

�
with n such that t 2 ((n� 1)�; n� ]:

Our analytical results on the scheme can be summarized as follows.
� The sequence of fully discrete minimization problems (1.10) is well-posed: see Lemma 3.1.

We thus obtain a sequence (Gn�)n=0;1;::: for each su�ciently �ne discretization �.
� The Gn� are entropy-diminishing and are �-uniformly H�older continuous: see Lemma 4.1.
� Consequently, the induced densities e�� converge weakly to an absolutely continuous

limit trajectory �, and the uxes e��ev� converge weakly to a limit of the form �v: see
Theorem 4.2. The identi�cation of the limit velocity v, however, is only possible under
strong additional hypotheses: see Corollary 4.5.

� In d = 2 dimensions, we prove numerical consistency in the sense that, if G is a smooth
solution to (1.7), then its restriction to the mesh � satis�es the fully discrete Euler{
Lagrange equations associated to (1.10), with a quanti�able error that vanishes in a
suitable continuous limit: see Theorem 5.2.

� Our previously mentioned consistency results requires that the triangulation T of K
is almost ideally hexagonal: see equation (5.7). We discuss why consistency cannot be
expected if that condition is violated: see Remark 5.4.

1.5. Comparison with results in the literature. The approach presented in this paper is
an alternative to the one developed by Carrillo et al. [16, 14], where G is obtained by directly
solving the PDE (1.7) numerically with �nite di�erences or Galerkin approximation via �nite
element methods. In other words, while Carrillo et al. [16, 14] follows the strategy minimize �rst
then discretize, our present approach is to discretize �rst then minimize. In the former approach,
the minimization (1.10) is performed on the spatially continuous level, yielding Euler{Lagrange
equations that are then discretized in space; in the present approach, the space of Lagrangian
maps is approximated by the �nite dimensional subspace AT , and the minimization problem
(1.10) on AT yields a nonlinear system of Euler{Lagrange equations that are directly solvable
numerically.
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Let us mention that other numerical methods have been developed to conserve particular
properties of solutions of the gradient ow (1.1). Finite volume methods preserving the decay
of energy at the semi-discrete level, along with other important properties like non-negativity
and mass conservation, were proposed in the papers [4, 9, 11]. Particle methods based on
suitable regularizations of the ux of the continuity equation (1.1) have been proposed in the
papers [19, 28, 29, 38]. A particle method based on the steepest descent of a regularized internal
part of the energy E in (1.8) by substituting particles by non-overlapping blobs was proposed
and analysed in Carrillo et al. [12, 15]. Deterministic particle methods for di�usions have been
recently explored, see [10] and the references therein. High-order relaxation schemes for nonlinear
di�usion problems have been proposed in Cavalli et al. [17], while high-resolution schemes for
nonlinear convection-di�usion problems are introduced in Kurganov et al. [27]. Moreover, the
numerical approximation of the JKO variational scheme has already been tackled by di�erent
methods using pseudo-inverse distributions in one dimension (see [5, 8, 24, 41]) or solving for
the optimal map in a JKO step (see [3, 26]). Finally, note that gradient-ow-based Lagrangian
methods in one dimension for higher-order, drift di�usion and Fokker{Planck equations have
recently been proposed in the papers [20, 32, 33, 34].

There are two main arguments in favour of our taking this indirect approach of solving (1.7)
instead of solving (1.1). The �rst is our interest in structure-preserving discretizations: the
scheme that we present builds on the non-obvious \secondary" gradient ow representation
of (1.1) in terms of Lagrangian maps. The bene�ts include monotonicity of the transformed
entropy functional E and L2 control on the metric velocity for our fully discrete solutions, that
eventually lead to weak compactness of the trajectories in the continuous limit. We remark
that our long-term goal is to design a numerical scheme that makes full use of the much richer
\primary" variational structure of (1.1) in the Wasserstein distance, which is reviewed in Section 2
below. However, despite signi�cant e�ort in the recent past | see, e.g., the references [3, 6, 15, 16,
20, 23, 26, 30, 37, 41] | it has not been possible so far to preserve features like metric contractivity
of the ow under the discretization, except in the rather special situation of one space dimension
(see Matthes and Osberger [30]). This is mainly due to the non-existence of �nite-dimensional
submanifolds of Pac

2 (Rd) that are complete with respect to generalized geodesics.
The second motivation is that Lagrangian schemes are a natural choice for numerical front

tracking, see, e.g., Budd [7] for �rst results on the numerical approximation of self-similar solu-
tions to the porous medium equation. We recall that, due to the assumed degeneracy P 0(0) = 0
of the di�usion in (1.1), solutions that are compactly supported initially remain compactly sup-
ported for all times. A numerically accurate calculation of the moving edge of support is chal-
lenging, since the solution can have a very complex behavior near that edge, like the waiting time
phenomenon (see Vazquez [39]). Our simulation results for @t� = �(�3) | which possesses an
analytically known, compactly supported, self-similar Barenblatt solution | indicate that our
discretization is indeed able to track the edge of support quite accurately.

The expected convergence of our scheme, with implicit Euler stepping in time and piecewise
linear approximation of the Lagrangian maps, is of �rst order in both space and time. This
is con�rmed in our experiments. For an improved approximation, particularly of the moving
fronts, numerical schemes with a higher order of consistency would be desirable. In principle,
such schemes could be constructed along the same lines, for example, by replacing the implicit
Euler method by a Runge{Kutta method in time, and the piecewise constant ansatz space AT
by �nite elements with functions of higher global regularity in space. However, it is unclear if
a similar degree of structure preservation can be achieved for these schemes, and their analysis
would be very di�erent from the one presented here.
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1.6. Structure of the paper. This work is organized as follows. In Section 2, we present an
overview of previous results in gradient ows pertaining our work. Section 3 is devoted to the
introduction of the linear set of Lagragian maps and the derivation of the numerical scheme.
Section 4 shows the compactness of the approximated sequences of discretizations and we give
conditions leading to the eventual convergence of the scheme towards (1.1). Section 5 deals with
the consistency of the scheme in two dimensions, while Section 6 gives several numerical tests
showing the performance of this scheme.

2. Gradient flow structures

2.1. Notations from probability theory. P(X) is the space of probability measures on a
given base set X. We say that a sequence (�n) of measures in P(X) converges narrowly to a
limit � in that space if �

X
f(x) d�n(x)!

�

X
f(x) d�(x)

for all bounded and continuous functions f 2 C0
b (X). The push-forward T#� of a measure

� 2 P(X) under a measurable map T : X ! Y is the uniquely determined measure � 2 P(Y )
such that, for all g 2 C0

b (Y ),
�

X
g � T (x) d�(x) =

�

Y
g(y) d�(y):

With a slight abuse of notation | identifying absolutely continuous measures with their densities
| we denote the space of probability densities on Rd of �nite second moment by

Pac
2 (Rd) =

�
� 2 L1(Rd) ; � � 0;

�

Rd
�(x) dx = 1;

�

Rd
kxk2�(x) dx <1

�
:

Clearly, the reference density �, which is supported on the compact set K � Rd, belongs to
Pac

2 (Rd). If G : K ! Rd is a di�eomorphism onto its image (which is again compact), then the
push-forward of �’s measure produces again a density G#� 2 Pac

2 (Rd), given by

G#� =
�

det DG
�G�1: (2.1)

2.2. Gradient ow in the Wasserstein metric. Below, some basic facts about the Wasser-
stein metric and the formulation of (1.1) as gradient ow in that metric are briey reviewed.
For more detailed information, we refer the reader to the monographs of Ambrosio et al. [1] and
Villani [40].

One of the many equivalent ways to de�ne the L2-Wasserstein distance between �0; �1 2
Pac

2 (Rd) is as follows:

W2(�0; �1) := inf
��

Rd
kT (x)� xk2�0(x) dx ; T : Rd ! Rd measurable; T#�0 = �1

� 1
2

: (2.2)

The in�mum above is in fact a minimum, and the | essentially unique | optimal map T � is
characterized by Brenier’s criterion; see, e.g., Villani [40, Section 2.1]. A trivial but essential
observation is that if � 2 Pac

2 (Rd) is a reference density with support K � Rd, and �0 = (G0)#�
with a measurable G0 : K ! Rd, then (2.2) can be re-written as follows:

W2(�0; �1) = inf
��

K
kG(!)�G0(!)k2�(!) d! ; G : K ! Rd measurable; G#� = �1

� 1
2

; (2.3)

and the essentially unique minimizer G� in (2.3) is related to the optimal map T � in (2.2) via
G� = T � �G0.
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W2 is a metric on Pac
2 (Rd); convergence in W2 is equivalent to weak-? convergence in L1(Rd)

and convergence of the second moment. Since P and hence also h are of super-linear growth at
in�nity, each sublevel set E is weak-? closed and thus complete with respect to W2.

As already mentioned above, solutions � to (1.1) constitute a gradient ow for the functional
E from (1.8) in the metric space (Pac

2 (Rd); W2). In fact, assuming that the potential V is
�-convex (i.e., r2V � �1), the ow is even �-contractive as a semi-group, thanks to the �-
uniform displacement convexity of E (see McCann [31], or Daneri and Savar�e [18]), which is a
strengthened form of �-uniform convexity along geodesics. The �-contractivity of the ow implies
various properties (see Ambrosio et al. [1, Section 11.2]) like global existence, uniqueness and
regularity of the ow, monotonicity of E and its sub-di�erential, uniform exponential estimates
on the convergence (if � > 0) or divergence (if � � 0) of trajectories, quanti�ed exponential rates
for the approach to equilibrium (if � > 0) and the like.

An important further consequence is that the unique ow can be obtained as the limit for
� & 0 of the time-discrete minimizing movement scheme (see Ambrosio et al. [1] and Jordan,
Kinderlehrer and Otto [25]):

�n� := argmin
�2Pac

2 (Rd)
E� (�; �n�1

� ); E� (�; �̂) :=
1
2�

W2(�; �̂)2 + E(�): (2.4)

This time discretization is well-adapted to approximate �-contractive gradient ows. All of the
properties of mentioned above are already reected on the level of these time-discrete solutions.

2.3. Gradient ow in L2. Equation (1.7) is the gradient ow of E on the space L2(K ! Rd; �)
of square integrable (with respect to �) maps G : K ! Rd (see Evans et al. [21] or Jordan
et al. [26]). However, the variational structure behind this gradient ow is much weaker than
above: most notably, E is only poly-convex, but not �-uniformly convex. Therefore, the abstract
machinery for �-contractive gradient ows in Ambrosio et al. [1] does not apply here. Clearly,
by equivalence of (1.1) and (1.7) at least for su�ciently smooth solutions, certain properties
of the primary gradient ow are necessarily inherited by this secondary ow, but for instance
�-contractivity of the ow in the L2-norm seems to fail.

Nevertheless, it can be proven (see Ambrosio, Lisini and Savar�e [2]) that the gradient ow is
globally well-de�ned, and it can again be approximated by the minimizing movement scheme:

Gn� := argmin
G2L2(K!Rd;�)

E�
�
G;Gn�1

�
�
; E� (G; Ĝ) =

1
2�

�

K
kG� Ĝk2 d�+ E(Gj�): (2.5)

In fact, there is an equivalence between (2.5) and (2.4): simply substitute (Gn�1
� )#� for �n�1

� and
G#� for � in (2.4); notice that any � 2 Pac

2 (Rd) can be written as G#� with a suitable (highly
non-unique) choice of G 2 L2(K ! Rd; �). This equivalence was already exploited in Carrillo
et al. [16, 14]. Thanks to the equality (2.3), the minimization with respect to � = G#� can be
relaxed to a minimization with respect to G. Consequently, if (G0

� )#� = �0
� , then (Gn� )#� = �n�

at all discrete times n = 1; 2; : : :. However, while the functional E� (�; �n�1
� ) in (2.4) is (�+ ��1)-

uniformly convex in � along geodesics in W2, the functional E� (�;Gn�1
� ) in (2.5) has apparently

no useful convexity properties in G on L2(K ! Rd; �).

3. Definition of the numerical scheme

Recall the Lagrangian formulation of (1.1) that has been given in Lemma 1.1. For de�niteness,
�x a reference density � 2 Pac

2 (Rd), whose support K � Rd is a compact, convex polytope.
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3.1. Discretization in space. Our spatial discretization is performed using a �nite subspace
of linear maps for the Lagrangian maps G. More speci�cally: let T be some (�nite) simplicial
decomposition of K with nodes !1 to !L and n-simplices �1 to �M . In the case d = 2, which
is of primary interest here, T is a triangulation, with triangles �m. The reference density � is
approximated by a density �T 2 Pac

2 (Rd) that is piecewise constant on the simplices of T , with
respective values

�mT :=
�mT
j�mj

for the simplex masses �mT :=
�

�m

�(!) d!: (3.1)

The �nite dimensional ansatz space AT is now de�ned as the set of maps G : K ! Rd that are
globally continous, a�ne on each of the simplices �m 2 T , and orientation preserving. That is,
on each �m � T , the map G 2 AT can be written as follows:

G(!) = Am! + bm for all ! 2 �m; (3.2)

with a suitable matrix Am 2 Rd�d of positive determinant and a vector bm 2 Rd.
For the calculations that follow, we shall use a more geometric way to describe the maps G 2

AT , namely by the positions G‘ = G(!‘) of the images of each node !‘. Denote by (Rd)LT � RL�d

the space of L-tuples ~G = (G‘)L‘=1 of points G‘ 2 Rd with the same simplicial combinatorics
(including orientation) as the !‘ in T . Clearly, any G 2 AT is uniquely characterized by the
L-tuple ~G of its values, and moreover, any ~G 2 (Rd)LT de�nes a G 2 AT .

More explicitly, �x a �m 2 T , with nodes labelled !m;0 to !m;d in some orientation preserving
order, and respective image points Gm;0 to Gm;d. With the standard d-simplex given by

4d :=

8
<

:
� = (�1; : : : ; �d) 2 Rd�0 ;

dX

j=1

�j � 1

9
=

;
;

introduce the linear interpolation maps rm : 4d ! K and qm : 4d ! Rd by

rm(�) = !m;0 +
dX

j=1

(!m;j � !m;0)�j ;

qm(�) = Gm;0 +
dX

j=1

(Gm;j �Gm;0)�j :

Then the a�ne map (3.2) equals to qm � r�1
m ; this is shown schematically in �gure 1 for the case

d = 2. In particular, we obtain that

detAm =
det Dqm
det Drm

=
detQmT [G]

2j�mj
where QmT [G] :=

�
Gm;1 �Gm;0

�� � � �
��Gm;d �Gm;0

�
: (3.3)

For later reference, we give a more explicit representation for the transformed entropy E for
G 2 AT , and for the L2-distance between two maps G; Ĝ 2 AT . Substitution of the special
form (3.2) into (1.9) produces

E(Gj�T ) =
X

�m2T

�mT
�
Hm

T (G) + VmT (G)
�

(3.4)

with the internal energy (recall the de�nition of eh from (1.9))

Hm
T (G) := eh

�
detAm
�mT

�
= eh

�
detQmT [G]

2�mT

�
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4 2

(1; 0)

(0; 1)

(0; 0)

� m

! m; 0

! m; 1

! m; 2

Gm; 0

Gm; 1

Gm; 2

r m
qm

G

Figure 1. A schematic representation of the spatial discretization for the case
d = 2. Note that the upper-left triangle �m is part of the reference triangulation
T , and is �xed in time. In contrast, the upper-right triangulation given by Gm
will change with time; see Section 3.2.

and the potential energy

VmT (G) =
 

�m

V (Am! + bm) d! =
 

4
V
�
rm(!)

�
d!:

For the L2-di�erence of G and G�, we have

kG�G�k2L2(K;�T ) =
�

K
kG�G�k2�T d! =

X

�m2T

�mT LmT (G;G�): (3.5)

Using Lemma B.1, we obtain on each simplex �m:

LmT (G;G�) :=
 

�m

kG(!)�G�(!)k2 d!

=
 

4
krm(!)� r�m(!)k2 d!

=
2

(d+ 1)(d+ 2)

X

0�i�j�d

(Gm;i �G�m;i) � (Gm;j �G
�
m;j): (3.6)

3.2. Discretization in time. Let a time step � > 0 be given; in the following, we symbolize
the spatio-temporal discretization by �, and we write � ! 0 for the joint limit of � ! 0 and
vanishing mesh size in T .

The discretization in time is performed in accordance with (2.5): we modify E� from (2.5) by
restriction to the ansatz space AT . This leads to the minimization problem

Gn� := argmin
G2AT

E�
�
G;Gn�1

�

�
where E�(G;G�) =

1
2�
kG�G�k2L2(K;�T ) + E(Gj�T ): (3.7)

For a �xed discretization �, the fully discrete scheme is well-posed in the sense that for a given
initial map G0

� 2 AT , an associated sequence (Gn�)n�0 can be determined by successive solution
of the minimization problems (3.7). One only needs to verify:



LAGRANGIAN SCHEME FOR NONLINEAR DIFFUSION 9

Lemma 3.1. For each given G� 2 AT , there exists at least one global minimizer G 2 AT of
E�(�;G�).

Remark 3.2. We do not claim uniqueness of the minimizers. Unfortunately, the minimization
problem (3.7) inherits the lack of convexity from (2.5), whereas the correspondence between (2.5)
and the convex problem (2.4) is lost under spatial discretization. A detailed discussion of E�’s
(non-)convexity is provided in Appendix C.

Proof of Lemma 3.1. We only sketch the main arguments. For de�niteness, let us choose (just
for this proof) one of the in�nitely many equivalent norm-induced metrics on the dL-dimensional
vector space VT of all continuous maps G : K ! Rd that are piecewise a�ne with respect to
the �xed simplicial decomposition T : given G;G0 2 VT with their respective point locations
~G; ~G0 2 RdL, i.e., ~G = (G‘)L‘=1 for G‘ = G(!‘), de�ne the distance between these maps as the
maximal Rd-distance kG‘ � G0‘k of corresponding points G‘ 2 ~G, G0‘ 2 ~G0. Clearly, this metric
makes VT a complete space.

It is easily seen that the subsetAT | which is singled out by requiring orientation preservation
of the G’s | is an open subset of VT . It is further obvious that the map G 7! E�(G;G�) is
continuous with respect to the metric. The claim of the lemma thus follows if we can show that
the sub-level

Sc := fG 2 AT ; E�(G;G�) � cg with c := E(G�j�T )
is a non-empty compact subset of VT . Clearly, G� 2 Sc, so it su�ces to verify compactness.
Sc is bounded. We are going to show that there is a radius R > 0 such that no G 2 Sc has

a distance larger than R to G�. From non-negativity of E, and from the representations (3.5)
and (3.6), it follows that

c �
1
2�
kG�G�k2L2(K;�T ) �

�T
2�

X

�m2T

LmT (G;G�)

=
�T

(d+ 1)(d+ 2)�

X

0�i�j�d

(Gm;i �G�m;i) � (Gm;j �G
�
m;j)

�
�T

2(d+ 1)(d+ 2)�

LX

‘=1

kG‘ �G�‘k
2;

where �T = min�m �mT . It is now easy to compute a suitable value for the radius R.
Sc is a closed subset of VT . It su�ces to show that the limit G 2 VT of any sequence (G(k))1k=1

of maps G(k) 2 Sc belongs to AT . By de�nition of our metric on VT , global continuity and
piecewise linearity of the G(k) trivially pass to the limit G. We still need to verify that G is
orientation-preserving. Fix a simplex �m and consider the corresponding matrices A(k)

m and Am
from (3.2). Since the G(k) converge to G in the metric, also A(k)

m ! Am entry-wise. Now, by
non-negativity of eh, we have for all k that

c � E(G(k)j�T ) � �mT eh

 
detA(k)

m

�mT

!

;

and since eh(s)! +1 as s # 0, it follows that detA(k)
m > 0 is bounded away from zero, uniformly

in k. But then also detAm > 0, i.e., the mth linear map piece of the limit G preserves orientation.
�

3.3. Fully discrete equations. We shall now derive the Euler{Lagrange equations associated
to the minimization problem (3.7), i.e., for each given G� := Gn�1

� 2 AT , we calculate the
variations of E�(G;G�) with respect to the degrees of freedom of G 2 AT . Since that function
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is a weighted sum over the triangles �m 2 T , it su�ces to perform the calculations for one �xed
triangle �m, with respective nodes !m;0 to !m;d, in positive orientation. The associated image
points are Gm;0 to Gm;d. Since we may choose any vertex to be labelled !m;0, it will su�ce to
perform the calculations at one �xed image point Gm;0.

� mass term:
@

@Gm;0
LmT (G;G�) =

2
(d+ 1)(d+ 2)

@
@Gm;0

X

0�i�j�d

(Gm;i �G�m;i) � (Gm;j �G
�
m;j)

=
2

(d+ 1)(d+ 2)

0

@2(Gm;0 �G�m;0) +
dX

j=1

(Gm;j �G�m;j)

1

A

� internal energy: observing that | recall (1.2) |

eh0(s) =
d
ds
�
sh(s�1)

�
= h(s�1)� s�1h0(s�1) = �P (s�1); (3.8)

we obtain
@

@Gm;0
Hm

T (G) =
@

@Gm;0
eh
�

detQmT [G]
2�mT

�
=

1
2�mT

P
�

2�mT
detQmT [G]

�
�mT [G];

where

�mT [G] := �
@

@Gm;0
detQmT [G] = (detQmT [G]) (QmT [G])�T

dX

j=1

ej (3.9)

is the uniquely determined vector in Rd that is orthogonal to the (d � 1)-simplex with
corners Gm;1 to Gm;d (pointing away from Gm;0) and whose length equals the (d � 1)-
volume of that simplex.

� potential energy:

@
@Gm;0

VmT (G) =
@

@Gm;0

 

4
V
�
rm(�)

�
d� =

 

4
rV

�
rm(�)

�
(1� �1 � � � � � �d) d�:

Now let !‘ be a �xed vertex of T . Summing over all simplices �m that have !‘ as a vertex, and
choosing vertex labels in accordance with above, i.e., such that !m;0 = !‘ in �m, produces the
following Euler{Lagrange equation:

0 =
X

!‘2�m

�mT

�
1

(d+ 1)(d+ 2)�

�
2(Gm;0 �G�m;0) +

dX

j=1

(Gm;j �G�m;j)
�

+
1

2�mT
P
�

2�mT
detQmT [G]

�
�mT [G] +

 

4
rV

�
rm(�)

�
(1� �1 � � � � � �d) d�

�
:

(3.10)

3.4. Approximation of the initial condition. For the approximation �0
� = (G0

�)#�T of the
initial datum �0 = G0

#�, we require:

� �0
� converges to �0 narrowly;

� E(�0
�) is �-uniformly bounded, i.e.,

E := sup E(�0
�) <1: (3.11)

In our numerical experiments, we always choose � := �0, in which case G0 : K ! Rd can be taken
as the identity on K, and we choose accordingly G0

� as the identity as well. Hence �0
� = �T ,
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which converges to �0 = � even strongly in L1(K). Moreover, since h is convex, it easily follows
from Jensen’s inequality that

�

�m

h
�
�(x)

�
dx � j�mjh(�mT );

and therefore,
E(�0

�) � E(�0):
In more general situations, in which G0 is not the identity, a sequence of approximations G0

� of
G0 is needed. Pointwise convergence G0

� ! G0 is more than su�cient to guarantee narrow con-
vergence of �0

� to �0, but the uniform bound (3.11) might require a well-adapted approximation,
especially for non-smooth G0’s.

4. Limit trajectory

In this section, we assume that a sequence of vanishing discretizations � ! 0 is given, and
we study the respective limit of the fully discrete solutions (Gn�)n�0 that are produced by the
inductive minimization procedure (3.7). For the analysis of that limit trajectory, it is more
natural to work with the induced densities and velocities,

�n� := (Gn�)#�; vn� :=
id�Gn�1

� � (Gn�)�1

�
;

instead of the Lagrangian maps Gn� themselves. Note that vn� is only well-de�ned on the support
of �n� | that is, on the image of Gn� | and can be assigned arbitrary values outside. Let us
introduce the piecewise constant in time interpolations e�� : [0; T ]�Rd ! R�0, and ev� : [0; T ]�
Rd ! Rd as usual,

e��(t) = �n�; ev�(t) = vn� with n such that t 2 ((n� 1)�; n� ]:

Note that e�(t; �) 2 Pac
2 (Rd) and ev�(t; �) 2 L2(Rd ! Rd; e��(t; �)) at each t � 0.

4.1. Energy estimates. We start by proving the classical energy estimates on minimizing move-
ments for our fully discrete scheme.

Lemma 4.1. For each discretization � and for any indices n > n � 0, one has the a priori
estimate

E(�n�) +
�
2

nX

n=n+1

 
W2(�n�; �

n�1
� )

�

!2

� E(�n): (4.1)

Consequently:
(1) E is monotonically decreasing, i.e., E(e��(t)) � E(e��(s)) for all t � s � 0;
(2) e�� is H�older-1

2 -continuous in W2, up to an error � ,

W2
�
e��(t); e��(s)

�
�
q

2E(�0
�)
�
jt� sj

1
2 + �

1
2
�

for all t � s � 0: (4.2)

(3) ev� is square integrable with respect to e��,
� T

0

�

Rd
kev�k2e�� dx dt � 2E(�0

�): (4.3)

Proof. By the de�nition of Gn� as a minimizer, we know that E�(Gn�;Gn�1
� ) � E�(G;Gn�1

� ) for
any G 2 AT , and in particular for the choice G := Gn�1

� , which yields:
1
2�

�

K
kGn� �G

n�1
� k2�T d! + E(Gn�j�T ) � E(Gn�1

� j�T ): (4.4)
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Summing these inequalies for n = n + 1; : : : ; n, recalling that E(�n�) = E(Gn�j�T ) by (1.9) and
that W2(�n�; �

n�1
� )2 �

�
K jG

n
� �G

n�1
� j2� d! by (2.3), produces (4.1).

Monotonicity of E in time is obvious.
To prove (4.2), choose n � n such that s 2 ((n� 1)�; n� ] and t 2 ((n� 1)�; n� ]. Notice that

�(n � n) � t � s + � . If n = n, the claim (4.2) is obviously true; let n < n in the following.
Combining the triangle inequality for the metric W2, estimate (4.1) above and H�older’s inequality
for sums, we arrive at

W2
�
e��(t); e��(s)

�
= W2(�n�; �

n
�) �

nX

n=n+1

W2(�n�; �
n�1
� )

�

2

4
nX

n=n+1

�

3

5

1
2
2

4
nX

n=n+1

W2(�n�; �
n�1
� )2

�

3

5

1
2

=
�
�(n� n)

� 1
2

2

4�
nX

n=n+1

 
W2(�n�; �

n�1
� )

�

!2
3

5

1
2

� [t� s+ � ]
1
2
�
2
�
E(�n�)� E(�n�)

�� 1
2 �

�
jt� sj

1
2 + �

1
2
�
E(�0

�)
1
2 :

Finally, changing variables using x = Gn�(!) in (4.4) yields

�
2

�

Rd
kvn�k

2�n� dx+ E(Gn�) � E(Gn�1
� );

and summing these inequalities from n = 1 to n = N� yields (4.3). �

4.2. Compactness of the trajectories and weak formulation. Our main result on the weak
limit of e�� is the following.

Theorem 4.2. Along a suitable sequence � ! 0, the curves e�� : R�0 ! Pac
2 (Rd) convergence

pointwise in time, i.e., e��(t) ! ��(t) narrowly for each t > 0, towards a H�older- 1
2 -continuous

limit trajectory �� : R�0 ! Pac
2 (Rd).

Moreover, the discrete velocities ev� possess a limit v� 2 L2(R�0 �Rd; ��) such that ev�e��
�*

v��� in L1(R�0 � Rd), and the continuity equation

@t�� +r � (��v�) = 0 (4.5)

holds in the sense of distributions.

Remark 4.3. The H�older continuity of �� implies that �� satis�es the initial condition (1.1b)
in the sense that ��(t)! �0 narrowly as t # 0.

Proof of Theorem 4.2. We closely follow an argument that is part of the general convergence
proof for the minimizing movement scheme as given in Ambrosio et al. [1, Section 11.1.3]. Below,
convergence is shown for some arbitrary but �xed time horizon T > 0; a standard diagonal
argument implies convergence at arbitrary times.

First observe that by estimate (4.2) | applied with 0 = s � t � T | it follows that
W2(e��(t); �0

�) is bounded, uniformly in t 2 [0; T ] and in �. Since further �0
� converges narrowly

to �0 by our hypotheses on the initial approximation, we conclude that all densities e��(t) belong
to a sequentially compact subset for the narrow convergence. The second observation is that the
term on the right hand side of (4.2) simpli�es to (2E) 1

2 jt � sj 12 in the limit � ! 0. A straight-
forward application of the \re�ned version" of the Ascoli-Arzel�a theorem (Proposition 3.3.1 in
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Ambrosio et al. [1]) yields the �rst part of the claim, namely the pointwise narrow convergence
of e�� towards a H�older continuous limit curve ��.

It remains to pass to the limit with the velocity ev�. Towards that end, we de�ne a probability
measure e� 2 P(ZT ) on the set ZT := [0; T ]� Rd � Rd as follows:

�

ZT

’(t; x; v) de�(t; x; v) =
� T

0

�

Rd
’
�
t; x; ev�(t; x)

�
e��(t; x) dx

dt
T
;

for every bounded and continuous function ’ 2 C0
b (ZT ). For brevity, let fM� 2 P([0; T ]�Rd) be

the (t; x)-marginals of e�, that have respective Lebesgue densities ��(t;x)
T on [0; T ]�Rd. Thanks

to the result from the �rst part of the proof, fM� converges narrowly to a limit M�, which has
density ��(t;x)

T . On the other hand, the estimate (4.3) implies that

�

ZT

jvj2 de�(t; x; v) =
�

[0;T ]�Rd
jev�(t; x)j2 dfM�(t; x) � 2E :

We are thus in the position to apply Theorem 5.4.4 in Ambrosio et al. [1], which yields the narrow
convergence of e� towards a limit �. Clearly, the (t; x)-marginal of � is M�. Accordingly, we
introduce the disintegration (t;x) of � with respect to M�, which is well-de�ned M�-a.e.. Below,
it will turn out that �’s v-barycenter,

v�(t; x) :=
�

Rd
v d(t;x)(v); (4.6)

is the sought-for weak limit of ev�. The convergence ev�e��
�* v��� and the inheritance of the

uniform L2-bound (4.3) to the limit v� are further direct consequences of Theorem 5.4.4 in
Ambrosio et al. [1].

The key step to establish the continuity equation for the just-de�ned v� is to evaluate the
limit as �! 0 of

J�[�] :=
1
�

"� T

0

�

Rd
�(t; x)e��(t; x) dxdt�

� T

0

�

Rd
�(t; x)e��(t� �; x) dx dt

#

for any given test function � 2 C1c ((0; T )�Rd) in two di�erent ways. First, we change variables
t 7! t+ � in the second integral, which gives

J�[�] =
� T

0

�

Rd

�(t; x)� �(t+ �; x)
�

e��(t; x) dxdt �!0�! �
� T

0

�

Rd
@t�(t; x) ��(t; x) dxdt:

For the second evaluation, we write

�n�1
� =

�
Gn�1

� � (Gn�)�1�
#�

n
� =

�
id� �vn�

�
#�

n
�;
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and substitute accordingly x 7! x� �ev�(t; x) in the second integral, leading to

J�[�] =
� T

0

�

Rd

�(t; x)� �
�
t; x� �ev�(t; x)

�

�
e��(t; x) dxdt

=
� T

0

�

Rd
r�(t; x) � ev�(t; x)e��(t; x) dx dt+ e�[�]

=
�

ZT

r�(t; x) � v de�(t; x; v) + e�[�]

�!0�!
�

ZT

r�(t; x) � v d�(t; x; v)

=
�

[0;T ]�Rd
r�(t; x) �

��

Rd
v d(t;x)(v)

�
dM�(t; x)

=
� T

0

�

Rd
r�(t; x) � v�(t; x)��(t; x) dx dt:

The error term e�[�] above is controlled via Taylor expansion of � and by using (4.3),

��e�[�]
�� �

� T

0

�

Rd

�
2
k�kC2

ev�(t; x)
2e��(t; x) dxdt � Ek�kC2T �:

Equality of the limits for both evaluations of J�[�] for arbitrary test functions � shows the
continuity equation (4.5). �

Unfortunately, the convergence provided by Theorem 4.2 is generally not su�cient to conclude
that �� is a weak solution to (1.1), since we are not able to identify v� as v[��] from (1.4b). The
problem is two-fold: �rst, weak-? convergence of e�� is insu�cient to pass to the limit inside
the nonlinear function P . Second, even if we would know that, for instance, P (e��) �* P (��),
we would still need a �-independent a priori control on the regularity (e.g., maximal diameter
of triangles) of the meshes generated by the Gn� to justify the passage to limit in the weak
formulation below.

The main di�culty in the weak formulation that we derive now is that we can only use \test
functions" that are piecewise a�ne with respect to the changing meshes generated by the Gn�.
For de�niteness, we introduce the space

D(T ) :=
�

� : K ! Rd ; � is globally continuous, and is piecewise a�ne w.r.t. �m
	
:

Lemma 4.4. Assume S : Rd ! Rd is such that S �Gn� 2 D(T ). Then:
�

Rd
P (�n�)r � S dx�

�

Rd
rV � S �n� dx =

�

Rd
S � vn��

n
� dx: (4.7)

Proof. For all su�ciently small " > 0, let G" = (id+S)�Gn�. By de�nition of Gn� as a minimizer,
we have that E�(G";Gn�1

� ) � E�(Gn�;Gn�1
� ). This implies that

0 �
1
"

�

K

�
1
2�
�
kG" �Gn�1

� k2 � kGn� �G
n�1
� k2

�

+
�
eh
�

det DG"
�T

�
� eh

�
det DGn�
�T

��
+
�
V �G" � V

��
�T d!:

(4.8)
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We discuss limits of the three terms under the integral for "& 0. For the metric term:

1
2�"

�
kG" �Gn�1

� k2 � kGn� �G
n�1
� k2

�
=
Gn� �G

n�1
�

�
�
G" �Gn�

"
+

1
2�"
kG" �Gn�k

2

=
��

id� Tn�
�

�
� S
�
�Gn� +

"
2�
kSk2 �Gn�;

and since S is bounded, the last term vanishes uniformly on K for "& 0. For the internal energy,
since DG" = D(id + "S) �Gn� �DG

n
�, and recalling (3.8),

1
"

�
eh
�

det DG"
�T

�
� eh

�
det DGn�
�T

��
=

1
"

�
eh
�

det DGn�
�T

det(1 + "DS) �Gn�

�
� eh

�
det DGn�
�T

��

"&0�!
det DGn�
�T

eh0
�

det DGn�
�T

��
lim
"&0

det(1 + "DS)
"

�
�Gn�

= �
det DGn�
�T

P
�

�T
det DGn�

�
tr[DS] �Gn�

= �
det DGn�
�T

�
P (�n)r � S

�
�Gn�:

Since the piecewise constant function det DGn� has a positive lower bound, the convergence as
"& 0 is uniform on K. Finally, for the potential energy,

1
"
�
V � (id + "S) �Gn� � V �G

n
�
� "&0�!

�
rV � S

�
�Gn�:

Again, the convergence is uniform on K. Passing to the limit in the integral (4.8) yields

0 �
�

K

��
id� Tn�

�

�
� S
�
�Gn��T d!

�
�

K

�
P (�n)r � S

�
�Gn� det DGn� d! +

�

K

�
rV � S

�
�Gn��T d!:

The same inequality is true with �S in place of S, hence this inequality is actually an equality.
Since �n� = (Gn�)#�T , a change of variables x = Sn�(!) produces (4.7). �

Corollary 4.5. In addition to the hypotheses of Theorem 4.2, assume that
(1) P (e��) �* p� in L1([0; T ]� 
);
(2) each Gn� is injective;
(3) as � ! 0, all simplices in the images of T under Gn� have non-degenerate interior

angles and tend to zero in diameter, uniformly w.r.t. n.
Then �� satis�es the PDE

@t�� = �p� +r � (��rV ) (4.9)

in the sense of distributions.

Proof. Let a smooth test function � 2 C1c (Rd ! Rd) be given. For each � and each n, a
�n� : Rd ! Rd with �n� �G

n
� 2 D(T ) can be constructed in such a way that

�n� ! �; r � �n� ! r � � (4.10)

uniformly on Rd, and uniformly in n as � ! 0. This follows from our hypotheses on the �-
uniform regularity of the Lagrangian meshes: inside the image of Gn�, one can simply choose
�n� as the a�ne interpolation of the values of � at the points Gn�(!‘). Outside, one can take an
arbitrary approximation of � that is compatible with the piecewise-a�ne approximation on the
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boundary of Gn�’s image; one may even choose �n� � � at su�cient distance to that boundary.
The uniform convergences (4.10) then follow by standard �nite element analysis.

Further, let � 2 C1c (0; T ) be given. For each t 2 ((n�1)�; n� ], substitute S(t; x) := �(t)�n�(x)
into (4.7). Integration of these equalities with respect to t 2 (0; T ) yields

� T

0

�

Rd
P (e��)r � S dx dt�

� T

0

�

Rd
rV � S dxdt =

� T

0

�

Rd
S � ev�e�� dxdt:

We pass to the limit � ! 0 in these integrals. For the �rst, we use that P (e�) �* p� by
hypothesis, for the last, we use Theorem 4.2 above. Since any test function S 2 C1c ((0; T )�
)
can be approximated in C1 by linear combinations of products �(t)�(x) as above, we thus obtain
the weak formulation of

��v� = rp� + ��rV:

In combination with the continuity equation (4.5), we arrive at (4.9). �

Remark 4.6. In principle, our discretization can also be applied to the linear Fokker{Planck
equation with P (r) = r and h(r) = r log r. In that case, one automatically has P (e�) �* p� �
P (��) thanks to Theorem 4.2. Corollary 4.5 above then provides an a posteriori criterion for
convergence: if the Lagrangian mesh does not deform too wildly under the dynamics as the
discretization is re�ned, then the discrete solutions converge to the genuine solution.

5. Consistency in 2D

In this section, we prove consistency of our discretization in the following sense. Under certain
conditions on the spatial discretization T , any smooth and positive solution � to the initial value
problem (1.1) projects to a discrete solution that satis�es the Euler{Lagrange equations up to a
controlled error. We restrict ourselves to d = 2 dimensions.

5.1. Smooth Lagrangian evolution. First, we derive an alternative form of the velocity �eld
v from (1.4b) in terms of G.

Lemma 5.1. For � = G#� with a smooth di�emorphism G : K ! Rd, we have

v[�] �G = V[G] := P 0
�

�
det DG

�
(DG)�T

�
tr12

�
(DG)�1D2G

�T �
r�
�

�
�rV �G: (5.1)

Consequently, the Lagrangian map G | relative to the reference density � | for a smooth
solution � to (1.1) satis�es

@tG = V[G]: (5.2)

Proof. On the one hand,

D
�
h0(�) �G

�
=
�
Dh0(�)

�
�GDG;

and on the other hand, by de�nition of the push forward,

D
�
h0(�) �G

�
= Dh0

�
�

det DG

�

= h00
�

�
det DG

� �
�

det DG

� �
D�
�
� tr12

�
(DG)�1D2G

��

=
�
�h00(�)

�
�G

�
D�
�
� tr12

�
(DG)�1D2G

��
:
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Hence

rh0(�) �G =
�
�h00(�)

�
�G (DG)�T

�
r�
�
� tr12

�
(DG)�1D2G

�T
�
:

Observing that (1.2) implies that rh00(r) = P 0(r), we conclude (5.2) directly from (1.4b). �

5.2. Discrete Euler{Lagrange equations in dimension d = 2. In the planar case d = 2,
the Euler{Lagrange equation (3.10) above can be rewritten in a more convenient way.

In the following, �x some vertex !� of the triangulation, which is incident to precisely six
triangles. For convenience, we assume that these are labelled �0 to �5 in counter-clockwise
order. Similarly, the six neighboring vertices are labeled !0 to !5 in counter-clockwise order, so
that �k has vertices !k and !k+1, where we set !6 := !0.

Using these conventions and recalling Lemma B.2, the expression for the vector � in (3.9)
simpli�es to

�kT = �J(Gk+1 �Gk); where J =
�

0 �1
1 0

�
:

Summing the Euler{Lagrange equation (3.10) over �0 to �5, we obtain

p� = J�; (5.3)

where the momentum term p� and the impulse J�, respectively, are given by

p� =
1
12

5X

k=0

�kT

�
2
�
G� �G��

�

�
+
�
Gk �G�k

�

�
+
�
Gk+1 �G�k+1

�

��
(5.4)

J� =
5X

k=0

�kT

�
1

2�kT
P
�

2�kT
det(Gk �G�jGk+1 �G�)

�
J(Gk+1 �Gk) (5.5)

�
 

4
rV

�
(1� �1 � �2)G� + �1Gk + �2Gk+1

�
(1� �1 � �2) d�

�
: (5.6)

We shall now prove our main result on consistency. The setup is the following: a sequence of
triangulations T" on K, parametrized by " > 0, and a sequence of time steps �" = O(") are given.
We assume that there is an "-independent region K 0 � K on which the T" are almost hexagonal
in the following sense: each node !� 2 K 0 of T" has precisely six neighbors | labelled !0 to !5
in counter-clockwise order | and there exists a rotation R 2 SO(2) such that

R(!k � !�) = "�k +O("2) with �k =
�

cos �3 k
sin �

3 k

�
(5.7)

for k = 0; 1; : : : ; 5.
Now, let G : [0; T ] �K ! Rd be a given smooth solution to the Lagrangian evolution equa-

tion (5.2), and �x a time t 2 (0; T ). For all su�ciently small " > 0, we de�ne maps G"; G�" 2 AT"

by linear interpolation of the values of G(t; �) and G(t � � ; �), respectively, on T". That is,
G"(!‘) = G(t;!‘) and G�"(!‘) = G(t � � ;!‘), at all nodes !‘ in T". Theorem 5.2 below states
that the pair G"; G�" is an approximate solution to the discrete Euler{Lagrange equations (5.3)
at all nodes !� of the respective triangulation T" that lie in K 0.

The hexagonality hypothesis on the T" is strong, but some very strong restriction of AT" ’s
geometry is apparently necessary. See Remark 5.4 following the proof for further discussion.
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Theorem 5.2. Under the hypotheses and with the notations introduced above, the Euler{Lagrange
equation (5.3) admits the following asymptotic expansion:

p� =
p

3
2
"2 �(!�)@tG(t;!�) +O("3); (5.8a)

J� =
p

3
2
"2 �(!�)V[G](t;!�) +O("3); (5.8b)

as "! 0, uniformly at the nodes !� 2 K 0 of the respective T".

Remark 5.3. Up to an error O("3), the geometric pre-factor
p

3
2 "

2 equals to one third of the
total area of the hexagon with vertices !0 to !5, and is thus equal to the integral of the piecewise
a�ne hat function with peak at !�.

Proof of Theorem 5.2. Throughout the proof, let " > 0 be �xed; we shall omit the "-index for
T" and �". First, we �x a node !� of T \K 0. Thanks to the equivariance of both (5.2) and (5.3)
under rigid motions of the domain, we may assume that R in (5.7) is the identity, and that
!� = 0.

We collect some relations that are helpful for the calculations that follow. Trivially,
5X

k=0

�k = 0;
5X

k=0

!k = O("2): (5.9)

Moreover, we have that

j�kj = det(!kj!k+1) = "2 det(�kj�k+1) +O("3) =
p

3
4
"2 +O("3): (5.10)

On the other hand, by de�nition of �kT in (3.1), it follows that

�kT = j�kj
 

�k

�d! =
1
2

det(!kj!k+1)
�
�
�
!k + !k+1

3

�
+O(")

�

=
1
2

det(!kj!k+1)
�
�� + "r�� �

�k + �k+1

3
+O("2)

�
:

(5.11)

Combining (5.10) and (5.11) yields

�kT = "2

 p
3

4
�� +O(")

!

: (5.12)

In accordance with the de�nition of G" and G�" from G detailed above, let G� := G(t; !�) and
G�� = G(t � �; !�), and de�ne Gk, G�k for k = 0; : : : ; 5 in the analogous way. Further, we
introduce DG� = DG(t; !�), D2G� = D2G(t; !�), @tG� = @tG(t; !�).

To perform an expansion in the momentum term, �rst observe that

G(t� � ;!k) = G(t;!k)� �@tG(t;!k) +O(�2);

for each k = 0; 1; : : : ; 5, and so, using that � = O(") by hypothesis,
Gk �G�k

�
= @tG(t;!k) +O(�) = @tG� +O(") +O(�) = @tG� +O("):

Using (5.12) and then (5.9) yields

p� =
1

12�

5X

k=0

"2

 p
3

4
�� +O(")

!
�
4@tG� +O(")

�

=
p

3
2
"2 ��@tG� +O("3):
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This is (5.8a).
For the impulse term, we start with a Taylor expansion to second order in space:

Gk = G� + DG�!k +
1
2

D2G� : [!k]2 +O("3):

We combine this with the observation that (!kj!k+1)�1 = O("�1) to obtain:

�kT
det(Gk �G�jGk+1 �G�)

=
det(!kj!k+1)

det DG�
�� + "r�� �

�k+�k+1
3 +O("2)

det
�
(!kj!k+1) + 1

2 (DG�)�1
�
D2G� : [!k]2

��D2G� : [!k+1]2
�

+O("3)
�

=
��

det DG�

1 + "
r��
��
�
�k + �k+1

3
+O("2)

det
�
1 + 1

2 (DG�)�1
�
D2G� : [!k]2

��D2G� : [!k�1]2
�

(!kj!k+1)�1 +O("2)
�

=
��

det DG�

�
1 + "

�
�k �

1
2
#k
�

+O("2)
�
;

where

�k =
r��
��
�
�k + �k+1

3
;

#k = tr
��

(DG�)�1D2G� : [�k]2
��(DG�)�1D2G� : [�k+1]2

�
(�kj�k+1)�1� :

Plugging this in leads to
5X

k=0

�
1
2
P
�

��
det DG�

�
+
"
2
P 0
�

��
det DG�

��
�k �

1
2
#k
�

+O("2)
�

JDG�(!k+1 � !k)

=
1
2
P
�

�0
det DG�

�
JDG�

 
5X

k=0

(!k+1 � !k)

!

+
"2

4
P 0
�

��
det DG�

�
JDG�JT

 
5X

k=0

f2�k � #kg J(�k+1 � �k)

!

+O("3)

= 0 +
p

3
2
"2P 0

�
��

det DG�

�
(DG�)�T

�
tr12

�
(DG�)�1D2G�

�T �
r��
��

�
+O("3);

where we have use the auxiliary algebraic results from Lemma B.2, Lemma B.3, and Lemma B.4.
For the remaining part of the impulse term, a very rough approximation is su�cient:

rV (g) = rV (G�) +O(")

holds for any g that is a convex combination of G�; G0; : : : ; G5, where the implicit constant is
controlled in terms of the supremum of D2V and DG on K 0. With that, we simply have, using
again (5.12):

5X

k=0

�kT

 

4
rV

�
(1� �1 � �2)G� + �1Gk + �2Gk+1

�
(1� �1 � �2) d�

= 6"2

 p
3

4
�� +O(")

!
�
rV (G�) +O(")

�
=
p

3
2
"2 ��rV (G�) +O("3):

Together, this yields (5.8b). �
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Remark 5.4. The hypotheses of Theorem (5.2) require that the T" are almost hexagonal on K 0.
This seems like a technical hypothesis that simpli�es calculations, but apparently, some strong
symmetry property of the T" is necessary for the validity of the result.

To illustrate the failure of consistency | at least in the speci�c form considered here |
assume that V � 0 and � � 1, and consider a sequence of triangulations T" for which there is
a node !� such that (5.7) holds with the �k being replaced by a di�erent six-tuple of vectors �0k.
Repeating the steps of the proof above, it is easily seen that p� = a"2 @tG(t;!�) + O("3), with
an "-independent constant a > 0 in place of

p
3=2, and that

J� = �
"2

4
P 0
�

1
det DG�

�
(DG�)�T

5X

k=0

#0kJ(�0k+1 � �
0
k) +O("3);

with

#0k = tr
��

(DG�)�1D2G� : [�0k]2
��(DG�)�1D2G� : [�0k+1]2

�
(�0kj�

0
k+1)�1� :

If a result of the form (5.8b) | with
p

3=2 replaced by a | was true, then this implies in
particular that

5X

k=0

#0kJ(�0k+1 � �
0
k) = a0 tr12

�
(DG�)�1D2G�

�
(5.13)

holds with some constant a0 > 0 for arbitrary matrices DG� 2 R2�2 of positive determinant
and tensors D2G� 2 R2�2�2 that are symmetric in the second and third component. A speci�c
example for which (5.13) is not true is given by

�00 =
�

1
0

�
= ��03; �01 =

� 1
2
1
2

�
= ��04; �02 =

�
0
1

�
= ��05; (5.14)

in combination with DG� = 1, and a D2G� that is zero except for two ones, at the positions
(1; 2; 2) and (2; 1; 1). In Lemma B.5, we show that the left-hand side in (5.13) equals to

�1
1

�
; on

the other hand, the right-hand side is clearly zero.
Note that this counter-example is signi�cant, insofar as the skew (in fact, degenerate) hexagon

described by the �0k in (5.14) corresponds to a popular method for triangulation of the plane.

6. Numerical simulations in d = 2

6.1. Implementation. The Euler{Lagrange equations for the d = 2-dimensional case have been
derived in (5.3). We perfom a small modi�cation in the potential term in order to simplify
calculations with presumably minimal loss in accuracy:

Z�[G;G�] =
5X

k=0

�kT
12

�
2
�
G� �G��

�

�
+
�
Gk �G�k

�

�
+
�
Gk+1 �G�k+1

�

��

+
5X

k=0

�
1
2
eh0
�

det(Gk �G�jGk+1 �G�)
2�kT

�
J(Gk+1 �Gk) +

�kT
6
rV (Gk+ 1

2
)
�
;

with the short-hand notation

Gk+ 1
2

=
1
3

(G� +Gk +Gk+1):
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On the main diagonal, the Hessian amounts to

H��[G] =

 
5X

k=0

�kT
6�

!

12

+
5X

k=0

1
4�kT

eh00
�

det(Gk �G�jGk+1 �G�)
2�kT

��
J(Gk+1 �Gk)

��
J(Gk+1 �Gk)

�>

+
5X

k=0

�kT
18
r2V (Gk+ 1

2
)

O� the main diagonal, the entries of the Hessian are given by

H�k[G] =
�kT + �k�1

T
12�

12

+
1

4�kT
eh00
�

det(Gk �G�jGk+1 �G�)
2�kT

��
J(Gk+1 �Gk)

��
J(Gk+1 �G�)

�>

�
1

4�k�1
T

eh00
 

det(Gk�1 �G�jGk �G�)
2�k�1

T

!
�
J(Gk �Gk�1)

��
J(Gk�1 �G�)

�>

+
�kT
18
r2V (Gk+ 1

2
) +

�k�1
T
18
r2V (Gk� 1

2
):

The scheme consists of an inner (Newton) and an outer (time stepping) iteration. We start
from a given initial density �0 and de�ne the solution at the next time step inductively by
applying Newton’s method in the inner iteration. To this end we initialise G(0) := Gn with Gn,
the solution at the nth time step, and de�ne inductively

G(s+1) := G(s) + �G(s+1);

where the update �G(s+1) is the solution to the linear system

H[G(s)]�G(s+1) = �Z[G(s);Gn]:

The e�ort of each inner iteration step is essentially determined by the e�ort to invert the sparse
matrix H[G(s)]. As soon as the norm of �G(s+1) drops below a given stopping threshold, de�ne
Gn+1 := G(s+1) as approximate solution in the n+ 1st time step.

In all experiments the stopping criterion in the Newton iteration is set to 10�9.

6.2. Numerical experiments. In this section we present results of our numerical experiments
for (1.1) with a cubic porous-medium nonlinearity P (r) = r3 and di�erent choices for the external
potential V ,

@t� = �(u3) +r � (urV ): (6.1)

Numerical experiment 1: uncon�ned evolution of Barenblatt pro�le. As a �rst example, we con-
sider the \free" cubic porous medium equation, that is (6.1) with V � 0. It is well-known (see,
e.g., Vazquez [39]) that in the long-time limit t!1, arbitrary solutions approach a self-similar
one,

��(t; x) = t�d�B3
�
t��x

�
with � =

1
6
; (6.2)

where B3 is the associated Barenblatt pro�le

B3(z) =
�
C3 �

1
3
kzk2

� 1
2

+
; (6.3)
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where C3 = (2�)� 2
3 � 0:29 is chosen to normalize B3’s mass to unity.

In this experiment, we are only interested in the quality of the numerical approximation
for the self-similar solution (6.2). To reduce numerical e�ort, we impose a four-fold symmetry
of the approximation: we use the quarter circle as computational domain K, and interprete
the discrete function thereon as one of four symmetric pieces of the full discrete solution. To
preserve reection symmetry over time, homogeneous Neumann conditions are imposed on the
arti�cial boundaries. This is implemented by reducing the degrees of freedom of the nodes along
the x- and y-axes to tangential motion. We initialize our simulation with a piecewise constant
approximation of the pro�le of �� from (6.3) at time t = 0:01. We choose a time step � = 0:001
and the �nal time T = 2. In Figure 2, we have collected snapshots of the approximated density
at di�erent instances of time. The Barenblatt pro�le of the solution is very well pertained over
time.

Remark 6.1. It takes less than 2 minutes to complete this simulation on standard laptop (Mat-
lab code on a mid-2013 MacBook Air 11" with 1.7 GHz Intel Core i7 processor).

Figure 3 shows surface plots of the discrete solution at di�erent times in comparison with
the Barenblatt pro�le at the respective time. By construction of the scheme, the initial mass is
exactly conserved in time as the discrete solution propagates. The left plot in Figure 4 shows
the decay in the energy and gives quantitative information about the di�erence of the discrete

Figure 2. Numerical experiment 1: fully discrete evolution of our approxima-
tion for the self-similar solution to the free porous medium equation. Snapshots
are taken at times t = 0:02, t = 0:1, t = 0:25, and t = 2:0.
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Figure 3. Numerical experiment 1: comparison of the discrete solution (inter-
polated surface plots with triangulation) with the Barenblatt pro�le (solid and
dashed black lines along the identity) at di�erent times.
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Figure 4. Numerical experiment 1: decay of the energy of the discrete solution
in comparison with the analytical decay t�2=3 of the Barenblatt solution (left).
Numerical convergence for �xed ratio �=h2

max = 0:4 (right).

solution to the analytical Barenblatt solution. The numerical solution shows good agreement
with the analytical energy decay rate c = 2=3.

We also compute the l1-error of the discrete solution to the exact Barenblatt pro�le and
observe that it remains within the order of the �neness of the triangulation. The mass of the
discrete solution is perfectly conserved, as guaranteed by the construction of our method.

To estimate the convergence order of our method, we run several experiments with the above
initial data on di�erent meshes. We �x the ratio �=h2

max = 0:4 and compute the l1-error at
time T = 0:2 on triangulations with hmax = 0:2; 0:1; 0:05; 0:025: We expect the error to decay
as a power of hmax. The double logarithmic plot should reveal a line with its slope indicating
the numerical convergence order. The right plot in Figure 4 shows the result, the estimated
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numerical convergence order which is obtained from a least-squares �tted line through the points
is equal to 1:18. This indicates �rst order convergence of the scheme with respect to the spatial
discretisation parameter hmax.

Numerical experiment 2: Asymptotic self-similarity. In our second example, we are still con-
cerned with the free cubic porous medium equation, (6.1) with V � 0. This time, we wish to
give an indication that the discrete approximation of the self-similar solution from (6.2) from the
previous experiment might inherit the global attractivity of its continuous counterpart. More
speci�cally, we track the discrete evolution for the initial datum

�0(x; y) = 3000(x2 + y2) exp[�5(jxj+ jyj)] + 0:1 (6.4)

until time T = 0:1 and observe that it appears to approach the self-similar solution from above.
Snapshots of the simulation are collected in Figure 5.

Numerical experiment 3: two peaks merging into one under the inuence of a con�ning potential.
In this example we consider as initial condition two peaks, connected by a thin layer of mass,
given by

�0(x; y) = exp[�20((x�0:35)2 +(y�0:35)2)]+exp[�20((x+0:35)2 +(y+0:35)2)]+0:001: (6.5)

We choose a triangulation of the square [�1:5; 1:5]2 and initialise the discrete solution piecewise
constant in each triangle, with a value corresponding to (6.5), evaluated in the centre of mass of
each triangle. We solve the porous medium equation with a con�ning potential, i.e. (1.1) with
P (r) = rm and V (x; y) = 5(x2 + y2)=2. The time step is � = 0:001 and the �nal time is T = 0:2:

Figure 6 shows the evolution from the initial density. As time increases the peaks smoothly
merge into each other. As the thin layer around the peaks is also subject to the potential the
triangulated domain shrinks in time. Even if we do not know how to prevent theoretically the
intersection of the images of the discrete Lagrangian maps, this seems not to be a problem in
practice. As time evolves, the discrete solution approaches the steady state Barenblatt pro�le
given by

B(z) =
�
C �

5
3
jjzjj2

� 1
2

+
; (6.6)

where C is chosen as the mass of the density. The plot in Figure 7 shows the exponential decay
of the l1-distance of the discrete solution to the steady state Barenblatt pro�le (6.6). We observe
that the decay agrees very well with the analytically predicted decay exp(�5t) until t = 0:08.
For larger times, one would monitor triangle quality numerically, and re-mesh, locally coarsening
the triangulation where necessary.

Numerical experiment 4: one peak splitting under the inuence of a quartic potential. We con-
sider as the initial condition

�0(x; y) = 1� (x2 + y2): (6.7)

We choose a triangulation of the unit circle and initialise the discrete solution piecewise constant
in each triangle, with a value corresponding to (6.7), evaluated in the centre of mass of each
triangle. We solve the porous medium equation with a quartic potential, i.e. (1.1) with P (r) = rm
and V (x) = 5(x2 + (1� y2)2)=2. The time step is � = 0:005 and the �nal time is T = 0:02:

Figure 8 shows the evolution of the initial density. As time increases the initial density is
progressively split, until two new maxima emerge which are connected by a thin layer. For larger
times, when certain triangles become excessively distorted, one would monitor triangle quality
numerically, and re-mesh, locally re�ning the triangulation where necessary.
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Figure 5. Numerical experiment 2: fully discrete evolution for the initial den-
sity from (6.4) under the free porous medium equation. Snapshots are taken at
times t = 0:001, t = 0:005, t = 0:01, t = 0:025, and t = 0:1.

Appendix A. Proof of the Lagrangian representation

Proof of Lemma 1.1. We verify that the density function given by (G�1
t )#�t on K � Rd is

constant with respect to time t; the identity (1.6) then follows since

�t = (Gt �G�1
t )#�t = (Gt)#

�
(G�1

t )#�t
�

= (Gt)#
�
(G�1

0 )#�0� = (Gt)#�:

Firstly, from the de�nition of the inverse,

G�1
t �Gt = id
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Figure 6. Numerical experiment 3: evolution of two peaks merging under the
porous medium equation with a con�ning potential.

for all t, di�erentiating with respect to time yields

D(G�1
t ) �Gt @tGt + @t(G�1

t ) �Gt = 0;

and so, using (1.5) and (1.4b),

@t(G�1
t ) = �D(G�1

t )(@tGt �G�1
t ) = �D(G�1

t )v[�t]: (A.1)
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Figure 7. Numerical experiment 3: two merging peaks: plot of the l1-distance
of the discrete solution to the steady state Barenblatt pro�le in comparison with
the analytical decay c exp(�5t).

Figure 8. Numerical experiment 4: evolution of the initial density under the
porous medium equation with a quartic potential.

Now, let ’ be a smooth test function, and consider
d
dt

�
’ (G�1

t )#�t

=
d
dt

�
(’ �G�1

t )�t

=
�

(’ �G�1
t )@t�t +

�
D’ �G�1

t @t(G�1
t )�t

= �
�

(’ �G�1
t )[r � (�tv(�t))]�

�
(D’ �G�1

t ) D(G�1
t ) v(�t)�t by (1.1) and (1.5)

=
�

(D’ �G�1
t )D(G�1

t ) [v(�t)� v(�t)]�t integrating by parts

= 0:
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As ’ was arbitrary, (G�1
t )#�t is constant with respect to time. �

Appendix B. Technical lemmas

Lemma B.1. Given g0; g1; : : : ; gd 2 Rd, then
 

4d

g0 +
dX

j=1

!j(gj � g0)


2
d! =

2
(d+ 1)(d+ 2)

X

0�i�j�d

gi � gj : (B.1)

Proof. Thanks to the symmetry of the integral with respect to the exchange of the components
!j , the left-hand side of (B.1) equals to

kg0k2 + 2
� 

4
!d d!

� X

1�j�d

g0 � (gj � g0)

+
� 

4
!2
d d!

� X

1�j�d

kgj � g0k2 + 2
� 

4
!d�1!d d!

� X

1�i<j�d

(gi � g0) � (gj � g0):
(B.2)

We calculate the integrals, using Fubini’s theorem. First integral:
 

4
!d d! =

1
j4dj

� 1

0
!d (1� !d)d�1j4d�1jd!d

=
j4d�1j
j4dj

� 1

0
(1� z) zd�1 dz = d

�
1
d
�

1
d+ 1

�
=

1
d+ 1

:

Second integral:
 

4
!2
d d! =

1
j4dj

� 1

0
!2
d (1� !d)d�1j4d�1jd!d

=
j4d�1j
j4dj

� 1

0
(1� z)2 zd�1 dz = d

�
1
d
�

2
d+ 1

+
1

d+ 2

�
=

2
(d+ 1)(d+ 2)

:

Third integral:
 

4
!d�1!d d! =

1
j4dj

� 1

0

�� 1�!d

0
!d�1!d (1� !d�1 � !d)d�2j4d�2jd!d�1

�
d!d

=
j4d�2j
j4dj

� 1

0

�� z

0
(1� z)(z � y) yd�2 dy

�
dz

= d(d� 1)
� 1

0

�
1

d� 1
�

1
d

�
(1� z)zd dz =

1
d+ 1

�
1

d+ 2
=

1
(d+ 1)(d+ 2)

:

Substitute this into (B.2):
�

1�
2

d+ 1
+

d2 + d
(d+ 1)(d+ 2)

�
kg0k2 +

�
2

d+ 1
�

2d+ 2
(d+ 1)(d+ 2)

� X

1�j�d

g0 � gj

+
2

(d+ 1)(d+ 2)

X

1�j�d

kgjk2 +
2

(d+ 1)(d+ 2)

X

1�i<j�d

gi � gj

=
2

(d+ 1)(d+ 2)

0

@kg0k2 +
X

1�j�d

g0 � gj +
X

1�j�d

kgjk2 +
X

1�i<j�d

gi � gj

1

A :

Collecting terms yields the right-hand side of (B.1). �
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Lemma B.2. For each A 2 R2�2, we have JAJT = (detA)A�T .

Proof. This is veri�ed by direct calculation:

JAJT =
�

0 �1
1 0

��
a11 a12
a21 a22

��
0 1
�1 0

�
=
�
a22 �a21
�a12 a11

�
= (detA)A�T : �

Lemma B.3. With �k 2 R2 de�ned as in (5.7), we have that

5X

k=0

J(�k � �k+1)
�
�k + �k+1

3

�T
=
p

3 1:

Proof. With the abbreviations �x = �
3x and  = �

3 :

5X

k=0

J(�k � �k+1)
�
�k + �k+1

3

�T
=

1
3

5X

k=0

�
sin�k+1 � sin�k
cos�k � cos�k+1

��
cos�k + cos�k+1

sin�k + sin�k+1

�T

=
1
3

5X

k=0

(2 sin
 
2

)
�

cos�k+ 1
2

sin�k+ 1
2

�
(2 cos

 
2

)
�

cos�k+ 1
2

sin�k+ 1
2

�T

=
sin 

3

5X

k=0

 
2 cos2 �k+ 1

2
2 cos�k+ 1

2
sin�k+ 1

2

2 cos�k+ 1
2

sin�k+ 1
2

2 sin2 �k+ 1
2

!

=
p

3
6

5X

k=0

�
1 +

�
cos�2k+1 sin�2k+1
sin�2k+1 � cos�2k+1

��
=
p

3 1: �

Lemma B.4. Let the scheme B := (bpqr)p;q;r2f1;2g 2 R2�2�2 of eight numbers bpqr 2 R be
symmetric in the last two indices, bpqr = bprq. With �k 2 R2 de�ned as in (5.7), we have that

5X

k=0

tr
��
�k
���k+1

��1�B : [�k]2
��B : [�k+1]2

��
J(�k � �k+1) = 2

p
3 tr12[B]T : (B.3)

Proof. In principle, this lemma can be veri�ed by a direct calculation, by writing out the six
terms in the sum explicitly and using trigonometric identities. Below, we give a slightly more
conceptual proof, in which we use symmetry arguments to reduce the number of expressions
signi�cantly.

For the matrix involving B, we obtain
�
B : [�k]2

��B : [�k+1]2
�

=
�
b111�2

k;1 + b122�2
k;2 + 2b112�k;1�k;2 b111�2

k+1;1 + b122�2
k+1;2 + 2b112�k+1;1�k+1;2

b211�2
k;1 + b222�2

k;2 + 2b212�k;1�k;2 b211�2
k+1;1 + b222�2

k+1;2 + 2b212�k+1;1�k+1;2

�
;

while clearly

�
�k
���k+1

��1 =
2
p

3

�
�k+1;2 ��k+1;1
��k;2 �k;1

�
:

The sum of the diagonal entries of the matrix product are easily calculated,

Tk := tr
��
�k
���k+1

��1�B : [�k]2
��B : [�k+1]2

��
=

2
p

3

2X

p;q;r=1

bpqrpqr;k;
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with the trigonometric expressions

111;k = �2
k;1�k+1;2 � �2

k+1;1�k;2; 122;k = �2
k;2�k+1;2 � �2

k+1;2�k;2;
112;k = 121;k = �k;1�k;2�k+1;2 � �k+1;1�k+1;2�k;2;

211;k = �2
k+1;1�k;1 � �

2
k;1�k+1;1; 222;k = �2

k+1;2�k;1 � �
2
k;2�k+1;1;

212;k = 221;k = �k+1;1�k+1;2�k;1 � �k;1�k;2�k+1;1:

To key step is to calculate the sum over k = 0; 1; : : : ; 5 of the products of Tk with the respective
vector

�k = J(�k � �k+1) =
�
�k+1;2 � �k;2
�k;1 � �k+1;1

�
:

Several simpli�cations of this sum can be performed, thanks to the particular form of the
pqr;k and elementary trigonometric identities. First, observe that �k+3 = ��k, and hence
that pqr;k+3 = �pqr;k. Since further �k+3 = ��k, it follows that

pqr;k+3�k+3 = pqr;k�k: (B.4)

Second, � can be evaluated explicitly for k = 1; 2; 3:

�0 =
1
2

�p
3

1

�
; �1 =

�
0
1

�
; �2 =

1
2

�
�
p

3
1

�
: (B.5)

Third, since �0;1 = ��3;1 and �1;1 = ��2;1, as well as �0;2 = �3;2 and �1;2 = �2;2, we obtain that

pqr;1 = 0 if p+ q + r is odd; and pqr;2 = (�1)p+q+rpqr;0: (B.6)

By putting this together, we arrive at
5X

k=0

pqr;k�k
(B.4)
= 2

2X

k=0

pqr;k�k

(B.5)
=
� p

3
�
pqr;0 � pqr;2

�

pqr;0 + 2pqr;1 + pqr;2

�

(B.6)
=
� p

3
�
1� (�1)p+q+r

�
pqr;0�

1 + (�1)p+q+r
��
pqr;0 + pqr;1

�
�

=
�

2
p

3 pqr;0 (1� epqr)
2
�
pqr;0 + pqr;1

�
epqr

�
;

where epqr = 1 if p+ q+ r is even, and epqr = 0 if p+ q+ r is odd. By elementary computations,

p+ q + r odd, k = 0 : 111;0 =
p

3
2 ; 122;0 = 0; 212;0 = 221;0 =

p
3

4 ;
p+ q + r even, k = 0 : 211;0 = � 1

4 ; 222;0 = 3
4 ; 112;0 = 121;0 = 0;

p+ q + r even, k = 1 : 211;1 = 1
4 ; 222;1 = 3

4 ; 112;1 = 121;1 = 3
4 ;

and so the �nal result is:
5X

k=0

tr
��
�k
���k+1

��1�B : [�k]2
��B : [�k+1]2

��
J(�k � �k+1)

=
5X

k=0

Tk�k =
2
p

3

2X

p;q;r=1

 

bpqr
5X

k=0

pqr;k�k

!

= 2
p

3
�
b111 + b212
b222 + b112

�
;

which is (B.3). �

Lemma B.5. With �0k 2 R2 de�ned as in (5.14), and with B = (bpqr)p;q;r2f1;2g 2 R2�2�2 such
that bpqr = 0 except for b122 = b211 = 1, we have that

5X

k=0

tr
��
�0k
���0k+1

��1�B : [�0k]2
��B : [�0k+1]2

��
J(�k � �k+1) = �

�
1
1

�
: (B.7)
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Proof. This is a slightly tedious, but straightforward calculation. First, by the choice of B,

�k :=
�
B : [�0k]2

��B : [�0k+1]2
�

=
�

(�0k;2)2 (�0k+1;2)2

(�0k;1)2 (�0k+1;1)2

�
;

and so, by de�nition of the �0k in (5.14),

�0 = �3 =
�

0 1
4

1 1
4

�
; �0 = �3 =

� 1
4 1
1
4 0

�
; �0 = �3 =

�
1 0
0 1

�
:

For the inverse matrices Sk :=
�
�0k
���0k+1

��1, we obtain

S0 =
�

1 �1
0 2

�
= �S3; S1 =

�
2 0
�1 1

�
= �S4; S2 =

�
0 1
�1 0

�
= �S5:

For the traces Tk := tr
�
Sk�k

�
, we thus obtain the values:

T0 = T1 = �
1
2
; T3 = T4 =

1
2
; T2 = T5 = 0:

In conclusion,

5X

k=0

Tk J(�k � �k+1) = J
�
�

1
2

(�0 � �2) +
1
2

(�3 � �5)
�

= J
�
�1
1

�
= �

�
1
1

�
;

which is (B.7). �

Appendix C. Lack of convexity

Below, we discuss why the minimization problem (3.7) is not convex. More precisely, we show
that G 7! E�(G; Ĝ) is not convex as a function of G on the a�ne ansatz space AT . Since
E�(G; Ĝ) is a convex combination of the expressions Hm

�
(Amjbm); (Âmjb̂m)

�
, it clearly su�ces

to discuss the convexity of the latter.
We consider a curve s 7! (Am + s�mjbm + s�m) and evaluate the second derivatives of the

components of the functional at s = 0. First,

I :=
d2

ds2

����
s=0

�
1
2�

 

�m

��(Am � Âm + s�m)! + (bm � b̂m) + s�m
��2 d!

�

=
1
�

 

�m

j�m! + �mj2 d!:

Second,

II :=
d2

ds2

����
s=0

 

�m

V
�
(Am + s�m)! + (bm + s�m)

�
d!

=
 

�m

(�m! + �m)T � r2V (Am! + bm) � (�m! + �m) d!:

If we assume that r2V � �1, then we obtain for the sum of these two contributions that

I + II �
�

1
�

+ �
� 

�m

j�m! + �mj2 d!:
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For the remaining term, however, we obtain | using the abbreviations eg(s) = seh0(s) and ef(s) =
seg0(s) | that

d2

d2s

����
s=0

eh
�

det(Am + s�m)
�m

�

=
d
ds

����
s=0

�
eg
�

det(Am + s�m)
�m

�
tr
�
(Am + s�m)�1�m

��

= ef
�

detAm
�m

� �
tr
�
A�1
m �m

��2 � eg
�

detAm
�m

�
tr
��
A�1
m �m

�2�:

Now observe that ef(s) = P 0(1=s) � sP (1=s) is a non-negative, and eg(s) = �sP (1=s) is a non-
positive function. Thus, from the two terms in the �nal sum, the �rst one is generally non-
negative whereas the second one is of inde�nite sign. Choosing

�m := Am
�

0 1
1 0

�
; such that

�
tr
�
A�1
m �m

��2 = 0; tr
��
A�1
m �m

�2� = 2;

the sum is obviously negative.
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