Parametric control of thermal self-pulsation in micro-cavities

This version is available from Sussex Research Online: http://sro.sussex.ac.uk/id/eprint/70335/

This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher's version. Please see the URL above for details on accessing the published version.

Copyright and reuse:
Sussex Research Online is a digital repository of the research output of the University.

Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available.

Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

http://sro.sussex.ac.uk
Parametric Control of Thermal Self-Pulsation in Micro-Cavities

LUIGI DI LAURO, 1 JIN LI, 2 DAVID J. MOSS, 3 ROBERTO MORANDOTTI, 4,5,6 SAI T. CHU, 2 MARCO PECCIANTI, 1 ALESSIA PASQUAZI 1,*

1Emergent Photonics Lab (EPIC), Department of Physics and Astronomy, University of Sussex, Falmer, Brighton, BN1 9QH, United Kingdom.
2City University of Hong Kong, Kowloon Tong, Hong Kong.
3Centre for Microphotonics, Swinburne University of Technology, Hawthorn, VIC 3122, Australia.
4INRS-EMT, 1650 Boulevard Lionel-Boulet, Varennes, Québec, Canada J3X 1S2.
5Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China.
6National Research University of Information Technologies, Mechanics and Optics, St Petersburg, Russia.

*Corresponding author: a.pasquazi@sussex.ac.uk

Received XX Month XXXX; revised XX Month, XXXX; accepted XX Month XXXX; posted XX Month XXXX (Doc. ID XXXXX); published XX Month XXXX

We propose a scheme for bifurcation control in micro-cavities based on the interplay between the ultrafast Kerr effect and a slow nonlinearity, such as thermo-optical, free-carriers or opto-mechanical nonlinearity. We demonstrate that Hopf bifurcations can be efficiently controlled with a low energy signal via four-wave mixing. Our results show that new strategies are possible for designing efficient micro-cavity based oscillators and sensors. Moreover, they provide new understanding on the effect of coherent wave mixing in the thermal stability regions of optical micro-cavities, fundamental for micro-cavity based applications in communications, sensing and metrology, including optical micro-combs. © 2017 Optical Society of America

OCIS codes: (140.3945) Microcavities; (190.4380) Nonlinear optics, four-wave mixing; (190.3100) Instabilities and chaos; (190.4870) Photothermal effects; (190.1450) Bistability.

The interplay between slow and fast nonlinearities in optical micro-cavities [1-2] has attracted considerable attention in the last two decades [1-6]. Thanks to the micro-cavities’ ability of strongly enhancing the optical field, bi-stable, self-pulsing (SP) and chaotic regimes can be observed at low powers [3,4]. Starting from the pioneering works in whispering-gallery mode resonators by I’r Chencko and co-workers [3], thermal oscillators have been studied in micro-cavities having different geometries. They are usually modelled with one or two temporal relaxation constants [3,4,7-9]. Amongst other effects, regenerative self-pulsing [10] and giant self-pulsation [11] have been reported, with applications, for example, to sensing [12]. In the generation of micro-combs [13] the control of the thermo-optical nonlinearity is fundamental for reaching coherent regimes, such as temporal cavity solitons. [14-16].

In semiconductor cavities, the free-carrier nonlinearity has a typical time response in the microsecond regime [6,17,18] and its contribution to self-pulsing regimes has been studied under different conditions [19], including with pulsed excitation [20].

Finally, opto-mechanical nonlinearities have also been efficiently employed for designing oscillators in the microwave regime [21]. Recently, Monifi et al. [5] have experimentally demonstrated control and transfer of nonlinear dynamics and chaos between two cavity modes via mechanical oscillation.

In this framework, the control of multi-stable or self-pulsing regions, usually arising at a bifurcation in the parameter space, is critical for achieving the desired performance. Specifically, relocating a bifurcation at a desired parameter value is a general problem in applied nonlinear science that has been approached with different methods [22].

In this letter, we study the effect of a parametric interaction, specifically four-wave mixing (FWM), on the nonlinear dynamics of a micro-cavity based oscillator exhibiting both Kerr nonlinearity and an intensity-dependent nonlinearity with a first order time-response, such as a thermal nonlinearity. We propose a configuration where a weak signal controls the self-oscillatory behavior of a strong pump. The stability regions of the system are dramatically modified even at very low signal powers, allowing such oscillations to be turned on and off, as well as controlled in amplitude and shape. Our results provide a new understanding of the thermal stability regions of a micro-cavity device that is particularly important for micro-comb generation [14-16, 23-24], especially in a bi-chromatic pumped configuration [23]. Moreover, they provide new degrees of freedom for designing efficient self-pulsing devices for sensing and microwave photonics applications.

For modelling our system, we use coupled mode theory [25]: a pump (0) and a signal ($s(t)$), with amplitudes $s_{(0,1)}(t)$ and frequencies $\omega_{(0,1)}$ respectively, are injected into two resonances $\omega_{(0,1)}^R$ of an optical cavity, exciting the intra-cavity fields $a_{(0,1)}(t)$. They generate an idler $a_{-1}(t)$ and frequency $\omega_{-1} = 2\omega_0 - \omega_1$ via...
degenerate FWM. We use a dimensionless normalization of the
temporal variable t against the photon life time τ_{ph} so that $t \tau_{ph}$
provides the physical time in seconds. The optical amplitudes are
normalized against a Kerr constant $\Gamma_K = \omega_0 c n_2 / (V_{eff} n_{eff}^2)$,
where c is the speed of light, V_{eff} the effective mode volume and n_2
and n_{eff} the Kerr and effective refractive indices, respectively. Here
$|s_{(0,1)}|^2 / |s_{(0,1)}|^2$ represents the coupled power in [W] for the pump
and signal respectively, while $s_{-1} = 0$. The equations are:
\[
\frac{da_i}{dt} = -a_i - i \left(\delta_i + \Delta - (2 |F_i| - |a_i|^2) \right) a_i + i F_i - i s_i, \tag{1}
\]
where the FWM terms are $F_0 = 2 a_0^* a_1 a_{-1}$ and $F_{\pm 1} = a_0^* a_{\pm 1}$. The
total energy in the cavity is $I_T = \Sigma \delta_i + I_{ph}$, with $I_i = |a_i|^2$, while
$P_\pm = |s_{\pm 1}|^2$ and $\delta_i = (\omega_i^0 - \omega_i) \tau_{ph}$ are the normalized intra-cavity
energies, coupled powers and frequency detunings respectively.

The detuning Δ due to the slow nonlinearity is governed by:
\[
\sigma \frac{d\Delta}{dt} = -\Delta - \rho I_T, \tag{2}
\]
with σ being the normalized relaxation time and ρ the effective
nonlinear coefficient normalized against Γ_K. Such a model is a
prototypical example for time-dependent nonlinearities and provides
a general understanding for a large class of devices. Moreover, it reproduces accurately the thermal relaxation in micro-
cavities [3,6], with a time response τ_T and a nonlinear ther-
optical index n_2^T resulting in $\sigma = \tau_T / \tau_{ph}$ and $\rho = n_2^T / n_2$.
The parameter σ depends on the quality factor and can be engineered.
Crystalline high Q resonators can easily have σ of the order of few
tens, while integrated resonators with a lower Q-factor and a higher
relaxation constant can have σ up to several orders of magnitude.

We start by analyzing the stability of the steady state solution that
can be obtained via standard linear perturbation analysis [26]
calculating the eigenvalues of the perturbed stationary state. In
the following examples, we choose $\sigma = 50$ and $\rho = -10$.

![Fig. 1. Stability map (a,c) and stationary state (b,d) for $\sigma = 50, \rho = -10$. (ab) $\delta_1 = 7 - 11 = 0.1$; (cd) $\delta_1 = 7 - 11 = 0.2$. (a,c) Stable (S), unstable (US), self-pulsing (SP) and overlapping SP and US regions are in white, dark gray, light gray and black respectively. The boundaries of the S regions for $s_1(t) = 0$ and $s_1(t) = 0$ are in dashed red and orange, respectively. Black and magenta dotted lines are Eq. (4), respectively. (b,d) Stationary state value for the lowest I_{-1} are reported in fake colors, nonlinear resonances are in blue for P_0 from 5 to 100.](https://example.com/fig1)

A dramatic change of these stability regions occurs when a signal is
coupled into the system. In the example of Fig. 1 we used a signal
detuning $\delta_1 = 7 - 11$ and an intra-cavity signal energy $I_{-1} = 0.1, 0.2$ for (ab) and (cd) respectively. It is important to stress that such energy values are small - comparable to the threshold $2 |\sqrt{3}(\rho + 1)|^{-1} \approx 0.12$ for observing any signal bi-stability. When the pump is off. However, such an energy is enough to produce in
the stability regions two relevant changes, when compared to the
case of no-signal ($s_1(t) = 0$, red dashed lines).

First, the coupled signal creates a new tongue in the US region,
purely related to the XPM and to the change in the detuning Δ
induced by the signal. This is clearly visible when comparing the
results with the regions where no FWM is present, $F_i = 0$ (orange).

In the limit of large absolute pump detuning $|\delta_0| \gg 0$, the tongue is
bounded by:
\[
I_{XPM}^{\pm} = \frac{\delta_1 - 2 I_1(1 + \rho) \pm \sqrt{I_1^2(1+\rho)^2 - 1}}{2 + \rho}. \tag{4}
\]

Eq. (4) approximates the analytical solution for $F_i = 0$. Unfortunately, these regions cannot be easily accessed
experimentally at low intensities, requiring values $P_0 > 30$ in the
examples reported. This is clear when looking at the iso-level curves
of the stationary state for constant input pump powers (Fig. 1 (b,d),
blue contour lines).

More relevantly, a new SP/US region appears where the FWM is
stronger, i.e. where the stationary state has a large idler's intensity
I_{-1} component (Fig. 1 (b,d), false color map). Roughtly, such high
generation occurs where the idler is resonantly coupled, i.e. $\delta_{-1} = (2 + \rho) I_1 - I_{-1}$, leading to:
\[
\delta_0 = \frac{\delta_1}{2} + \frac{2 + \rho}{2} I_1 - I_{-1} \approx \frac{\delta_1}{2} + \frac{I_0(2 + \rho)}{2}, \tag{5}
\]
being the latter approximation valid for low \(I_{\pm 1}\) intensities. Eq. (5) is plotted in Fig. 1 with a magenta dashed line for the specific cases. Notably, the latter SP/US region can be accessed for relatively low input pump powers, \(P_0 > 3\). Finally, the eigenvalues and the stationary state reported in Fig. 1 are relative to the idler solution with the lowest energy. The idler mode can have up to three real solutions, which however are found only for high pump excitations, \((P_0 > 40\) in Fig. 1). In general, Eqs. (4,5) provide a useful mean to evaluate the regions that can be affected by the presence of the signal. In particular, Eq. (5) shows that the detuning \(\delta_0\) can be used to move the SP region in the \(I_0, \delta_0\) plane, as can be seen by comparing the stability maps in Fig. 1 (ab) and (c,d) for \(\delta_1 = -7\) and \(-12\) respectively.

![Fig. 2](image)

Fig. 2 Dynamical response for increasing values of \(P_0\) for \(\sigma = 50, \rho = -10, \delta_0 = -6.7, \delta_1 = -7, P_1 = 0.2\). (a) Bifurcation diagram of \(I_0\) vs \(P_0\), stable outputs are in black, the maxima and minima of the oscillatory output are in red and blue, respectively. Green is for \(\delta_1 = 0\) and magenta is the stationary state. (b) Phase portrait of the bifurcation diagram, for \(P_0\) against \(\text{Re}[a_0]\) and \(\text{Im}[a_0]\). Time evolution (c) of \(I_0\) at \(P_0 = 5.5, 10, 15\) for dark to light blue, respectively and long term phase plots (d) for \(\Delta\) vs \(\text{Re}[a_0]\) and \(\text{Im}[a_0]\).

We studied the dynamics of Eqs. (1) using an adaptive 6th order Runge-Kutta solver [26]. We extended Eq.(2) to a secondary idler \(a_2\), i.e. adding a term for \(i = 2\), with \(F_0 = 2 a_0^2 a_1 a_{-1} + a_0^2 a_2^2 + 2 a_0 a_2 a_{-1}, \quad F_1 = 2 a_1^2 a_2 a_0 + a_0^2 a_{-1}^2 + 2 a_0 a_2 a_{-1}, \quad F_{-1,2} = a_0^2 a_1 a_{0} + 2 a_2 a_{-1} a_{0} a_1\) and \(I_\tau = \sum_{k = 0, \pm 1, 2} I_{k}\). This allowed us to test the validity of our approach at higher pump and signal rates, which may arise in the self-pulsing regimes. Further cascaded generation is neglected here as the energies involved are low.

We carry out our analysis varying the input pump power \(P_0\), for \(\delta_0 = -6.7\). For such a detuning, in the case \(s_1(t) = 0\) SP instability is never observed: from Eq. (3) we have that the maximum detuning for SP is \(\delta_0^{\text{SP}} = -7.25\). We choose two different sets of parameters for the signal, \(\delta_1 = -7, -12\) and \(P_1 = 0.1, 0.9\) for Fig. 2 and 3, respectively. Here we plotted (a) the bifurcation diagrams associated to an hard excitation by varying the pump power \(P_0\) from low to high values, (b,d) the phase portraits of the trajectories of interests and (c) the propagation in time of the intra-cavity fields. Although the two cases are obtained for the same pump parameters, they show a substantially different behavior.

In Fig. 2 the signal power and detuning have been chosen to observe a fold-Hopf bifurcation, which is obtained when the real parts of three leading eigenvalues, a real one and two complex conjugates (controlling the US and SP boundaries, respectively) change sign in proximity of the same value of the varying parameter, here \(P_0\). Looking at the stationary state stability map in Fig. 1 (a), we see that the FWM-controlled SP and the US regions are in close proximity for \(\delta_0 = -6.7\) and \(I_0 \approx 1\): such a point belongs to the to the stationary curve with \(P_0 \approx 5\) (Fig. 1 (b)), where we expect to find the fold-Hopf bifurcation.

![Fig. 3](image)

Fig. 3 Dynamical response for increasing values of \(P_0\) for \(\sigma = 50, \rho = -10, \delta_0 = -6.7, \delta_1 = -12, P_1 = 0.9\). (a) Bifurcation diagram of \(I_0\) vs \(P_0\), stable outputs are in black, the maxima and minima of the oscillatory output are in red and blue, respectively. The green plot corresponds to \(F_l = 0\). (b) Phase portrait of the bifurcation diagram, for \(P_0\) against \(\text{Re}[a_0]\) and \(\text{Im}[a_0]\). Time evolution (c) of \(I_0\) at \(P_0 = 17, 25, 38\) (dark to light blue, respectively) and long term phase plots (d) for \(\Delta\) vs \(\text{Re}[a_0]\) and \(\text{Im}[a_0]\).

Fig. 2(a) reports \(I_0 vs P_0\) for the stationary state (magenta), for the dynamical response of the full system (in black for the stable case and in red and blue for the maxima and minima of the oscillating cases) and of the system with \(s_1(t) = 0\) (green curve). Starting from low power, the system moves along the stationary state until it approaches the switching threshold at \(P_0 > 5\). Here, for \(s_1(t) = 0\) the system switches but, as expected, does not oscillate. Conversely, the full system exhibits the expected heteroclinic bifurcation from a saddle point to saddle-focus trajectory (fold-Hopf) at \(P_0 = 5\) and, eventually, a homoclinic bifurcation to a focus at \(P_0 = 15\) (Fig. 2 (b)). The fold-Hopf bifurcation converges to a stable limit. Such a phase orbit is a homoclinic saddle-focus (Shilnikov) trajectory, which jumps between low and high values of the slow detuning \(\Delta\) (Fig. 2 (d)). For a thermal nonlinearity, this means that the temperature of the system oscillates, mostly between two points. Such a trajectory results in the formation of large pulses (Fig. 2(c)), typical of this type of bifurcation, featuring ripples due to the presence of the focus in the trajectory. Giant pulse generation has recently been studied in thermal systems with two relaxation constants [11].

A completely different scenario is obtained in the case of Fig. 3, where the FWM controlled SP region is far from the US region (see Fig. 1 (b) for \(\delta_0 = -6.7\)). In this case, the system experiences first
$(P_0 = 5)$ a saddle-node bifurcation, characteristic of bistable systems and ruled by a single leading real eigenvalue that changes sign, similarly to the case $s_1(t) = 0$. At higher powers ($P_0 = 15$) it goes to a homoclinic Hopf (Andronov-Hopf) bifurcation. Here a couple of complex conjugate leading eigenvalues changes sign, resulting in a smooth cycle (Fig. 3 (b)). The real and imaginary parts ($\text{Re}[a_0]$, $\text{Im}[a_0]$) of the pump amplitude (Fig. 3 (d) dark blue) do not present significant oscillation in the detuning region, resulting in a dea periodical oscillation (Fig. 3 (c) dark blue). The system bifurcates again to a stable focus at $P_0 = 18$, while a new Hopf bifurcation appears for $P_0 > 25$ where the real part of another set of complex conjugate eigenvalues changes sign. In this case the phase portraits (Fig. 3 (d), light blue) show an oscillation also in the detuning plane. This last bifurcation belongs to an SP region that appears also when the effect of the FWM is disregarded (green curve in Fig. 3 (a)). FWM, however, contributes to modify its domain of existence.

The presence of the signal allows to observe higher order bifurcations where the system was previously stable. This is the case of the fold-Hopf bifurcation of Fig. 2, which is obtained only when more than one leading eigenvalue is available in the bifurcation region. It is interesting to observe how the system responds to on-off signal inputs, as shown in Fig 4 for different signal input powers. Selecting the parameters within the SP regions discussed in Fig. 2-3, a homoclinic saddle-focus (Shilnikov) and circular trajectories can be achieved for a range of parameters.

In conclusion, we propose a novel approach, based on parametric FWM interaction, for controlling self-pulsation and bifurcation in micro-cavities featuring a time-dependent nonlinearity. These results are general and show that the degenerate FWM can induce a new set of bifurcations that can be relocated in the space of parameters by acting on the power and frequency of the control signal. We show that the possibility of moving the stability regions and, especially, to place at will the crossing boundaries has profound implications on the dynamical response of the system. Our study paves the way for enhanced, low-power all-optical control for sensors, oscillators and chaos controlled devices, adding new and flexible degrees of freedom to the system. Such an approach is also relevant for gaining new understanding in micro-comb applications, where the control of the thermal response is critical.

Acknowledgment. We acknowledge the support of the U.K. Quantum Technology Hub for Sensors and Metrology, EPSRC, under Grant EP/M013294/1, of the Marie Curie Action MC-CIG and H2F REA grant 630833 and 327627. RM acknowledges support from the ERC, NSERC and MEIE, the ITMO and Professorship Program (grant 074-U 01) and the 1000 Talents Sichuan Program.

References

27. The boundaries for the U and SP regions are respectively [7]:

$$i_0^{\text{U,SP}} = \frac{2\delta_0 \pm \sqrt{\delta_0^2 - 3(1 + p)^{-1}}}{2(1 + p)(\rho - 1 + 3\varpi)} \pm \frac{1 + \varphi(2 + \varphi\varpi)}{\varphi(1 + \varphi)(\rho - 1 + 3\varpi)}$$

Fig. 4. Time evolution for repeatedly on/off P_0 signal for $\sigma = 50, \rho = -10, \delta_0 = -6.7$. The range of parameters is chosen in the SP regions of Fig. 2 for (a,c), $P_0 = 6, \delta_1 = -7$ and of Fig. 3 for (b,d) $P_0 = 18, \delta_1 = -12$. Blue, red, green and yellow are for the pump and signal first and second idler, respectively. (a,b) report the time response for the intra-cavity energies. P_1 is turned on and off repeatedly, with power linearly increasing from 0.1 to 0.4 and from 0.1 to 0.6 in (a) and (b) respectively. (cd) reports a typical long term phase portrait for $P_1 = 0.3$ and 0.5, respectively, showing the homoclinic saddle-focus (Shilnikov) and circular trajectories.
References

Set references at the back of the manuscript. *Optics Letters* uses an abbreviated reference style. Citations to journal articles should omit the article title and final page number. However, full references (to aid the editor and reviewers) must be included as well on a fifth page that will not count against page length.

27. Following Ref. [7], the boundaries for the unstable and SP regions are : \(i_{0}^{U,±} = \frac{\partial \delta(2(1+p)\sigma-p)}{2(1+p)(\rho(\sigma-1)+3\sigma)} \pm \sqrt{\frac{\partial \delta[2(1+p)\sigma-p]}{4(1+p)^2[\rho(\sigma-1)+3\sigma]^2}} = \frac{1+\sigma(2+\sigma+\delta\sigma)}{\sigma(1+p)(\rho(\sigma-1)+3\sigma)} \) respectively.