Topological edge states in periodically-driven trapped-ion chains

Article (Published Version)


This version is available from Sussex Research Online: http://sro.sussex.ac.uk/id/eprint/70709/

This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher's version. Please see the URL above for details on accessing the published version.

Copyright and reuse:
Sussex Research Online is a digital repository of the research output of the University.

Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available.

Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.
Topological Edge States in Periodically Driven Trapped-Ion Chains

Pedro Nevado, Samuel Fernández-Lorenzo, and Diego Porras
Department of Physics and Astronomy, University of Sussex, Brighton BN1 9QH, United Kingdom
(Received 14 June 2017; revised manuscript received 18 September 2017; published 20 November 2017)

Topological insulators are one of the most exotic forms of quantum matter. Among their many intriguing traits, we find that they are robust against local decoherence processes, or feature fractional particle excitations with prospective applications in quantum information processing [1,2]. Some of the simplest systems showcasing nontrivial topological order are the topological insulators [3–6], gapped phases of noninteracting fermions which present gapless edge states. Despite several experimental realizations [7,8], the preparation and measurement of topological insulators is typically difficult in the solid state. Analog quantum simulators [9–15], on the other hand, offer the possibility of exploring and exploiting the topological insulating phases, because of their inherent high degree of controllability. Furthermore, interactions in a quantum simulator can be tuned at will, opening up the possibility of investigating new regimes of the underlying models.

Topological edge states usually occur in the insulating phase as long as an associated bulk invariant attains a nontrivial value, and the generic symmetries of the underlying Hamiltonian are preserved [16]. This property—known as the bulk-edge correspondence—is a generic feature of topological insulators. However, if interactions are taken into account, the presence of edge states is no longer guaranteed. For instance, it has been shown that one of the edge states present in the Mott insulating phase of the Bose-Hubbard model on a 1D superlattice is not stable against tunneling [17]. In this work, we extend these considerations to the case of interactions which are explicitly long ranged. Since topological phases are characteristically robust against local perturbations, but long-range interactions may not qualify as such, there is an ongoing effort to elucidate their effect upon the topological states [18–20]. This question is not of exclusive theoretical interest, since many experimental systems implementing topological phases of matter feature long-range interactions. In particular, we will show that trapped-ion quantum simulators can realize a long-range interacting version of one of the simplest instances of a topological insulator, the Su-Schrieffer-Heeger (SSH) model [21–23]

$$H_{SSH} = J \sum_{j=1}^{N-1} [1 + \delta(-1)^j] \sigma_j^+ \sigma_{j+1}^- + \text{H.c.}. \tag{1}$$

The SSH model presents topological edges states for $\delta > 0$, which, e.g., near the left end of the chain are of the form $|\text{E.S.}\rangle \sim \sum_{j=1}^{N} e^{(N-j+1)/\xi_{\text{loc}}} \sigma_j^+ \downarrow \downarrow \downarrow \ldots$, where the localization length can be related to the dimerization $\delta$ through [24]

$$\xi_{\text{loc}} = -2/\ln \frac{1-\delta}{1+\delta}, \quad 0 < \delta < 1. \tag{2}$$

The addition of long-range interion couplings on Eq. (1) turns this model into a highly nontrivial interacting problem. However, we will show that, owing to the single-particle addressability available in trapped-ion setups, the edge states can be studied as one-body solutions, and that their properties survive when interactions are taken into account.

This Letter is structured as follows. (i) We begin showing how to implement the interacting SSH model with trapped-ion quantum matter. (ii) We then study its one-excitation subspace, and locate the topological phase. (iii) We perform an effective description of the low-energy sector, and establish the dependence of the localization length with the range of the interactions. Also, we provide a protocol for the detection of the edge states. (iv) Finally, we study the correlations in the ground state, and establish the survival of the boundary modes against interactions.

Realization of the spin SSH Hamiltonian.—We consider a set of $N$ trapped ions arranged along a 1D chain. Two optical or hyperfine levels $|\uparrow\rangle, |\downarrow\rangle$ encode an effective spin, such that $|\uparrow\rangle \langle \uparrow | - |\downarrow\rangle \langle \downarrow | \equiv \sigma^x$. [25]. The vibrations of the chain can be approximated by a set of harmonic modes, $H_{ph} = \sum_{n=1}^{N} \omega_n a_n^\dagger a_n$. We add a state-dependent force conditional on the internal states of the ions [26–29], whose frequency is fairly off-resonant with any motional excitation.

Introduction.—Topological phases are one of the most intriguing traits, we find that they are robust against local decoherence processes, or feature fractional particle excitations with prospective applications in quantum information processing [1,2]. Some of the simplest systems showcasing nontrivial topological order are the topological insulators [3–6], gapped phases of noninteracting fermions which present gapless edge states. Despite several experimental realizations [7,8], the preparation and measurement of topological insulators is typically difficult in the solid state. Analog quantum simulators [9–15], on the other hand, offer the possibility of exploring and exploiting the topological insulating phases, because of their inherent high degree of controllability. Furthermore, interactions in a quantum simulator can be tuned at will, opening up the possibility of investigating new regimes of the underlying models.

Topological edge states usually occur in the insulating phase as long as an associated bulk invariant attains a nontrivial value, and the generic symmetries of the underlying Hamiltonian are preserved [16]. This property—known as the bulk-edge correspondence—is a generic feature of topological insulators. However, if interactions are taken into account, the presence of edge states is no longer guaranteed. For instance, it has been shown that one of the edge states present in the Mott insulating phase of the Bose-Hubbard model on a 1D superlattice is not stable against tunneling [17]. In this work, we extend these considerations to the case of interactions which are explicitly long ranged. Since topological phases are characteristically robust against local perturbations, but long-range interactions may not qualify as such, there is an ongoing effort to elucidate their effect upon the topological states [18–20]. This question is not of exclusive theoretical interest, since many experimental systems implementing topological phases of matter feature long-range interactions. In particular, we will show that trapped-ion quantum simulators can realize a long-range interacting version of one of the simplest instances of a topological insulator, the Su-Schrieffer-Heeger (SSH) model [21–23]

$$H_{SSH} = J \sum_{j=1}^{N-1} [1 + \delta(-1)^j] \sigma_j^+ \sigma_{j+1}^- + \text{H.c.}. \tag{1}$$

The SSH model presents topological edges states for $\delta > 0$, which, e.g., near the left end of the chain are of the form $|\text{E.S.}\rangle \sim \sum_{j=1}^{N} e^{(N-j+1)/\xi_{\text{loc}}} \sigma_j^+ \downarrow \downarrow \downarrow \ldots$, where the localization length can be related to the dimerization $\delta$ through [24]

$$\xi_{\text{loc}} = -2/\ln \frac{1-\delta}{1+\delta}, \quad 0 < \delta < 1. \tag{2}$$

The addition of long-range interion couplings on Eq. (1) turns this model into a highly nontrivial interacting problem. However, we will show that, owing to the single-particle addressability available in trapped-ion setups, the edge states can be studied as one-body solutions, and that their properties survive when interactions are taken into account.

This Letter is structured as follows. (i) We begin showing how to implement the interacting SSH model with trapped-ion quantum matter. (ii) We then study its one-excitation subspace, and locate the topological phase. (iii) We perform an effective description of the low-energy sector, and establish the dependence of the localization length with the range of the interactions. Also, we provide a protocol for the detection of the edge states. (iv) Finally, we study the correlations in the ground state, and establish the survival of the boundary modes against interactions.

Realization of the spin SSH Hamiltonian.—We consider a set of $N$ trapped ions arranged along a 1D chain. Two optical or hyperfine levels $|\uparrow\rangle, |\downarrow\rangle$ encode an effective spin, such that $|\uparrow\rangle \langle \uparrow | - |\downarrow\rangle \langle \downarrow | \equiv \sigma^x$. [25]. The vibrations of the chain can be approximated by a set of harmonic modes, $H_{ph} = \sum_{n=1}^{N} \omega_n a_n^\dagger a_n$. We add a state-dependent force conditional on the internal states of the ions [26–29], whose frequency is fairly off-resonant with any motional excitation.
Now we move into a rotating frame such that $H_{\text{ising}} + H_{\text{driving}} \equiv H_{\text{total}} \rightarrow H_{\text{total}}^\prime$, with $H_{\text{total}}^\prime = U(t)H_{\text{total}}U^\dagger(t) - iU(t)\frac{d}{dt}U^\dagger(t)$; $U(t) = \exp[i\sum_{j=1}^N \Delta_j(t)\sigma_j^z]$, and

$$\Delta_j(t) = \frac{e^{i\omega_d t}}{2} + \frac{\eta \omega_d}{2} \cos(\Delta k d_0 j + \phi) \int_0^t \cos(\omega_d t') dt'.$$  

The condition $\max_j |J_{\text{ons}}(j)| \ll \Omega$ ensures that the anomalous terms are fast rotating, whereas those that preserve the $z$ component of the spin are renormalized by the phases $e^{\pm i(\Delta_j(t) - \Delta_i(t))}$. These quantities can be simplified by using suitable trigonometric identities along with the Jacobi-Anger expansion $\exp(ic\sin \theta) = \sum_{n=-\infty}^{\infty} B_n(z) e^{int}$, where $B_n(z)$ are the Bessel functions of the first kind [37]. Assuming that $\omega_d \gg \max_j |J_{\text{ons}}(j)|$, the only non-fast-rotating contribution comes from $n = 0$, and $H_{\text{total}}^\prime = H_{\text{SSH}}^\prime$, with

$$H_{\text{SSH}}^\prime = \sum_{j=1}^N J_{j,l}^\prime (\sigma_j^x \sigma_l^x + \sigma_j^y \sigma_l^y),$$

where we fix $\Delta k d_0 = \pi/2$ to achieve the periodic couplings

$$J_{j,l}^\prime = B_0 \left[ 2\eta \sin \left( \frac{\pi}{4} (j + l) + \phi \right) \sin \left( \frac{\pi}{4} (j - l) \right) \right].$$

Since $J_{j,l+1}^\prime = J_{j+1,l+1}^\prime = J_{j,l+1}^\prime = J_{j+1,l}^\prime$, with $T = 2$, these couplings reproduce the dimerization of the original SSH model in the limit of nearest-neighbor interactions. We will refer to the spin implementation (7) as the generalized SSH model. In analogy with Eq. (1), the dimerization is given by the differential ratio of the couplings between sites with $j$ even and odd, i.e.,

$$\delta = \frac{J_{j+1} - J_j}{J_{j+2} - J_j}.$$  

In Eq. (9), $J_{j,l}^\prime$ factors out, since $J_{j,l+1}^\prime = J_{j,l}^\prime$. Finally, we remark that we can easily extend our derivation to account for the effect of an inhomogeneous ion-ion spacing, whose main effect would be to induce an extra site dependence in the couplings to the standing wave. Since the topological properties investigated below are robust against perturbations, we can expect our results to be valid even when small inhomogeneities are considered.

**Study in the one-excitation subspace.**—The preparation of single excitations can be easily realized in trapped-ion chains, as demonstrated in implementations of the Ising and XY models [14,15]. The one-particle sector is spanned by the vectors $|j\rangle \equiv \sigma_j^+ |\downarrow\downarrow\ldots\rangle$, $j = 1, \ldots, N$. We can think of the state $|\downarrow\downarrow\ldots\rangle$ as a vacuum of particles, and, accordingly, $|j\rangle$ represents an excitation localized at site $j$. Since Eq. (7) is invariant under arbitrary rotations in the $xy$ plane, the Hamiltonian does not mix $|j\rangle$ with states within subspaces of different numbers of excitations.
Therefore, the dynamics of $|j\rangle$ is dictated by the restriction of the Hamiltonian to the one-excitation subspace, that is given as
\[ H_{\text{SSH}}^{(\text{ions})} = \sum_{j,l=1}^{N} h_{j,l}(|j\rangle\langle l| + |l\rangle\langle j|), \]
\[ h_{j,l} = h^{(\text{ions})}_{j,l} J^{\pi/2}_{j,l}. \]  
(10)

For $\phi = 3\pi/4$ and $\eta > 0$, $h_{j,l}$ possesses two (quasi-) zero-energy modes, which feature localization at the edges; we show one of these in Fig. 1(a). The edge state has appreciable energy modes, which feature localization at the edges; we show one of these in Fig. 1(a). The edge state has appreciable support only on the odd sites, which is a consequence of the chiral symmetry [38]. Indeed, the chiral-symmetric limits of this Hamiltonian are attained for $\phi = \pi/4$ and $3\pi/4$ (see Ref. [39]). We have depicted the dimerization (9) as a function of $\eta$ in these limits [cf. Fig. 1(b)]. We note that for $\phi = 3\pi/4$, $\delta$ is positive, and accordingly the model presents localization length (2) as
\[ \xi_{\text{loc}} = \frac{v_F}{\Delta_0}. \]  
(12)

This prediction must hold for any lattice model whose low-energy excitations are captured by a Hamiltonian such as $H_{\text{lowE}}$. In particular, this is the case for $H_{\text{SSH}}^{(\text{ions})}$, that can be rewritten as
\[ \sum_{j=1}^{N} \sum_{d=-1}^{N-1} h^{(d)}_{j,d} |j\rangle\langle j+d| + |j+d\rangle\langle j|, \]
where $h^{(d)}_{j,d} = J^{(\text{ions})}_d [J^{(\text{even})}_d + J^{(\text{odd})}_d (-1)^d]$, with
\[ J^{(\pm)}_d = \frac{1}{2} (J^{\text{even}}_d \pm J^{\text{odd}}_d), \]  
(13)
and the latter quantities defined as $J^{\pi/2}_{j,j+d}$ for $j$ even or odd, respectively. In terms of plane waves, and assuming $N \to \infty$, we obtain
\[ H_{\text{SSH}}^{(\text{ions})} = \sum_{k} e'(k) |k\rangle\langle k| + \sum_{k} \Delta'(k) |k + \pi\rangle\langle k| + \text{H.c.}, \]  
(14)
where we have defined
\[ e'(k) = 4 \sum_{d=1}^{\infty} J^{(\text{ions})}_d J^{(\pm)}_d \cos(kd), \]
\[ \Delta'(k) = 2 \sum_{d=1}^{\infty} J^{(\text{ions})}_d J^{(\pm)}_d e^{ikd}. \]  
(15)

From these quantities, we can obtain the parameters of the effective theory as (see Ref. [39])
\[ v'_F = \frac{\partial e'(k)}{\partial k} \bigg|_{k=k_F}, \]
\[ \Delta_0 = 2\text{Im} \Delta'(k = k_F). \]  
(16)
and compute the localization length (12). We show that this prediction accurately holds for several values of $\delta_{N/2}/t_c$ in
This quantity can be estimated as (see Ref. [39]). Nevertheless, we expect that some localization at the edges have been dealing with the single-excitation subspace. For $\phi = 3\pi/4$, $\eta = 0.62$. The largest enhancement of $\xi_{\text{loc}}$ occurs for $\delta_{N/2}/t_c < 1$. (b) Interaction range $\xi_{\text{int}}$ of the exponentially decaying component of $J^{(\text{ions})}_{j;j}$.

(c) Log-log plot of the survival probability $P$ as a function $1/\xi_{\text{loc}}$. For $\xi_{\text{loc}} \to 1$, $P \sim \xi_{\text{loc}}^\beta$ with $\beta = 3.8$, consistent with the prediction (17). We take $\delta_{N/2}/t_c = 1/3$, $N = 1000$, and values of $\eta$ in the interval $0.13-0.5$, for $\phi = 3\pi/4$.

Fig. 2(a), along with the corresponding interaction range [cf. Fig. 2(b)]. The localization enhancement could be actually measured in an experiment. The idea is to unveil the existence of the edge state by studying the dynamics of a single excitation at the boundary [14,15]. To detect an edge state located at, e.g., the left end of the chain, we can prepare the “excited state” $|\psi(t = 0)\rangle = |\uparrow\downarrow\ldots\rangle$, which has a large overlap with the boundary mode, and look at its survival probability at long times, $P \equiv |\langle \psi(t)|\psi(0)\rangle|^2$, $t \to \infty$. This quantity can be estimated as (see Ref. [39])

$$P \left( \frac{1}{\xi_{\text{loc}}} \right) = \left( \frac{c_1}{\xi_{\text{loc}}} + \frac{c_2}{N} \right)^2. \tag{17}$$

Since the overlap is appreciable only if the Hamiltonian presents an edge state, $P$ will take negligible values except in the event of localization at the left end. The initial condition $|\psi(t = 0)\rangle$ requires applying a $\pi$ pulse to the leftmost ion in the chain, which in turn can be prepared in the “ground state” $|\downarrow\downarrow\ldots\rangle$ by optical pumping [13]. Then we can switch on the Hamiltonian $H^{(\text{ions})}_{\text{SSH}}$, and wait up to $t \gg \Delta_0^{-1}$, where $\Delta_0$ is the lowest energy scale in the Hamiltonian. Finally, we can perform a fluorescence measurement of the state of the leftmost ion. We have numerically confirmed the dependence of $P$ on $\xi_{\text{loc}}$ [cf. Eq. (17)] in Fig. 2(c). Deviations from the power law $P \sim \xi_{\text{loc}}^\beta$ with $\beta = 4$, are the consequence of finite size effects, which play a less important role when $1/\xi_{\text{loc}} \ll N$.

Correlations in the many-body ground state.—So far we have been dealing with the single-excitation subspace. Nevertheless, we expect that some localization at the edges features as well in the ground state of the many-body Hamiltonian (7). In a finite chain, states localized at each end hybridize to give rise to solutions that have support at the left and right boundaries. We expect that the correlations between the ends are zero if there is no localization at the edges whereas they must have a nonzero value otherwise, a result that has been established for the SSH model [24]. We illustrate this fact in Fig. 3, where we have computed $\langle \sigma^z_i \sigma^z_N \rangle$ as a function of the dimerization for both $H^{(\text{ions})}_{\text{SSH}}$ and $H^{(\text{ions})}_{\text{SSH}}$. The correlations in the original SSH model are non-zero for $\delta > 0$ as expected. This holds qualitatively true for $H^{(\text{ions})}_{\text{SSH}}$ as well. Indeed, in the regime of short range of the interactions the correlations are larger than those of the original SSH model, which is consistent with the enhanced localization length predicted in the one-excitation subspace (cf. Fig. 2). Conversely, we observe a degradation of the correlations in the long-range interaction regime; i.e., for $\delta_{N/2} \to 0$ there is a decrease in the localization effect. This result is a consequence of the mixing—induced by the interactions—of the single-particle edge states with the bulk modes. To quantify this effect we express our generalized SSH model in terms of Jordan-Wigner fermions as $H^{(\text{ions})}_{\text{SSH}} = \sum_{j=1}^N J^{(\text{ions})}_{j;j} \pi^j_0 (c_j K_j c_j^\dagger + c_j^\dagger K_j^\dagger c_j)$, where $K_j = \prod_{m=j}^{j-1} (1 - 2c_m c_m^\dagger)$. We neglect terms for which $|j-l| \geq 3$ and recast this problem as $H^{(\text{ions})}_{\text{SSH}} = H_0 + H_{\text{int}}$, where $H_0 = \sum_{j=1}^N (J^{(1)}_{j;j} c_j^\dagger c_j + J^{(2)}_{j;j} c_j c_{j+2} + \text{H.c.})$, with $J^{(a)}_{j;j} = 2J^{(\text{ions})}_{j;j+a} \pi^j_0 / 2$, and,
\[
H_{\text{int}} = -2 \sum_{j=1}^{N} J_{j}^{(2)} (c_{j+1}^{\dagger} c_{j+1} c_{j+2} + \text{H.c.}).
\]  

We deal with the interaction term within the Hartree-Fock approximation [47], which renders a simplified Hamiltonian quadratic in fermion operators (see Ref. [39])

\[
H_{\text{HF}} = \sum_{\mu=1}^{N} \epsilon_{\mu} c_{\mu}^{\dagger} c_{\mu} - 2 \sum_{\mu, \mu'}^{N} V_{\mu, \mu'} c_{\mu}^{\dagger} c_{\mu'}^{\dagger} c_{\mu'} c_{\mu}.
\]

\(H_{\text{HF}}\) is expressed in terms of the eigenstates of \(H_0\), which correspond to the solutions of the Hamiltonian in the one-excitation subspace [cf. Eq. (10)], that is, \(c_{j} = \sum_{\mu=1}^{N} M_{j, \mu} c_{\mu}\). The one-body edge states are eigenstates of \(H_0\) and \(V_{\mu, \mu'}\) induces the mixing of these states with the bulk modes. We quantify this effect with a parameter \(Z\), which measures the overlap between the unperturbed boundary modes and the corresponding states in the presence of interaction, and which can be estimated by elementary perturbation theory as \(Z = 1 - \sum_{\mu=1}^{N} |V_{\mu, \mu'}|^2 / |\epsilon_{\mu} - \epsilon_{\mu'}|^2\). We show this quantity as a function of the range of interactions in the inset of Fig. 3. Accordingly, when \(\delta_{N/2} \to 0\) the fidelity drops significantly, signaling the decay of the edge modes into the continuum of the states in the bulk. Finally the average \(\langle \sigma_{z}^{2} \rangle\) can be measured in an experiment by detecting the photoluminescence from individual ions at the ends of the chain (e.g., by electron-shelving techniques [25]).

Conclusions and outlook.—In this work we have established the feasibility of implementing a topological insulator with trapped-ion quantum matter. We have shown that the edge states get more localized because of the long-range interactions in ion chains, and that the localized solutions survive to the interactions in the many-body ground state. An immediate extension of this work would consist in the survival to the interactions in the many-body ground state. We have shown that dipolar interactions are available.

We are greatly indebted to Alejandro Bermúdez for very useful discussions. P. N. thanks Hiroki Takahashi for his feedback on the implementation. Our research has received funding from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007-2013) under REA Grant Agreement No. PCIG14-GA-2013-630955.

---