C-H and H-H activation at a Di-titanium centre


This version is available from Sussex Research Online: http://sro.sussex.ac.uk/id/eprint/70705/

This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher's version. Please see the URL above for details on accessing the published version.

Copyright and reuse:
Sussex Research Online is a digital repository of the research output of the University.

Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available.

Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.
This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the author guidelines.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the ethical guidelines, outlined in our author and reviewer resource centre, still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
C-H and H-H Activation at a Di-titanium Centre

Nikolaos Tsoureas, a Jennifer C. Green b and F. Geoffrey N. Cloke a

Received 00th January 20xx,
Accepted 00th January 20xx
DOI: 10.1039/x0xx00000x

www.rsc.org/

The reaction of the bis(pentalene)dititanium complex Ti₂(μ-η²,η²-Pn)₂ (Pn’ = C₂H₅(1,4-SiPr₃)) with the N-heterocyclic carbene 1,3,4,5-tetramethyldimidazol-2-ylidene results in intramolecular C-H activation of one of the 1Pr methyl groups of a Pn’ ligand and formation of a “tucked-in” bridging hydride complex. The “tuck-in” process is reversed by the addition of hydrogen, which yields a dihydride featuring terminal and bridging hydrides.

Group IV metalocene chemistry has been instrumental in the development of organometallic chemistry, elucidating fundamental aspects of bonding and reactivity, especially via the synthesis, isolation and study of low valent metalocene complexes. In this context, the synthesis and isolation of such complexes bearing hydride ligands has been important for example, such low or mixed valence hydride complexes have been shown to promote or be involved in the fixation of N₂ to NH₃. In this communication, we present the first examples of the synthesis of bridging hydridocyclopropane under non-reducing conditions, via the reaction of bis(pentalene)dititanium complex Ti₂(μ-η²,η²-Pn)₂ (Pn’ = C₂H₅(1,4-SiPr₃)) with an N-heterocyclic carbene and subsequent hydrosilylation.

We have previously reported on the reactivity of Ti₂(μ-η²,η²-Pn)₂ (Pn’ = C₂H₅(1,4-SiPr₃)) (1) towards a variety of small molecules and π-acceptor ligands. In order to gain a better insight into the reactivity of (1), we decided to study its interaction with strong C-donor ligands. When (1) was treated with an excess of PMe₅, no reaction was observed. Addition of 1,3,4,5-tetramethyldimidazol-2-ylidene (2) to (1) in toluene at 0 °C resulted in an immediate color change from crimson red to a dark pine green (Scheme 1).

Scheme 1: Synthesis of a new syn-bimetallic hydride titanium cluster.

The formulation of the new complex (3) as a “tucked-in” hydride resulting from C-H activation of one of the 1Pr methyl groups of a Pn’ induced by addition of the strongly donating NHC (2) was initially confirmed by NMR. In particular, the ¹H-NMR spectrum showed two inequivalent pentalene ring environments, a sharp singlet at -7.91 ppm for the bridging hydride (T₁: 479ms), with one of the diastereotopic protons of the “tucked-in” CH₂ group appearing as an overlapping dd at -2.91 ppm whilst the other was largely obscured by the complex aliphatic region of the spectrum at ca 1.37 ppm; the coordination of the NHC was confirmed by the observation of a peak at 197.78 ppm in the ¹³C(¹H)-NMR spectrum.

The structure of (3) was confirmed by X-ray diffraction and is shown in Figure 1. The NHC coordinates to one of the Ti centres (Ti2 in Figure 1), while one of the methyl groups on a TIPS substituent has been cyclometallated on the other Ti centre (Ti1 in Figure 1) with concurrent formation of a bridging hydride. The Ti-Ti bond has been retained but lengthened to 2.5610(8) Å (from 2.393(2) Å in (1)⁶) and is typical of a single bond. The Ti-C(carbene) bond (2.300(2) Å; Ti2-C1 in Figure 1) is within the range of 2.2-2.35 Å reported for other Ti-NHC complexes.⁷ The Ti-H bond lengths (ie...
Ti2-H1: 1.72(3) Å, Ti1-H1: 1.79(3) Å) are identical within esd’s and are similar to previously reported monomeric10 and dimeric5,6,11 titanium hydrides as well as Ti(III) alumino-12 and borohydrides13 (1.7-1.9 Å), although it has to be noted that, probably due to the topology of the hydride ligand in (3), these Ti-H bond distances fall at the shorter end of the known range. Due to this unique topology, the Ti-H-Ti bond angle (93.4(13)°) approaches a right angle and is the most acute ever observed in dimeric titanium hydrides.10

10% H2 in N2 at 1.5 bar but in an amount corresponding to only 1 equivalent of H2 the reaction was again complete in minutes.

Variable temperature1H NMR studies showed that the broad hydride peak at -8.82 ppm in (4) becomes fully resolved into a doublet at 0 °C (with no further change below that temperature and down to -70 °C) with a T2 of 310ms , with the concomitant appearance of a second doublet centred at 2.17 ppm (T1 336ms), which is too broad to be observable at room temperature (Figure 2); these two signals are related by a coupling constant of JHH = 11 Hz. EXSY spectroscopy (in both the presence and absence of an H2 overpressure) confirmed that these two protons exchange at 30 °C while at 0 °C the process is quenched. Thus the peak at -8.82 ppm is assigned to the bridging hydride in (4) and that at 2.17 ppm to the terminal one (Scheme 2).

Initial attempts to crystallise (4) by standard methods (ie removal of volatiles and recrystallisation) were frustrated by the preferential isolation of crystalline (3) (as it is less soluble than (4)) with the mother liquor consisting of a mixture of (3) and (4) (ca 20:80 by NMR), due to the partial reversibility of the reaction. However, the solid state molecular structure8,15 of (4) (Figure 3) was eventually determined from single crystals grown by cooling slowly a freshly prepared solution of (4) at -78 °C under an overpressure (1.5 atm) of H2, and confirms the spectroscopic assignment.

Figure 1: ORTEP diagram of the molecular structure of (3) displaying 50% probability ellipsoids. Pr groups omitted for clarity.

Scheme 2. Hydrogenolysis of (3) to afford (4)

Compared to the 1H NMR spectrum of (3), (4) displays a new, broader hydride peak (Δν1/2 = 29 Hz) at -8.82 ppm at room temperature, whilst the signal for the “tucked-in CH3 group has disappeared completely; the NHC is still coordinated ([H] δ 198.27 ppm). Removal of the H2 overpressure by freeze-thaw-degassing showed that (4) is persistent in solution, although some regeneration of (3) was observed (Scheme 2). Addition of H2 to a solution of (3), via a Teeppler pump, showed that for the conversion of (3) to (4) to occur quickly (minutes) 5 eq of H2 are required (when 1-2 equivalents of H2 were added, complete conversion to (4) occurred after ca 1 week). The rate of reaction was also found to be pressure dependent: when (3) was exposed to an atmosphere of

Figure 2: Hydride peaks in (4) at RT (blue) and at 0 °C (black).

Figure 3: ORTEP diagram of the molecular structure of (4) displaying 50% probability ellipsoids. Pr groups omitted for clarity.
Journal Name

The Ti-C(carbene) bond length in (4) is 2.291(4) Å and is identical to that found in (3). On the other hand, the Ti-Ti bond is slightly shortened in (4) from 2.5610(8) Å in (3) to 2.5413(8) Å possibly due to the negligible steric requirements of the terminal hydride ligand. The Ti-H bridging bond distances (Ti1-H1 = 1.84(5) Å; Ti2-H1 = 1.79(5) Å) in (4) are similar within esd’s and compare with the ones found in (3); the same applies to the Ti-H terminal (i.e Ti2-H2 = 1.74(4) Å in Figure 2) bond length. The Ti1-H1-Ti2 bond angle in (4) again approaches 90° (89.2°) and is very similar to that found in (3).

When (3) was treated with an excess of D2 (5 eq.), the formation of (4-D) was observed, but deuterium was found to be only incorporated in the hydridic positions, and not in the new Me group derived from the previously "tucked-in" CH3 group (confirmed by 1H-NMR, DEPT-135 and gHSQC). Hence the reaction of (3) with H2 to form (4) does not go via σ-bond metathesis (which would lead to D incorporation in the Me group in the reaction with D2). Hence the formation of (4) (and also (3)) was probed computationally (ADF:BP/TZ2P: details are given in the ESI). Preliminary studies suggested that sterics were important in determining the reaction energies. For example energy of binding an NHC to a Ti3Pn3 dimer depended critically on the substituents. Introduction of the methyl substituents on the NHC made very little difference to its binding energy but the bulky SiPn3 substituents on the pentalene ligands increased the Ti-Ti-C angle forcing the NHC to a less favourable binding position thus decreasing the binding energy significantly (Table 1).

Table 1. Electronic binding energies (ΔE) and Gibbs energy changes (ΔG) for the reaction Ti3Pn2 + NHC = Ti3Pn3NHC

<table>
<thead>
<tr>
<th>Ti pentalene dimer</th>
<th>NHC</th>
<th>ΔE (eV)</th>
<th>ΔG (kJ/mol)</th>
<th>-C (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ti3(C4H12)2</td>
<td>C4H6N2</td>
<td>-1.31</td>
<td>-66</td>
<td>100</td>
</tr>
<tr>
<td>Ti3(C6H12)2</td>
<td>C6Me6N2</td>
<td>-1.26</td>
<td>-65</td>
<td>114</td>
</tr>
<tr>
<td>Ti3Pn3</td>
<td>C6Me6N2</td>
<td>-0.48</td>
<td>+21</td>
<td>127</td>
</tr>
</tbody>
</table>

*Calculations are on gas phase species which leads to an overestimation of the entropy change when there is a change in the number of species.

The degree to which the tuck-in reaction was favoured in the absence of an NHC was also investigated. The formation of Ti3Pn3(Pn-N)(μ-H) from Ti3Pn3 was calculated to have ΔE=−0.03 eV and ΔG=11 kJ/mol. However, the energies of the observed tuck-in reaction with the methylated NHC present were calculated to be ΔE=0.69 eV and ΔG=9 kJ/mol. Thus the presence of the base improves the energetics of the tuck-in reaction. The significant entropy disadvantage in the gas phase would be lessened in solution.

The HOMO of 3 (Figure 4) shows a Ti-Ti σ-bond. The calculated Ti-Ti distance is 2.56 Å in excellent agreement with experiment. The Ti-H distances are 1.83 Å and the angle at the bridging hydrogen 89°. Such discrepancies from the experimental values are not unusual when comparing distances to bound hydrogen between theory and X-ray diffraction experiments.

![Fig. 4. Isosurface for the HOMO of 3.](image1)

Addition of H2 to 3 to form 4 is calculated to have reaction energies ΔE=−0.77 eV and ΔG=−31 kJ/mol. The calculated Ti-Ti distance for 4 is 2.54 Å reproducing the shortening from 3 found experimentally. The Ti-H(terminal) distance is 1.74 Å, the Ti-H(bridging) distances 1.81 and 1.82 Å and the Ti-H-Ti angle unchanged at 89°.

A transition state for this reaction was modelled using just one SiPn3 substituent on one of the pentalene ligands and C6H6N as the NHC for computational efficiency. The free energy of activation was estimated as 84 kJ/mol for such a system. The transition state structure is shown in Figure 5.

![Fig. 5 Structure of the calculated transition state for H2 addition.](image2)

The Ti distance to the previously bridging H is 3.53 Å and the Ti distances to the reacting H2 are 2.74 and 3.24 Å, the H-H distance being 0.76 Å. Such a geometry indicates that the tuck-in process is reversed before complete H2 addition, consistent with the lack of deuterium incorporation into Pn groups and the conclusion that σ bond metathesis is not in play. It may be that the steric
COMMUNICATION

compression induced by the mere approach of the H₂ molecule is sufficient to reverse the tuck-in process, an idea given some credence by the pressure dependence of the reaction of (3) with H₂ (vide infra).

In conclusion, we have described the facile preparation of the first example of a syn-bimetallic Ti complex (3) featuring a bridging hydride, originating from the C-H activation of a ²Pr substituent induced by addition of the strong Lewis base 1,3,4,5-tetramethyldiamidazo-2-ylidene. Preliminary studies show that this transformation is also effected by other, effectively "planar" Lewis bases, e.g. dimethylaminopyridine (DMAP). The resultant C-H activation product (3) readily reacts with an excess of H₂ to produce very cleanly a unique syn-bimetallic di-hydride complex (4) featuring bridging and terminal hydride ligands. Labelling experiments and computational studies strongly suggest that the latter reaction does not proceed via a σ-bond metathesis mechanism.

Acknowledgements

We thank the EPSRC for funding (N.T.), and Dr Alexander Kilpatrick (University of Oxford) and Dr Iain Day (University of Sussex) for help with NMR experiments.

Conflicts of interest

There are no conflicts to declare.

Notes and references

1 P.J. Chiric, Organometallics, 2010, 29, 1500.
9 The hydride was found in the Fourier difference map and refined freely. We recognize the difficulties associated with the location of hydrogen atoms next to heavy atoms as Fourier ripples can be erroneously misinterpreted for hydrogen atoms due to the sharp cut-off at high angles. Nevertheless, based on the spectroscopic evidence the hydrogen atoms have been included in the supplied models.
15 (a) M.L.H. Green, G. Parkin, J. Chem. Ed., 2014, 91, 807. (b) I.C. Green, M.L.H. Green, G. Parkin, Chem. Commun., 2012, 48, 11481. 16 Data were collected up to 0.82 Å resolution using Cu/Ka as well up to 0.78 Å using Mo/Ka with identical metric parameters.
An NHC promotes intramolecular C-H activation in bis(pentalene)dititanium; this process is reversed by the addition of hydrogen, forming a dihydride.