
This version is available from Sussex Research Online: http://sro.sussex.ac.uk/id/eprint/70190/

This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher’s version. Please see the URL above for details on accessing the published version.

Copyright and reuse:
Sussex Research Online is a digital repository of the research output of the University.

Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available.

Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.
SCHRÖDINGER EQUATIONS WITH MAGNETIC FIELDS AND HARDY-SOBOLEV CRITICAL EXPONENTS

ZHENYU GUO, MICHAEL MELGAARD, WENMING ZOU

Communicated by Jerry Bona

Abstract. This article is motivated by problems in astrophysics. We consider nonlinear Schrödinger equations and related systems with magnetic fields and Hardy-Sobolev critical exponents. Under proper conditions, existence of ground state solutions to these equations and systems are established.

1. Introduction

Astrophysics pose a rich class of nonlinear problems, in particular,

\[(-i \nabla + A)^2 u = \frac{|u|^{2^*(s)-2} u}{|x|^s}, \quad u \in D^{1,2}_A(\mathbb{R}^N), \]

with the Hardy-Sobolev term models the dynamics of galaxies; we refer to [3, 4] and the references therein. In the present paper we consider the semilinear stationary Schrödinger equation (1.1) with a magnetic field and a Hardy-Sobolev critical exponents, but also

\[(-i \nabla + A)^2 u - \lambda u = \frac{|u|^{2^*(s)-2} u}{|x|^s}, \quad u \in H^1_A(\Omega), \]

\[u = 0, \quad \text{on } \partial \Omega, \]

and related systems thereof, viz.

\[(-i \nabla + A)^2 u = \mu_1 \frac{|u|^{2^*(s)-2} u}{|x|^s} + \frac{\alpha \gamma}{2^*(s)} \frac{|u|^{\alpha-2} |u|^{\beta}}{|x|^s}, \]

\[(-i \nabla + B)^2 v = \mu_2 \frac{|v|^{2^*(s)-2} v}{|x|^s} + \frac{\beta \gamma}{2^*(s)} \frac{|u|^{\alpha} |v|^{\beta-2} v}{|x|^s}, \]

\[u \in D^{1,2}_A(\mathbb{R}^N), \quad v \in D^{1,2}_B(\mathbb{R}^N), \]

2010 Mathematics Subject Classification. 35Q55, 35A15, 47J30, 81V10.

Key words and phrases. Ground state; magnetic field; concentration-compactness; Hardy-Sobolev critical exponent.

©2017 Texas State University.
Submitted May 1, 2016. Published August 11, 2017.
and
\begin{align}
(-i\nabla + A)^2 u - \lambda_1 u &= \mu_1 \frac{|u|^{2^*(s)-2} u}{|x|^s} + \frac{\alpha \gamma}{2^*(s)} \frac{|u|^{2^*(s) - 2} u}{|x|^s}, \\
(-i\nabla + B)^2 v - \lambda_2 v &= \mu_2 \frac{|v|^{2^*(s)-2} v}{|x|^s} + \frac{\beta \gamma}{2^*(s)} \frac{|v|^{2^*(s) - 2} v}{|x|^s},
\end{align}
(1.4)
\[u \in H^1_A(\Omega), \quad v \in H^1_B(\Omega), \quad u = v = 0, \quad \text{on } \partial \Omega,\]
where \(u, v : \mathbb{R}^N \to \mathbb{C}, N \geq 3, A = (A_1, \ldots, A_N), B = (B_1, \ldots, B_N) : \mathbb{R}^N \to \mathbb{R}^N\) are magnetic vector potentials, \(0 \leq s < 2, \lambda, \lambda_1, \lambda_2, \mu_1, \mu_2, \gamma > 0, \alpha, \beta > 1\) with \(\alpha + \beta = 2^*(s) := \frac{2(N-s)}{N-2}\), and \(\Omega\) is a smooth bounded domain containing the origin as an interior point. Set \(-\Delta_A := (-i\nabla + A)^2, \nabla_A := \nabla + iA,\) and
\[D^{1,2}_A(\mathbb{R}^N) := \{u \in L^{2^*}(\mathbb{R}^N) : |\nabla_A u| \in L^2(\mathbb{R}^N)\},\]
\[H^1_A(\Omega) := \{u \in L^2(\Omega) : |\nabla_A u| \in L^2(\Omega)\}.\]
Then \(-\Delta_A u = -\Delta u - iu \text{ div } A - 2iA : \nabla u + |A|^2 u, D^{1,2}_A(\mathbb{R}^N)\) and \(H^1_A(\Omega)\) are Hilbert spaces obtained by the closures of \(C_c^\infty(\mathbb{R}^N, \mathbb{C})\) and \(C_c^\infty(\Omega, \mathbb{C})\) with respect to scaler products
\[\text{Re} \left(\int_{\mathbb{R}^N} \nabla_A u \cdot \nabla_A v \right) \text{ and } \text{Re} \left(\int_{\Omega} \nabla_A u \cdot \nabla_A v \right)\]
respectively, where the bar denotes complex conjugation. Here and in the following, \(\int \cdot \) means \(\int \cdot \, dx\). We regard the range of function as \(\mathbb{C}\), except the places where we emphasize that the range is \(\mathbb{R}\). \(L^p(\Omega, \frac{dx}{|x|^s})\) denotes the space of \(L^p\)-integrable functions with respect to the measure \(\frac{dx}{|x|^s}\), endowed with norm
\[|u|_{p,s} := \left(\int_\Omega \frac{|u|^p}{|x|^s} \right)^{1/p}.\]
For \(\Omega = \mathbb{R}^N\), denote the \(L^p\) norm by
\[|u|_{p,s,\mathbb{R}^N} := \left(\int_{\mathbb{R}^N} \frac{|u|^p}{|x|^s} \right)^{1/p}.\]
Write \(|u|_p := |u|_{p,0}\) and \(|u|_{p,\mathbb{R}^N} := |u|_{p,0,\mathbb{R}^N}\) for simplicity. Define
\[\mu_A^\lambda(\mathbb{R}^N) := \inf_{u \in D^{1,2}_A(\mathbb{R}^N) \setminus \{0\}} \frac{|\nabla_A u|_2^{2}}{|u|_2^{2^*(s)-s}},\]
\[\mu_A^{\lambda,\lambda}(\Omega) := \inf_{u \in H^1_A(\Omega) \setminus \{0\}} \frac{|\nabla_A u|_2^{2} - \lambda |u|_2^{2}}{|u|_2^{2^*(s)-s}}.\]
The first existence results for this kind of problems with a magnetic potential (i.e., \(A \in L^2_{\text{loc}}\)) were established in the seminal work [11]. Leaving aside periodic and singular magnetic fields, a number of papers dealt with nonlinear Schrödinger equations with regular fields, for example, [5 10 16 20 21 22], including [11 12 14 15 18 23] for the critical Sobolev exponent and [2] for the critical Hardy exponent.

As far as we know, there are no results for problems of this type with Hardy-Sobolev critical exponents, in particular for the system case. The Hardy-Sobolev term has the same homogeneity as the Laplacian but it does not belong to the Kato class and, therefore, the resulting functional lacks compactness.

The present paper is mainly motivated by [2]; we apply existence results of ground state solutions obtained in [8 13 14 24] to extend [2] Theorems 1.1 and
1.2] to the case of Hardy-Sobolev critical exponent and also systems; it is worth to emphasize that systems are not considered in [2]. First, we establish results for single equations.

Theorem 1.1. If $A \in L^N_{\text{loc}}(\mathbb{R}^N, \mathbb{R}^N)$, then $\mu^A_s(\mathbb{R}^N)$ is attained by a $u \in D^{1,2}_A(\mathbb{R}^N) \setminus \{0\}$ if and only if $\text{curl} A \equiv 0$, where $\text{curl} A$ is the usual curl operator for $N = 3$ and the $N \times N$ skew-symmetric matrix with entries $a_{jk} = \partial_j A_k - \partial_k A_j$ for $N \geq 4$.

Theorem 1.2. Assume that

(A1) $A \in L^N_{\text{loc}}(\mathbb{R}^N, \mathbb{R}^N)$, $\text{curl} A \equiv 0$ or

(A2) $A \in L^2_{\text{loc}}(\mathbb{R}^N, \mathbb{R}^N)$, A is continuous at 0

holds. Let $N \geq 4$ and $\sigma(-\Delta A - \lambda) \subset (0, +\infty)$, where $\sigma(\cdot)$ is the spectrum in $L^2(\mathbb{R}^N)$. Then $\mu^A_s(\Omega)$ is attained by some $u \in H^1_A(\Omega) \setminus \{0\}$.

Second, we establish results for systems. For this purpose we define

$$\bar{\mu}^{A,B}_s(\mathbb{R}^N) := \inf_{(u,v) \in D_{A,B} \setminus \{(0,0)\}} \frac{\|(u,v)\|^2_{D_{A,B}}}{\left(\int_{\mathbb{R}^N} \left(\mu_1 \frac{|u|^{2^*(s)} |v|^{2^*(s)}}{|x|^s} + \mu_2 \frac{|u|^{2^*(s)} |v|^{2^*(s)}}{|x|^s} + \gamma \frac{|u|^s |v|^s}{|x|^s} \right) dx \right)^{\frac{2}{2^*(s)}}},$$

$$\bar{\mu}^{A,B}_{s}(\Omega) := \inf_{(u,v) \in H_{A,B} \setminus \{(0,0)\}} \frac{\|(u,v)\|^2_{H_{A,B}}}{\left(\int_{\Omega} \left(\mu_1 \frac{|u|^{2^*(s)} |v|^{2^*(s)}}{|x|^s} + \mu_2 \frac{|u|^{2^*(s)} |v|^{2^*(s)}}{|x|^s} + \gamma \frac{|u|^s |v|^s}{|x|^s} \right) dx \right)^{\frac{2}{2^*(s)}}},$$

where $D_{A,B} := D^{1,2}_A(\mathbb{R}^N) \times D^{1,2}_B(\mathbb{R}^N)$, endowed with norm

$$\|(u,v)\|^2_{D_{A,B}} := |\nabla_A u|^2_{2,\mathbb{R}^N} + |\nabla_B v|^2_{2,\mathbb{R}^N},$$

and $H_{A,B} := H^1_A(\Omega) \times H^1_B(\Omega)$, endowed with norm

$$\|(u,v)\|^2_{H_{A,B}} := |\nabla_A u|^2_{2} - \lambda_1 |u|^2_{2} + |\nabla_B v|^2_{2} - \lambda_2 |v|^2_{2}.$$
respectively. Define

\[N := \{ (u, v) \in D_{A,B} \setminus \{(0, 0)\} : \| (u, v) \|_{D_{A,B}}^2 \]
\[= \mu_1 |u|^{2^*(s)}_{2^*(s),s,R^N} + \mu_2 |v|^{2^*(s)}_{2^*(s),s,R^N} + \gamma \int_{R^N} \frac{|u|^{\alpha}|v|^{\beta}}{|x|^s} \}, \]

\[M := \{ (u, v) \in H_{A,B} \setminus \{(0, 0)\} : \| (u, v) \|_{H_{A,B}}^2 \]
\[= \mu_1 |u|^{2^*(s)}_{2^*(s),s} + \mu_2 |v|^{2^*(s)}_{2^*(s),s} + \gamma \int_{\Omega} \frac{|u|^{\alpha}|v|^{\beta}}{|x|^s} \}. \]

\[M_0 := \inf_{(u,v)\in N} I(u,v) \] and \(M := \inf_{(u,v)\in M} E(u,v) \). By nontrivial solutions \((u,v)\in D_{A,B}\) of \((1.3)\), we mean \(u \neq 0, v \neq 0 \). A solution of \((1.3)\) is called a ground state solution if \((u,v)\in N\) and \(I(u,v) = M_0 \). A ground state solution is semi-trivial if it is of type \((u,0)\) or \((0,v)\). Similar definitions apply to \((1.4)\) and \((1.2)\). For ground states, we obtain

Theorem 1.5. If \((A1)\) holds, then \((1.1)\) has a nontrivial ground state solution with energy \(M_1 := \frac{2^{-s}}{2(N-s)} (\mu_s^A(R^N))^{\frac{N-s}{2-s}} \).

Theorem 1.6. Assume that \((A1)\) or \((A2)\) holds. If \(N \geq 4 \) and \(\sigma(-\Delta_A - \lambda) \subset (0, +\infty) \), then \((1.2)\) has a nontrivial ground state solution with energy given by \(M_2 := \frac{2^{-s}}{2(N-s)} (\mu_s^A(\Omega))^{\frac{N-s}{2-s}} \).

Theorem 1.7. If \((A3)\) and \((A4)\) hold, then \((1.3)\) has a nontrivial ground state solution with energy given by \(M_0 := \frac{2^{-s}}{2(N-s)} (\mu_s^{A,B}(R^N))^{\frac{N-s}{2-s}} \).

Theorem 1.8. Assume that \((A3)\) and one of \((A4)\) and \((A5)\) hold. If \(\sigma(-\Delta_A - \lambda_1),\sigma(-\Delta_B - \lambda_2) \subset (0, +\infty) \) and \(N \geq 4 \), then \((1.4)\) has a nontrivial ground state solution with energy \(M := \frac{2^{-s}}{2(N-s)} (\mu_s^{A,B}(\Omega))^{\frac{N-s}{2-s}} \).

Remark 1.9. Although the symmetric and decaying information about ground state solutions of equations with magnetic fields is not known, the existence of ground state solutions is heavily dependent on that of equations without magnetic fields, under proper conditions, such as \((A1)-(A5)\).

Consider the nonlinear system

\[\mu_1 k^{\frac{2^*(s)-2}{2}} + \frac{\alpha\gamma}{2^*(s)} k^{\frac{2^*(s)-2}{2}} \beta^{\frac{s-2}{2}} = 1, \]
\[\mu_2 l^{\frac{2^*(s)-2}{2}} + \frac{\beta\gamma}{2^*(s)} l^{\frac{2^*(s)-2}{2}} \beta^{\frac{s-2}{2}} = 1, \]
\[k > 0, \quad l > 0. \] \hspace{1cm} (1.5)

Theorem 1.10. Assume that \((A4)\) and

\((A6) \) \(N \geq 4, \ 1 < \alpha,\beta < 2, \) and

\[\gamma \geq \frac{2(N-s)(2-s)}{(N-2)^2} \max \left\{ \frac{\mu_1}{\alpha} \left(\frac{2-\beta}{2-\alpha} \right)^{\frac{2-\beta}{2-\alpha}}, \frac{\mu_2}{\beta} \left(\frac{2-\alpha}{2-\beta} \right)^{\frac{2-\beta}{2-\alpha}} \right\}. \]
If $A = B$, then \([1.3]\) has a nontrivial ground state solution \((\sqrt{k_0}U, \sqrt{l_0}U)\) with energy $M_0 = \frac{2-s}{2(N-2)}(k_0 + l_0)(\mu_s(\mathbb{R}^N))^{\frac{N-s}{N-2}}$, where U is a nontrivial ground state solution of \((1.1)\), obtained in Theorem \(1.2\).

\[(k_0, l_0) \text{ satisfies } (1.5) \] and $k_0 = \min\{k : (k, l) \text{ is a solution of } (1.5) \}$. \(1.6\)

That is, M_0 is attained at \((\sqrt{k_0}U, \sqrt{l_0}U)\).

Theorem 1.11. Assume that \((A6)\) and either \((A4)\) or \((A5)\) holds. If $A = B$, $\lambda_1 = \lambda_2 = \lambda$, and $\sigma(-\Delta A - \lambda) \subset (0, +\infty)$, then \([1.4]\) has a nontrivial ground state solution \((\sqrt{k_0}\omega, \sqrt{l_0}\omega)\) with energy $M = \frac{2-s}{2(N-2)}(k_0 + l_0)(\mu_s^{A, \lambda}(\Omega))^{\frac{N-s}{N-2}}$, where (k_0, l_0) satisfies \(1.6\) and ω is a nontrivial ground state solution of \((1.2)\), obtained in Theorem \(1.6\). That is, M is attained at \((\sqrt{k_0}\omega, \sqrt{l_0}\omega)\).

Remark 1.12. By \([17]\) Lemma 1.1], we see that the above theorems also hold when conditions \((A1)\) and \((A4)\) are replaced with \((A1')\) and \((A4')\) respectively:

\[(A1') \ A \in L^N_{\text{loc}}(\mathbb{R}^N, \mathbb{R}^N), \text{ there exists } \varphi \in W^{1,N}_{\text{loc}}(\mathbb{R}^N, \mathbb{R}) \text{ such that } \nabla \varphi = A, \]

\[(A4') \ A, B \in L^N_{\text{loc}}(\mathbb{R}^N, \mathbb{R}^N), \text{ there exist } \varphi, \psi \in W^{1,N}_{\text{loc}}(\mathbb{R}^N, \mathbb{R}) \text{ such that } \nabla \varphi = A, \nabla \psi = B. \]

For more details, we refer to \([11]\) Theorem 3.7] and the proof of Theorem \(1.3\) in this paper.

The paper is organized as follows. In Section 2, we establish several auxiliary results for the proof of our main results; key ingredients are Lemma \(2.1\) and Lemma \(2.4\) not found elsewhere. The latter is proven by using Ekeland’s variational principle. In Section 3, we discuss the attainability of the infimum defined above by applying the method of concentration-compactness. The existence of ground state solution to the Schrödinger problems is studied in Section 4. Finally, in Section 5 we consider a magnetic field in three dimensions as an application of some of the above theorems.

2. Preliminaries

Define

$$
\mu_s(\mathbb{R}^N) := \inf_{u \in D^{1,2}(\mathbb{R}^N) \setminus \{0\}} \frac{|\nabla u|^2_{2,\mathbb{R}^N}}{|u|^2_{2,\mathbb{R}^N}},
$$

where $D^{1,2}(\mathbb{R}^N) = \{u \in L^2(\mathbb{R}^N) : |\nabla u| \in L^2(\mathbb{R}^N)\}$. Then, by \([13]\), $\mu_s(\mathbb{R}^N)$ is attained by functions of form

$$
y_\varepsilon(x) := ((N-s)(N-2))^{\frac{N-2}{2(N-2)}} \varepsilon^{\frac{N-s}{2}} |x|^{2-s} + |x|^{2-s} \varepsilon^{-\frac{N-2}{2}},
$$

where $\varepsilon > 0$. The function y_ε is a positive solution of $-\Delta u = \frac{|u|^2 \varepsilon^{2-s} - 2u}{|x|^s}$, and moreover,

$$
|\nabla y_\varepsilon|^2_{2,\mathbb{R}^N} = |y_\varepsilon|^{2_{s}(s)}_{2,\mathbb{R}^N} = (\mu_s(\mathbb{R}^N))^{-\frac{N-s}{2}},
$$

Define

$$
\bar{\mu}_s(\mathbb{R}^N) := \inf_{(u,v) \in D \setminus \{(0,0)\}} \frac{\|(u,v)\|^2_D}{(\int_{\mathbb{R}^N} (\mu_1 |u|^2 \varepsilon^{2-s} + \mu_2 |v|^2 \varepsilon^{2-s}) + \gamma |u|^4 \varepsilon^{2-s} + \gamma |v|^4 \varepsilon^{2-s}) \frac{2}{2(2-s)})},
$$

where $D := D^{1,2}(\mathbb{R}^N) \times D^{1,2}(\mathbb{R}^N)$, endowed with norm

$$
\|(u,v)\|^2_D := |\nabla u|^2_{2,\mathbb{R}^N} + |\nabla v|^2_{2,\mathbb{R}^N}.$$
Then, by Lemma 2.1, 8] 14 (s = 0) and 25 (0 < s < 2), we see that, under condition (A3), \(\mu_s(A) \) is attained by \((U, V)\), where \(U \) and \(V \) are positive, radially symmetric functions which decay as follows:

\[
U(x) + V(x) \leq C(1 + |x|)^{2-N}, \quad |\nabla U(x)| + |\nabla V(x)| \leq C(1 + |x|)^{1-N}. \tag{2.1}
\]

As proved in [11] 19, for any \(u \in D^{1,2}_A(\mathbb{R}^N) \) or \(H^1_A(\Omega) \), the following (weak) diamagnetic inequality holds pointwise for almost every \(x \in \mathbb{R}^N \) or \(\Omega \),

\[
|\nabla u| = |\text{Re}(\nabla u \frac{\nabla}{|u|})| = |\text{Re}(\nabla u + iAu)\frac{\nabla}{|u|})| \leq |\nabla Au|.
\]

Then, for \(u \in D^{1,2}_A(\mathbb{R}^N) \) or \(H^1_A(\Omega) \), we see that \(|u|\) belongs to the usual Sobolev space \(D^{1,2}(\mathbb{R}^N) \) or \(H^1_0(\Omega) \). Moreover, we have the following lemma.

Lemma 2.1. The embedding \(H^1_0(\Omega) \hookrightarrow L^p(\Omega, \frac{dx}{|x|^s}) \) is continuous for \(1 \leq p \leq 2^*(s) \), and it is compact for \(1 \leq p < 2^*(s) \), where \(0 \leq s < 2 \). The embedding \(D^{1,2}_A(\mathbb{R}^N) \hookrightarrow L^{2^*(s)}(\mathbb{R}^N, \frac{dx}{|x|^s}) \) is continuous for \(0 \leq s < 2 \).

Proof. By the diamagnetic inequality and the Hardy-Sobolev inequality, it is easy to see that the embeddings \(H^1_0(\Omega) \hookrightarrow L^p(\Omega, \frac{dx}{|x|^s}) \) and \(D^{1,2}_A(\mathbb{R}^N) \hookrightarrow L^{2^*(s)}(\mathbb{R}^N, \frac{dx}{|x|^s}) \) are continuous, where \(1 \leq p \leq 2^*(s) \) and \(0 \leq s < 2 \).

Let \(\{u_n\} \) be a bounded sequence in \(H^1_0(\Omega) \). For compactness of the embedding, it remains to show that there exists a subsequence of \(\{u_n\} \), strongly converging in \(L^p(\Omega, \frac{dx}{|x|^s}) \), where \(1 \leq p < 2^*(s) \).

For the case \(s = 0 \), since \(|u_n|\) is bounded in \(H^1_0(\Omega) \), we can consider the real parts \(R_n \) and imaginary parts \(I_n \) of \(u_n \) separately, and follow the arguments of Rellich-Kondrachov Compactness Theorem (cf. 12), passing to a subsequence, we may prove that \(R_n \to R \) and \(I_n \to I \) strongly in \(L^p(\Omega) \), where \(1 \leq p < 2^* := 2^*(0) \).

That is, \(u_n \to u \) strongly in \(L^p(\Omega) \), where \(u = R + iI \).

For the case \(0 < s < 2 \), applying the ideas of [2] Lemma 2.6 and [7] Lemma 2.1, we may extract a subsequence, still denoted by \(u_n \), such that \(u_n \to u \) weakly in \(H^1_0(\Omega) \). Then, \(u_n \to u \) weakly in \(L^{2^*}(\Omega) \), and \(|u_n| \) is bounded in \(H^1_0(\Omega) \). Hence, up to a subsequence, \(|u_n - u| \) a.e. weakly in \(H^1_0(\Omega) \) and \(u_n \to u \) a.e. on \(\Omega \). By Rellich-Kondrachov Theorem, we see that \(u_n \to u \) strongly in \(L^{q}(\Omega) \), where \(1 \leq q < 2^* \). Since \(H^1_0(\Omega) \hookrightarrow L^{2^*}(\Omega) \), there exists a constant \(C \) such that \(|u_n - u| \leq C \). For any \(\varepsilon > 0 \), let \(\Omega_\varepsilon := \Omega \cap B_\varepsilon \) and \(\Omega^c_\varepsilon := \Omega \setminus \Omega_\varepsilon \), where \(B_\varepsilon \) is the ball centered at 0 with radius \(\varepsilon \). Noting \(N - \frac{2^* s}{2^* - p} > 0 \), we have

\[
\int_{\Omega_\varepsilon} \frac{|u_n - u|^p}{|x|^s} \leq \left(\int_{\Omega_\varepsilon} |u_n - u|^{2^*} \right)^p \left(\int_{\Omega_\varepsilon} |x|^{-\frac{2^* s}{2^* - p}} \right)^{\frac{2^* - p}{2^*}} \\
\leq C \left(\int_0^\varepsilon r^{-\frac{2^* s}{2^* - p}} \right)^{\frac{2^* - p}{2^*}} \varepsilon^{N-2^*} \\
= O(\varepsilon^{(N-2^*)(\frac{s}{s}) - p}).
\]

On the other hand, for any \(x \in \Omega^c_\varepsilon \), there exists a constant \(C_\varepsilon > 0 \) such that \(\frac{1}{|x|^s} \leq C_\varepsilon \). It follows from Rellich-Kondrachov Compactness Theorem that \(\int_{\Omega^c_\varepsilon} \frac{|u_n - u|^p}{|x|^s} = o(1) \). Combining this and (2.2), we get that \(\lim_{n \to \infty} |u_n - u|_{p, s} = 0 \). \(\square \)
Remark 2.2. If \(\sigma(-\Delta_A - \lambda_1), \sigma(-\Delta_B - \lambda_2) \subseteq (0, +\infty) \), then by Lemma 2.1, it is standard to see that the quantities

\[\mu_s^A(\mathbb{R}^N), \mu_s^{A,\lambda_1}(\Omega), \mu_s^{B,\lambda_2}(\Omega), \bar{\mu}_s^A,\bar{\mu}_s^B(\mathbb{R}^N), \text{ and } \bar{\mu}_s^A,\bar{\mu}_s^B(\Omega) \]

are strictly positive.

Lemma 2.3. If \(A, B \in L^N_{\text{loc}}(\mathbb{R}^N, \mathbb{R}^N) \), then \(\mu_s^A(\mathbb{R}^N) = \mu_s(\mathbb{R}^N) \) and \(\bar{\mu}_s^A,\bar{\mu}_s^B(\mathbb{R}^N) = \bar{\mu}_s(\mathbb{R}^N) \).

Proof. We only prove the latter equality. For any \((u, v) \in D_{A,B} \setminus \{(0, 0)\} \), by the diamagnetic inequality, we have

\[
\frac{|\nabla_A u|^2_{2,\mathbb{R}^N} + |\nabla_B v|^2_{2,\mathbb{R}^N}}{(\int_{\mathbb{R}^N} (\mu_1 |u|^{2^*(s)}_{|x|^s} + \mu_2 |u|^{2^*(s)}_{|x|^s} + \gamma |u|^s |v|^2_{|x|^s}))^{\frac{2}{2^*}}} \\
\geq \frac{|\nabla u|^2_{2,\mathbb{R}^N} + |\nabla v|^2_{2,\mathbb{R}^N}}{(\int_{\mathbb{R}^N} (\mu_1 |u|^{2^*(s)}_{|x|^s} + \mu_2 |u|^{2^*(s)}_{|x|^s} + \gamma |u|^s |v|^2_{|x|^s}))^{\frac{2}{2^*}}}
\geq \bar{\mu}_s(\mathbb{R}^N),
\]

which implies that \(\bar{\mu}_s^A,\bar{\mu}_s^B(\mathbb{R}^N) \geq \bar{\mu}_s(\mathbb{R}^N) \). Define

\[(U_\varepsilon(x), V_\varepsilon(x)) := (\varepsilon^{-\frac{N-2}{2}} U(\frac{x}{\varepsilon}), \varepsilon^{-\frac{N-2}{2}} V(\frac{x}{\varepsilon})) \] (2.3)

and

\[(u_\varepsilon(x), v_\varepsilon(x)) := (\phi(x) U_\varepsilon(x), \phi(x) V_\varepsilon(x)), \]

where \((U, V)\) achieves \(\bar{\mu}_s(\mathbb{R}^N) \) with (2.1), and \(\phi \in C_0^1(B_2) \) is a cut-off function satisfying \(\phi \equiv 1 \) on \(B_1 \). Then, a direct computation yields

\[\int_{\Omega} |\nabla u_\varepsilon|^2 \leq \int_{\mathbb{R}^N} |\nabla U|^2 + O(\varepsilon^{-2}), \] (2.4)

\[\int_{\Omega} |\nabla v_\varepsilon|^2 \leq \int_{\mathbb{R}^N} |\nabla V|^2 + O(\varepsilon^{-2}), \] (2.5)

\[\int_{\Omega} \frac{|u_\varepsilon|^{2^*(s)}}{|x|^s} \geq \int_{\mathbb{R}^N} \frac{|U|^{2^*(s)}}{|x|^s} + O(\varepsilon^{-s}), \] (2.6)

\[\int_{\Omega} \frac{|v_\varepsilon|^{2^*(s)}}{|x|^s} \geq \int_{\mathbb{R}^N} \frac{|V|^{2^*(s)}}{|x|^s} + O(\varepsilon^{-s}), \] (2.7)

\[\int_{\Omega} \frac{|u_\varepsilon|^{\alpha} |v_\varepsilon|^{\beta}}{|x|^s} \geq \int_{\mathbb{R}^N} \frac{|U|^{\alpha} |V|^{\beta}}{|x|^s} + O(\varepsilon^{-s}). \] (2.8)

It follows from \(\{u_\varepsilon\} \) that it is bounded in \(L^{2^*(\alpha)}(\mathbb{R}^N) \) and \(u_\varepsilon \to 0 \) a.e. in \(\mathbb{R}^N \) as \(\varepsilon \to 0 \) that for any \(\varphi \in L^\frac{2^*}{2-1}(\mathbb{R}^N) \),

\[\left| \int_{\mathbb{R}^N} u_\varepsilon \varphi \right| \leq \left(\int_{\mathbb{R}^N} u_\varepsilon^{2^*} \right)^{\frac{2}{2^*}} \left(\int_{\mathbb{R}^N} |\varphi|^{2^*} \right)^{\frac{2^*}{2^*-1}} \to 0, \]

i.e., \(u_\varepsilon \to 0 \) weakly in \(L^{2^*(\alpha)}(\mathbb{R}^N) \). Hence, \(u_\varepsilon^2 \to 0 \) weakly in \(L^\frac{2^*}{2}(\mathbb{R}^N) \). Since \(|A|^2 \in L^\frac{N}{N-2}_{\text{loc}}(\mathbb{R}^N) = (L^\frac{N}{N-2}_{\text{loc}}(\mathbb{R}^N))' \), the dual space of \(L^\frac{N}{N-2}_{\text{loc}}(\mathbb{R}^N) \), we obtain

\[\int_{\mathbb{R}^N} |Au_\varepsilon|^2 = \langle |A|^2, u_\varepsilon^2 \rangle \to 0, \]
where the duality product is taken with respect to \(L^\frac{N}{2}(\mathbb{R}^N) \) and \(L^\frac{2}{N}(\mathbb{R}^N) \). Similarly, we have \(\int_{\Omega} |B_{\varepsilon v}|^2 \to 0 \) as \(\varepsilon \to 0 \). For \(\varepsilon \) small enough, noting that \(u_\varepsilon \) and \(v_\varepsilon \) are real-valued, by (2.4)–(2.8), we have
\[
\tilde{\mu}_s^{A,B}(\mathbb{R}^N) \leq \frac{|\nabla_A u_\varepsilon|_{L^2(\mathbb{R}^N)}^2 + |\nabla_B v_\varepsilon|_{L^2(\mathbb{R}^N)}^2}{(\int_{\Omega} (\mu_1 \frac{|u_\varepsilon|^{2^*(s)}}{|x|^s} + \mu_2 \frac{|v_\varepsilon|^{2^*(s)}}{|x|^s} + \gamma \frac{|u_\varepsilon||v_\varepsilon|^2}{|x|^s})^{\frac{2}{2^*(s)}})} = \frac{\int_{\Omega} (|\nabla u_\varepsilon|^2 + |A u_\varepsilon|^2 + |\nabla v_\varepsilon|^2 + |B v_\varepsilon|^2)}{(\int_{\Omega} (\mu_1 \frac{|u_\varepsilon|^{2^*(s)}}{|x|^s} + \mu_2 \frac{|v_\varepsilon|^{2^*(s)}}{|x|^s} + \gamma \frac{|u_\varepsilon||v_\varepsilon|^2}{|x|^s})^{\frac{2}{2^*(s)}})} \leq \tilde{\mu}_s(\mathbb{R}^N) + \delta,
\]
which implies that \(\tilde{\mu}_s^{A,B}(\mathbb{R}^N) \leq \tilde{\mu}_s(\mathbb{R}^N) \). Therefore, \(\tilde{\mu}_s^{A,B}(\mathbb{R}^N) = \tilde{\mu}_s(\mathbb{R}^N) \). \(\square \)

Lemma 2.4. The following conclusions hold.

(i) \(\mu_0^A(\mathbb{R}^N) \) is attained if and only if (1.1) has a nontrivial ground state solution;

(ii) \(\mu_0^{A,\lambda}(\Omega) \) is attained if and only if (1.2) has a nontrivial ground state solution;

(iii) \(\tilde{\mu}_s^{A,B}(\mathbb{R}^N) \) is attained by \((u,v) \in D_{A,B} \) with \(u \neq 0, v \neq 0 \) if and only if (1.3) has a nontrivial ground state solution;

(iv) \(\tilde{\mu}_s^{A,B}(\Omega) \) is attained by \((u,v) \in H_{A,B} \) with \(u \neq 0, v \neq 0 \) if and only if (1.4) has a nontrivial ground state solution.

Proof. We only prove (iv). Setting
\[
F(u,v) := \frac{\|(u,v)\|_{H_{A,B}}^2}{(\int_{\Omega} (\mu_1 \frac{|u|^{2^*(s)}}{|x|^s} + \mu_2 \frac{|v|^{2^*(s)}}{|x|^s} + \gamma \frac{|u||v|^2}{|x|^s})^{\frac{2}{2^*(s)}})},
\]
then \(\tilde{\mu}_s^{A,B}(\Omega) = \inf_{(u,v) \in H_{A,B} \setminus \{(0,0)\}} F(u,v) \) and \(F(tu,tv) = F(u,v) \) for any \(t \in \mathbb{R} \). Obviously, for any \((u,v) \in H_{A,B} \setminus \{(0,0)\} \), there exists an unique \(t_{u,v} \in \mathbb{R} \) such that \((tu,v) \in \mathbb{M} \). Therefore,
\[
\tilde{\mu}_s^{A,B}(\Omega) = \inf_{(u,v) \in H_{A,B} \setminus \{(0,0)\}} F(t_{u,v}u,v) = \inf_{(u,v) \in \mathbb{M}} F(u,v) = \inf_{(u,v) \in \mathbb{M}} \|(u,v)\|_{H_{A,B}}^{2^*(s)-2}.
\]
Noting that \(M = \frac{2-s}{4N-2s} \inf_{(u,v) \in \mathbb{M}} \|(u,v)\|_{H_{A,B}}^2 \), we see that \(\tilde{\mu}_s^{A,B}(\Omega) \) is attained if and only if \(M \) is attained. Assume that (1.4) has a nontrivial ground state solution, i.e., \(M \) is attained by a nontrivial element in \(H_{A,B} \). Then, \(\mu_0^{A,B}(\Omega) \) is attained by some \((u,v) \in H_{A,B} \) with \(u \neq 0 \) and \(v \neq 0 \). On the other hand, assume that \(\mu_0^{A,B}(\Omega) \) is achieved by a nontrivial element in \(H_{A,B} \). Then, there exists \((u,v) \in H_{A,B} \) with \(u \neq 0 \) and \(v \neq 0 \) such that \(M = \inf_{\mathbb{M}} E = E(u,v) \). It remains to show that \((u,v) \) is a solution of (1.4). It is easy to see that \(E|_{\mathbb{M}} \in C^1(\mathbb{M}, \mathbb{R}) \) is bounded below.
By Ekeland’s variational principle (e.g. [24]), for $\varepsilon, \delta > 0$, there exists $(u', v') \in \mathcal{M}$ such that
\[
E(u', v') \leq E(u, v) + 2\varepsilon, \| E'(u', v') \|_{H^1_{A,B}} \leq \frac{8\varepsilon}{\delta}, \| (u', v') - (u, v) \|_{H_{A,B}} \leq 2\delta. \tag{2.9}
\]
Choosing $\varepsilon_n = \frac{1}{n}$ and $\delta_n = \frac{1}{\sqrt{n}}$ in (2.9), there exists $\{(u_n, v_n)\}$ such that $(u_n, v_n) \rightarrow (u, v)$ in $H^1_{A,B}$, $E'(u_n, v_n) \rightarrow 0$ in $H^1_{A,B}$, and $E(u_n, v_n) \rightarrow E(u, v)$, as $n \rightarrow \infty$. Hence, $E'(u, v) = 0$ in $H^1_{A,B}$, that is (u, v) is a solution of (1.4).

3. Attainability of the infimum

Since the proofs of Theorems 1.1 and 1.2 are similar to that of [2] Theorems 1.1 and 1.2 and easier than that of Theorems 1.3 and 1.4 in the present paper, we only prove Theorems 1.3 and 1.4 here. Note that systems are not treated in [2] and the concentration-compactness arguments therein, going back to Willem [24], has to be combined with new arguments in order to treat these systems.

Proof of Theorem 1.3 (Necessary condition) Let (u, v) be a minimizer of $\mu^{A,B}(\mathbb{R}^N)$ normalized by $\mu_1|u|^{2^*(s),s,\mathbb{R}^N} + \mu_2|v|^{2^*(s),s,\mathbb{R}^N} + \gamma \int_{\mathbb{R}^N} \frac{|u|^8|v|^8}{|x|^2} = 1$. By the diamagnetic inequality and Lemma 2.3, we have
\[
\bar{\mu}^{A,B}(\mathbb{R}^N) = \int_{\mathbb{R}^N} (|\nabla A|u|^2 + |\nabla B|v|^2)
\geq \int_{\mathbb{R}^N} (|\nabla |u||^2 + |\nabla |v||^2)
\geq \mu^{A,B}(\mathbb{R}^N) = \bar{\mu}^{A,B}(\mathbb{R}^N),
\]
which means the above inequality must be equality and
\[
|\nabla A|u| = |\nabla |u|| = \left| \text{Re} \left(\nabla u \overline{\nabla u} \right) \right| = \left| \text{Re} \left((\nabla u + iAu) \overline{(\nabla u + iAu)} \right) \right|, \\
|\nabla B|v| = |\nabla |v|| = \left| \text{Re} \left(\nabla v \overline{\nabla v} \right) \right| = \left| \text{Re} \left((\nabla v + iBv) \overline{(\nabla v + iBv)} \right) \right|.
\]

Then, we deduce that $\text{Im} \left(\nabla u \overline{\nabla u} \right) = 0$ and $\text{Im} \left(\nabla v \overline{\nabla v} \right) = 0$, which are equivalent to $A = -\text{Im} \left(\overline{\nabla u} \right)$ and $B = -\text{Im} \left(\overline{\nabla v} \right)$. Since $\text{curl} \left(\overline{\nabla u} \right) = 0$ and $\text{curl} \left(\overline{\nabla v} \right) = 0$, we infer that $\text{curl} A = 0$ and $\text{curl} B = 0$.

(Sufficient condition) Assume that $\text{curl} A = 0$ and $\text{curl} B = 0$. By [17] Lemma 1.1, there exist $\varphi, \psi \in W^{1,N}_{\text{loc}}(\mathbb{R}^N, \mathbb{R})$ such that $\nabla \varphi = A, \nabla \psi = B$. Let
\[
(u_\varepsilon(x), v_\varepsilon(x)) = (U_\varepsilon(x)e^{-\varepsilon \varphi(x)}, V_\varepsilon(x)e^{-\varepsilon \psi(x)}),
\]
where $\varepsilon > 0$ and $(U_\varepsilon, V_\varepsilon)$ is defined in (2.3). It follows from Lemma 2.3 that $(u_\varepsilon, v_\varepsilon)$ is a minimizer for $\bar{\mu}^{A,B}(\mathbb{R}^N)$.

Lemma 3.1. If (A1) or (A2) holds, $N \geq 4$, and $\sigma(-\Delta_A - \lambda_1), \sigma(-\Delta_B - \lambda_2) \subset (0, +\infty)$, then $\mu^{A,B}(\Omega) < \min \left\{ \mu_{A_1}^{A,\lambda_1}(\Omega), \mu_{B_2}^{B,\lambda_2}(\Omega) \right\}$.

Proof. By Theorem 1.2, we assume that u_{μ_1} achieves $\mu_{A,\lambda_1}^{A,\lambda_1}(\Omega)$ with $|u_{\mu_1}|^{2^*(s),s} = \left(\mu_1^{A,\lambda_1}(\Omega) \right)^{\frac{1}{2^*(s) - 1}}$. Define $t(\varepsilon) := t_{u_{\mu_1}, \varepsilon u_{\mu_1}}$, i.e.,
\[
t(\varepsilon) = \left(\frac{\|u_{\mu_1}\|^2_{H_A^1} + \varepsilon^2\|u_{\mu_1}\|^2_{H_B^1}}{(\mu_1 + \mu_2|\varepsilon|^{2^*(s)} + \gamma|\varepsilon|)|u_{\mu_1}|^{2^*(s),s}_{H^1_{A,B}}} \right)^{\frac{1}{2^*(s) - 1}},
\]
where \(\|u\|^2_{H^s_A} := |\nabla_A u|^2 - \lambda_1 |u|^2 \) and \(\|u\|^2_{H^s_B} := |\nabla_B u|^2 - \lambda_2 |u|^2 \). It is easy to see that \((t(\epsilon)u_{\mu_1}, t(\epsilon)\mu_{\mu_1}) \in \mathcal{M}\). Noting that \(\|u_{\mu_1}\|^2_{H^s_A} = \mu_1 |u_{\mu_1}|^{2^*(s)}_{2^*(s),s} \) and \(t(0) = 1\), we deduce that

\[
\lim_{\epsilon \to 0} t'(\epsilon) = -\frac{\gamma \beta}{(2^*(s) - 2) \mu_1},
\]

that is,

\[
t'(\epsilon) = -\frac{\gamma \beta |\epsilon|^{2^*(s)} - 2 \epsilon}{(2^*(s) - 2) \mu_1} (1 + o(1)), \quad \text{as } \epsilon \to 0.
\]

Then

\[
t(\epsilon) = 1 - \frac{\gamma |\epsilon|^{\beta}}{(2^*(s) - 2) \mu_1} (1 + o(1)), \quad \text{as } \epsilon \to 0,
\]

and hence,

\[
t(\epsilon)^{2^*(s)} = 1 - \frac{2^*(s) \gamma |\epsilon|^\beta}{(2^*(s) - 2) \mu_1} (1 + o(1)), \quad \text{as } \epsilon \to 0.
\]

Thus, we have

\[
t(\epsilon)^{2^*(s)} (\mu_1 + \mu_2 |\epsilon|^{2^*(s)} + \gamma |\epsilon|^\beta) |u_{\mu_1}|^{2^*(s)}_{2^*(s),s}
\]

\[
= \left(1 - \frac{2^*(s) \gamma |\epsilon|^\beta}{(2^*(s) - 2) \mu_1} (1 + o(1))\right) (\mu_1 + \mu_2 |\epsilon|^{2^*(s)} + \gamma |\epsilon|^\beta) |u_{\mu_1}|^{2^*(s)}_{2^*(s),s}
\]

\[
= \mu_1 |u_{\mu_1}|^{2^*(s)}_{2^*(s),s} - \frac{\gamma |\epsilon|^\beta}{2^*(s)} |u_{\mu_1}|^{2^*(s)}_{2^*(s),s} + o(|\epsilon|^\beta)
\]

\[
< \mu_1 |u_{\mu_1}|^{2^*(s)}_{2^*(s),s} \quad \text{for } |\epsilon| \text{ small enough.}
\]

Therefore,

\[
\tilde{\mu}^{A,B}_s(\Omega) = \inf_{(u,v) \in \mathcal{M}} \left(\mu_1 |u|^{2^*(s)}_{2^*(s),s} + \mu_2 |v|^{2^*(s)}_{2^*(s),s} + \gamma \int_\Omega \frac{|u^{\alpha} v^\beta|^\gamma}{|x|^\gamma} \right)^{\frac{2^*(s)-2}{2^*(s)}} \leq \left(t(\epsilon)^{2^*(s)} (\mu_1 + \mu_2 |\epsilon|^{2^*(s)} + \gamma |\epsilon|^\beta) |u_{\mu_1}|^{2^*(s)}_{2^*(s),s}\right)^{\frac{2^*(s)-2}{2^*(s)}}
\]

\[
< \mu_1 |u_{\mu_1}|^{2^*(s)-2}_{2^*(s),s}
\]

\[
= \pi^{A,\lambda_1}_s (\Omega).
\]

Similarly, \(\tilde{\mu}^{A,B}_s(\Omega) < \mu_2^{-\frac{2^*(s)-2}{2^*(s)}} \pi^{B,\lambda_2}_s (\Omega)\). \(\square\)

Proof of Theorem 1.4. Since the proof under the assumption (A4) is similar to that of Theorem 1.3, we only prove it under the assumption (A5). Setting

\[
\theta(x) := - \sum_{j=1}^N A_j(0)x_j, \quad \vartheta(x) := - \sum_{j=1}^N B_j(0)x_j,
\]

we have

\[
\nabla \theta(x) = (-A_1(0), \ldots, -A_N(0)) = -A(0),
\]

\[
\nabla \vartheta(x) = (-B_1(0), \ldots, -B_N(0)) = -B(0),
\]
which imply that \((\nabla \theta + A)(0) = 0\) and \((\nabla \theta + B)(0) = 0\). Then, continuity ensures that there exists \(\delta > 0\) satisfying
\[
|(\nabla \theta + A)(x)|^2 \leq \frac{\lambda_3}{2}, \quad |(\nabla \theta + B)(x)|^2 \leq \frac{\lambda_3}{2}, \quad \forall |x| < \delta, \quad (3.1)
\]
where \(\lambda_3 = \min\{\lambda_1, \lambda_2\}\). There exists \(\rho > 0\) such that \(B_\rho \subset \Omega\). Let \(2r := \min\{\delta, \rho\}\) and
\[
(u_\varepsilon(x), v_\varepsilon(x)) = \left(\phi(x)U_\varepsilon(x)e^{i\theta(x)}, \phi(x)V_\varepsilon(x)e^{i\theta(x)}\right),
\]
where \(\phi \in C_0^1(B_{2r})\) is a cut-off function such that \(\phi(x) = 1\) in \(B_r\) and \((U_\varepsilon, V_\varepsilon)\) is defined by (2.3). By (2.4), (2.5) and (3.1), we deduce that
\[
\int_{\Omega} (|\nabla u_\varepsilon|^2 - \lambda_1 |u_\varepsilon|^2 + |\nabla B_\varepsilon|^2 - \lambda_2 |v_\varepsilon|^2)
\]
\[
= \int_{\Omega} (|\nabla (\phi U_\varepsilon)|^2 + \phi^2 (U_\varepsilon^2 |\nabla \theta + A|^2 - \lambda_1 \phi^2 U_\varepsilon^2) + \int_{\Omega} (|\nabla (\phi V_\varepsilon)|^2 + \phi^2 (V_\varepsilon^2 |\nabla \theta + B|^2 - \lambda_2 \phi^2 V_\varepsilon^2)
\]
\[
\leq \int_{R^N} (|\nabla U|^2 + |\nabla V|^2) + O(\varepsilon^{N-2}) + \frac{\lambda_3}{2} \int_{B_{2r}} \phi^2 U_\varepsilon^2
\]
\[
- \lambda_1 \int_{B_{2r}} \phi^2 U_\varepsilon^2 + \frac{\lambda_3}{2} \int_{B_{2r}} \phi^2 V_\varepsilon^2 - \lambda_2 \int_{B_{2r}} \phi^2 V_\varepsilon^2
\]
\[
\leq \int_{R^N} (|\nabla U|^2 + |\nabla V|^2) + O(\varepsilon^{N-2}) - \frac{\lambda_3}{2} \int_{B_r} (U_\varepsilon^2 + V_\varepsilon^2).
\]
Since
\[
\int_{B_r} |U_\varepsilon|^2 \geq \int_{|x| \leq r} \varepsilon^{2-N} |U(\frac{x}{\varepsilon})|^2 dx
\]
\[
= \varepsilon^2 \int_{R^N} |U(y)|^2 dy - \varepsilon^2 \int_{|y| \geq \frac{r}{\varepsilon}} |U(y)|^2 dy
\]
\[
\geq C \varepsilon^2 - C \varepsilon^2 \int_{|y| \geq \frac{r}{\varepsilon}} |y|^{4-2N} dy
\]
\[
= C \varepsilon^2 + O(\varepsilon^{N-2}),
\]
and
\[
\int_{B_r} |V_\varepsilon|^2 \geq C \varepsilon^2 + O(\varepsilon^{N-2}),
\]
by (2.6)–(2.8), we have
\[
\mu_{A,B}^\varepsilon(\Omega) \leq \frac{\int_{\Omega} (|\nabla u_\varepsilon|^2 - \lambda_1 |u_\varepsilon|^2 + |\nabla B_\varepsilon|^2 - \lambda_2 |v_\varepsilon|^2)}{\left(\mu_1 |u_\varepsilon|^{2^*(s)} + \mu_2 |v_\varepsilon|^{2^*(s)} + \gamma \int_{\Omega} \frac{|u_\varepsilon|^{\alpha} |u_\varepsilon|^\beta}{|x|^s}\right)^{\frac{1}{\beta}}}
\]
\[
\leq \frac{\int_{R^N} (|\nabla U|^2 + |\nabla V|^2) - C \varepsilon^2 + O(\varepsilon^{N-2})}{\left(\int_{R^N} \left(\mu_1 \frac{|U|^2}{|x|^r} + \mu_2 \frac{|V|^2}{|x|^r} + \gamma \frac{|U|^\alpha |V|^\beta}{|x|^s} \right) + O(\varepsilon^{N-s}) \right)^{\frac{1}{\beta}}}
\]
\[
< \mu_{\ast}(R^N).
\]
Let \(\{(u_n, v_n)\}\) be a minimizing sequence for \(\mu_{A,B}^\varepsilon(\Omega)\) normalized as
\[
\mu_1 |u_n|^{2^*(s)} + \mu_2 |v_n|^{2^*(s)} + \gamma \int_{\Omega} \frac{|u_n|^{\alpha} |v_n|^\beta}{|x|^s} = 1;
\]
that is,
\[
|\nabla A u_n|^2 - \lambda_1 |u_n|^2 + |\nabla B v_n|^2 - \lambda_2 |v_n|^2 = \tilde{\mu}_s^{A,B}(\Omega) + o(1).
\] (3.4)
Noting that \(\{u_n\} \) is bounded in \(H^1_A(\Omega) \) and \(\{v_n\} \) is bounded in \(H^1_B(\Omega) \), by Lemma 2.1 we may extract two subsequences—still denoted by \(\{u_n\} \) and \(\{v_n\} \)—such that
\[
\begin{align*}
 u_n &\rightharpoonup u \quad \text{weakly in } H^1_A(\Omega), \\
 v_n &\rightharpoonup v \quad \text{weakly in } H^1_B(\Omega), \\
 u_n &\to u, \quad v_n &\to v \quad \text{strongly in } L^2(\Omega),
\end{align*}
\]
with
\[
 \mu_1 |u|_{2^*(s),s}^{2^*(s)} + \mu_2 |v|_{2^*(s),s}^{2^*(s)} + \gamma \int_\Omega \frac{|u|^\alpha|v|^\beta}{|x|^s} \leq 1.
\]
Setting \(w_n := u_n - u \) and \(z_n := v_n - v \), then \(w_n \rightharpoonup 0 \) weakly in \(H^1_A(\Omega) \), \(z_n \to 0 \) weakly in \(H^1_B(\Omega) \) and \(w_n \to 0, z_n \to 0 \) a.e. on \(\Omega \). It follows from diamagnetic inequality and (3.4) that
\[
|\nabla A u_n|^2 + |\nabla B v_n|^2 \geq |\nabla u_n|^2 + |\nabla v_n|^2 \geq \tilde{\mu}_s(\mathbb{R}^N),
\]
\[
\tilde{\mu}_s^{A,B}(\Omega) + \lambda_1 |u_n|^2 + \lambda_2 |v_n|^2 + o(1) \geq \tilde{\mu}_s(\mathbb{R}^N).
\]
By (3.3), we see that \(\lambda_1 |u|^2 + \lambda_2 |v|^2 \geq \tilde{\mu}_s(\mathbb{R}^N) - \tilde{\mu}_s^{A,B}(\Omega) > 0 \), which means that \((u, v) \neq (0, 0)\). Since \(w_n \rightharpoonup 0 \) weakly in \(H^1_A(\Omega) \) and \(z_n \to 0 \) weakly in \(H^1_B(\Omega) \), we have
\[
\begin{align*}
|\nabla A w_n|^2 &= \int_\Omega |\nabla A w_n|^2 + \int_\Omega |\nabla A u|^2 + 2 \text{Re} \left(\int_\Omega \nabla A w_n \cdot \nabla A u \right) \\
&= |\nabla A w_n|^2 + |\nabla A u|^2 + o(1), \\
|\nabla B v_n|^2 &= |\nabla B z_n|^2 + |\nabla B v|^2 + o(1).
\end{align*}
\]
Then, (3.4) yields
\[
\tilde{\mu}_s^{A,B}(\Omega) = |\nabla A w_n|^2 + |\nabla A u|^2 - \lambda_1 |u|^2 + |\nabla B z_n|^2 + |\nabla B v|^2 - \lambda_2 |v|^2 + o(1). \] (3.5)
The Brezis-Lieb Lemma guarantees that
\[
1 = \mu_1 |u + w_n|_{2^*(s),s}^{2^*(s)} + \mu_2 |v + z_n|_{2^*(s),s}^{2^*(s)} + \gamma \int_\Omega \frac{|u + w_n|^\alpha|v + z_n|^\beta}{|x|^s} \\
= \mu_1 |u|_{2^*(s),s}^{2^*(s)} + \mu_2 |v|_{2^*(s),s}^{2^*(s)} + \gamma \int_\Omega \frac{|u|^\alpha|v|^\beta}{|x|^s} \\
+ \mu_1 |w_n|_{2^*(s),s}^{2^*(s)} + \mu_2 |z_n|_{2^*(s),s}^{2^*(s)} + \gamma \int_\Omega \frac{|w_n|^\alpha|z_n|^\beta}{|x|^s} + o(1).
\]
Noting
\[
\begin{align*}
\mu_1 |u|_{2^*(s),s}^{2^*(s)} + \mu_2 |v|_{2^*(s),s}^{2^*(s)} + \gamma \int_\Omega \frac{|u|^\alpha|v|^\beta}{|x|^s} &\leq 1, \\
\mu_1 |w_n|_{2^*(s),s}^{2^*(s)} + \mu_2 |z_n|_{2^*(s),s}^{2^*(s)} + \gamma \int_\Omega \frac{|w_n|^\alpha|z_n|^\beta}{|x|^s} &\leq 1,
\end{align*}
\]
we have
\[
1 \leq \left(\mu_1 |u|_{2^*(s),s}^{2^*(s)} + \mu_2 |v|_{2^*(s),s}^{2^*(s)} + \gamma \int_\Omega \frac{|u|^\alpha|v|^\beta}{|x|^s} \right)^{2^*(s)}.
\]
It follows from (3.3), (3.5) and $\bar{\mu}^{A,B}(\Omega) > 0$ that

$$\left| \nabla A u \right|^2 - \lambda_1 |u|^2 - |\nabla B v|^2 - \lambda_2 |v|^2$$

\[
\leq \bar{\mu}^{A,B}(\Omega) \left(\mu_1 |u|^{2^*(s)} + \mu_2 |v|^{2^*(s)} + \gamma \int_{\Omega} \frac{|u|^\alpha |v|^\beta}{|x|^s} \right)^{\frac{2}{2^*(s)}} + \frac{1}{\bar{\mu}^{A,B}(\Omega)} \left(\left| \nabla A u \right|^2 + |z|^2 \right) + o(1) + o(1)
\]

which, combining with $(u,v) \neq (0,0)$, implies

$$\left| \nabla A u \right|^2 - \lambda_1 |u|^2 - |\nabla B v|^2 - \lambda_2 |v|^2 \leq \bar{\mu}^{A,B}(\Omega).$$

Then, $\bar{\mu}^{A,B}(\Omega)$ is attained by (u,v). It remains to show that (u,v) cannot be the type of $(0,0)$ or $(0,v)$. Suppose by contradiction that $\bar{\mu}^{A,B}(\Omega)$ is attained by $(0,0)$. Then

$$\bar{\mu}^{A,B}(\Omega) = \frac{\left| \nabla A u \right|^2 - \lambda_1 |u|^2}{\mu_1^{\frac{2}{2^*(s)}}} \geq \mu_1 \frac{2}{2^*(s)} \mu_s^{A,\lambda_1}(\Omega),$$

which contradicts to Lemma 3.2. Hence, (u,v) cannot be the type of $(0,0)$. Similarly, it cannot be $(0,v)$, which completes the proof. \qed

Remark 3.2. Even if $\bar{\mu}^{A,B}(\Omega) \leq 0$, it is also attained. Indeed, by (3.5) and $\mu_1 |u|^{2^*(s)} + \mu_2 |v|^{2^*(s)} + \gamma \int_{\Omega} \frac{|u|^\alpha |v|^\beta}{|x|^s} \leq 1$, we obtain

$$\left| \nabla A u \right|^2 - \lambda_1 |u|^2 + |\nabla B v|^2 - \lambda_2 |v|^2$$

\[
\leq \mu^{A,B}(\Omega) \left(\mu_1 |u|^{2^*(s)} + \mu_2 |v|^{2^*(s)} + \gamma \int_{\Omega} \frac{|u|^\alpha |v|^\beta}{|x|^s} \right).
\]

4. Ground states for the equations

By Lemma 3.4, Theorems 1.3 1.8 follow from Theorems 1.1 1.4 respectively. Considering (1.3), by Theorem 1.5 we assume that u_{μ_1} and v_{μ_2} are ground state solutions of $-\Delta_A u = \mu_1 \frac{|u|^{2^*(s)} - 2u}{|x|^s}$ and $-\Delta_B v = \mu_2 \frac{|v|^{2^*(s)} - 2v}{|x|^s}$, respectively. It
follows from Lemma [2.3] that the ground state energies are
\[M_{\mu_1} := \frac{2 - s}{2(N - s)} \mu_1 \left(\mu_s(R^N) \right)^{\frac{2 - s}{2}} \quad \text{and} \quad M_{\mu_2} := \frac{2 - s}{2(N - s)} \mu_2 \left(\mu_s(R^N) \right)^{\frac{2 - s}{2}}. \]

We claim that if \(\gamma < 0 \), then \([1.3]\) has no nontrivial ground state solution, which is the reason that we only consider the case \(\gamma > 0 \) in this paper. In fact, if \(\gamma < 0 \), then
\[
|\nabla u|^2_{2,R^N} - \mu_1 |u|^{2^*(s)}_{2^*(s),s,R^N} = \frac{\alpha \gamma}{2^*(s)} \int_{R^N} \frac{|u|^\alpha |v|^\beta}{|x|^s} \leq 0,
\]
which implies
\[
\mu_1 |u|^{2^*(s)}_{2^*(s),s,R^N} \geq |\nabla u|^2_{2,R^N} \geq \mu_s^A(R^N) |u|^{2^*(s)}_{2^*(s),s,R^N}.
\]
If \(u \in D_{A,A}^1(R^N) \), then \(|u|^{2^*(s)}_{2^*(s),s,R^N} \geq \mu_s^A(R^N) \left(\mu^A_s(R^N) \right)^{\frac{1}{2^*(s) - 2}} \), which yields that
\[
|\nabla u|^2_{2,R^N} \geq \mu_s^A(R^N) \left(\mu^A_s(R^N) \right)^{\frac{1}{2^*(s) - 2}}.
\]
Therefore,
\[
M_{\mu_1} = \frac{2 - s}{2(N - s)} \mu_1 \left(\mu_s(R^N) \right)^{\frac{2 - s}{2}} \leq \frac{2 - s}{2(N - s)} |\nabla u|^2_{2,R^N}.
\]
Similarly, \(M_{\mu_2} \leq \frac{2 - s}{2(N - s)} |\nabla v|^2_{2,R^N} \) for any \(v \in D_{B,A}^1(R^N) \). Suppose that \((u, v)\) is a ground state solution of \([1.3]\). Then
\[
M_0 = I(u, v) = \frac{2 - s}{2(N - s)} \left(|\nabla u|^2_{2,R^N} + |\nabla v|^2_{2,R^N} \right)
\geq \begin{cases}
M_{\mu_2}, & \text{if } u = 0, v \neq 0, \\
M_{\mu_1} + M_{\mu_2}, & \text{if } u \neq 0, v \neq 0, \\
M_{\mu_1}, & \text{if } u \neq 0, v = 0.
\end{cases}
\]
It can be seen that \(M_0 \leq \min \{ M_{\mu_1}, M_{\mu_2} \} \), which means that \([1.3]\) has no nontrivial ground state solution. Define
\[
N' := \{ (u, v) \in D_{A,A} : u \neq 0, v \neq 0, |\nabla u|^2_{2,R^N} = \mu_1 |u|^{2^*(s)}_{2^*(s),s,R^N} + \frac{\alpha \gamma}{2^*(s)} \int_{R^N} \frac{|u|^\alpha |v|^\beta}{|x|^s}, \]
\[
|\nabla u|^2_{2,R^N} = \frac{\beta \gamma}{2^*(s)} \int_{R^N} \frac{|u|^\alpha |v|^\beta}{|x|^s} \}
\]
\[
M' := \{ (u, v) \in H_{A,A} : u \neq 0, v \neq 0, |\nabla u|^2_{2} - \lambda |u|^2_{2} = \mu_1 |u|^{2^*(s)}_{2^*(s),s} + \frac{\alpha \gamma}{2^*(s)} \int_{\Omega} \frac{|u|^\alpha |v|^\beta}{|x|^s}, \]
\[
|\nabla u|^2_{2} - \lambda |u|^2_{2} = \frac{\beta \gamma}{2^*(s)} \int_{\Omega} \frac{|u|^\alpha |v|^\beta}{|x|^s} \}
\]
\[
M'_0 := \inf_{(u,v) \in N'} I(u, v) \text{ and } M' := \inf_{(u,v) \in M'} E(u, v). \]
It can be seen from Theorems [1.5] and [1.6] that
\[
|\nabla u|^2_{2,R^N} \geq \left(\frac{2(N - s)}{2 - s} M_1 \right)^{\frac{2 - s}{N - s}} |u|^{2^*(s)}_{2^*(s),s,R^N}, \quad \forall u \in D_{A,A}^1(R^N) \quad (4.1)
\]
Define functions:

\[F_1(k,l) := \mu_1 k^{2\gamma/(s-2)} + \frac{\alpha \gamma}{2^s(s)} k^{\frac{s+2}{2}} l^{\beta/2} - 1, \quad k > 0, l \geq 0; \]

\[F_2(k,l) := \mu_2 l^{2\gamma/(s-2)} + \frac{\beta \gamma}{2^s(s)} k^{\frac{s+2}{2}} l^{\beta/2} - 1, \quad k \geq 0, l > 0. \]

(4.2)

Following the arguments as in [8, Lemma 2.4] or [14, Proposition 2.2], we have the following result.

Proposition 4.1. If (A6) holds, then

\[k + l \leq k_0 + l_0, \]

\[F_1(k,l) \geq 0, \quad F_2(k,l) \geq 0, \quad k,l \geq 0, \quad (k,l) \neq (0,0) \]

has a unique solution \((k,l) = (k_0,l_0)\), where \((k_0,l_0)\) is defined by (1.6).

Proof of Theorem 1.1. Recalling (1.5), we see that \((\sqrt{k_0}U, \sqrt{l_0}U) \in \mathcal{N}', \) that \((\sqrt{k_0}U, \sqrt{l_0}U)\) is a nontrivial solution of (1.3), and that

\[M'_0 \leq I(\sqrt{k_0}U, \sqrt{l_0}U) = \left(1 - \frac{1}{2^s(s)}\right)(k_0 + l_0)\left|\nabla_A U\right|_{2,\mathbb{R}^N}^2 = (k_0 + l_0)M_1. \]

(4.4)

On the other hand, assume that \(\{(u_n, v_n)\} \subset \mathcal{N}'\) is a minimizing sequence for \(M'_0\), that is, \(I(u_n, v_n) \to M'_0\) as \(n \to \infty\). Define

\[c_n = |u_n|_{2^*(s),s,\mathbb{R}^N}^2, \quad d_n = |v_n|_{2^*(s),s,\mathbb{R}^N}^2, \]

and by (4.1), we obtain

\[\left(\frac{2(N-s)M_1}{2-s}\right)^{\frac{2-s}{s}} c_n \leq |\nabla_A u_n|_{2,\mathbb{R}^N}^2 \]

\[= \mu_1 |u_n|_{2^*(s),s,\mathbb{R}^N}^2 + \frac{\alpha \gamma}{2^s(s)} \int_{\mathbb{R}^N} \frac{|u_n|^\alpha |v_n|^\beta}{|x|^s} \]

\[\leq \mu_1 c_n^{\frac{2\gamma}{s}} + \frac{\alpha \gamma}{2^s(s)} c_n^{\frac{\beta}{s}} c_n^{\frac{\beta}{s}}, \]

\[\left(\frac{2(N-s)M_1}{2-s}\right)^{\frac{2-s}{s}} d_n \leq |\nabla_A v_n|_{2,\mathbb{R}^N}^2 \]

\[= \mu_2 |v_n|_{2^*(s),s,\mathbb{R}^N}^2 + \frac{\beta \gamma}{2^s(s)} \int_{\mathbb{R}^N} \frac{|u_n|^\alpha |v_n|^\beta}{|x|^s} \]

\[\leq \mu_2 d_n^{\frac{2\gamma}{s}} + \frac{\beta \gamma}{2^s(s)} d_n^{\frac{\beta}{s}} d_n^{\frac{\beta}{s}}. \]

(4.5)

Dividing both sides of the inequalities by \(\left(\frac{2(N-s)M_1}{2-s}\right)^{\frac{2-s}{s}} c_n\) and \(\left(\frac{2(N-s)M_1}{2-s}\right)^{\frac{2-s}{s}} d_n\), respectively, and setting

\[\tilde{c}_n = \frac{c_n}{\left(\frac{2(N-s)M_1}{2-s}\right)^{\frac{2-s}{s}}}, \quad \tilde{d}_n = \frac{d_n}{\left(\frac{2(N-s)M_1}{2-s}\right)^{\frac{2-s}{s}}}, \]

and

\[|\nabla u|^2 - \lambda |u|^2 \geq \left(\frac{2(N-s)M_2}{2-s}\right)^{\frac{2-s}{s}} |u|^2_{2^*(s),s}, \quad \forall u \in H^1_A(\Omega). \]
we have
\[\mu_1 \hat{e}_n^{s(z)-2} + \frac{\alpha \gamma}{2^s(z)} c_n^{\frac{s(z)}{2}} d_n^{\beta/2} \geq 1, \]
\[\mu_2 \tilde{d}_n^{s(z)-2} + \frac{\beta \gamma}{2^s(z)} c_n^{\frac{s(z)}{2}} d_n^{\beta/2} \geq 1, \]
i.e., \(F_1(\hat{e}_n, \tilde{d}_n) \geq 0 \) and \(F_2(\hat{e}_n, \tilde{d}_n) \geq 0 \). Then, Proposition 4.1 ensures that \(\hat{e}_n + \tilde{d}_n \geq k_0 + l_0 \), which means that
\[c_n + d_n \geq (k_0 + l_0) \left(\frac{2(N - s)M_1}{2 - s} \right)^{\frac{s(z)}{2}}. \] (4.6)

It follows from (4.4), (4.5) and \(I(u_n, v_n) = \frac{2 - s}{2(N - s)} \|(u_n, v_n)\|_{L^2, A}^2 \) that
\[\left(\frac{2(N - s)M_1}{2 - s} \right)^{\frac{s(z)}{2}} (c_n + d_n) \leq \frac{2(N - s)}{2 - s} I(u_n, v_n) \]
\[= \frac{2(N - s)}{2 - s} M'_0 + o(1) \]
\[\leq \frac{2(N - s)}{2 - s} (k_0 + l_0) M_1 + o(1). \]
Combining this with (4.6), we obtain
\[c_n + d_n \to (k_0 + l_0) \left(\frac{2(N - s)M_1}{2 - s} \right)^{\frac{s(z)}{2}}, \quad \text{as } n \to \infty. \]

Therefore,
\[M'_0 = \lim_{n \to \infty} I(u_n, v_n) \]
\[\geq \lim_{n \to \infty} \frac{2 - s}{2(N - s)} \left(\frac{2(N - s)B_1}{2 - s} \right)^{\frac{s(z)}{2}} (c_n + d_n) = (k_0 + l_0) M_1. \]
By (4.4), we have
\[M'_0 = (k_0 + l_0) M_1 = I(\sqrt{k_0} U, \sqrt{l_0} U). \] (4.7)

Theorem 1.7 ensures that \(M_0 \) is attained by a nontrivial ground state solution \((u, v) \in \mathcal{N} \) of (1.3) with \(B = A \). It is easy to see that \((u, v) \in \mathcal{N}' \), which implies that
\[M_0 = I(u, v) \geq \inf_{(\bar{u}, \bar{v}) \in \mathcal{N}'} I(\bar{u}, \bar{v}) = M'_0. \]

Obviously, \(M_0 \leq M'_0 \) follows from \(\mathcal{N}' \subset \mathcal{N} \). Therefore, \(M_0 = M'_0 \), and combining this with (4.7), we see that \((\sqrt{k_0} U, \sqrt{l_0} U) \) is a ground state solution of (1.3). By (4.7), Theorem 1.5 and Lemma 2.3, we have
\[M_0 = \frac{2 - s}{2(N - s)} (k_0 + l_0) \left(\mu_2(\mathbb{R}^N) \right)^{\frac{s(z)}{2}}. \]

The proof Theorem 1.11 is similar to that of Theorem 1.10, it is omitted.

5. Application in three dimensions

In this section, we consider a constant magnetic field in dimension 3 as an application of Theorems 1.1 and 1.3.
Constant magnetic field. Let $\tilde{A} : \mathbb{R}^3 \to \mathbb{R}^3$ be $\tilde{A}(x_1,x_2,x_3) := (-x_2,x_1,0)$, which is called constant magnetic potential as curl $\tilde{A} = 2 \neq 0$. Theorem 1.1 guarantees that $\mu_1^{rA}(\mathbb{R}^3)$ is not achieved, and then

$$(-i\nabla + r\tilde{A})^2 u = \frac{|u|^{2^*(s)-2} u}{|x|^s}, \quad u \in D_{\tilde{A}}^{1,2}(\mathbb{R}^N)$$

has no ground state solution, where r is a nonzero real number. By Theorem 1.3 we obtain that under condition (A3), $\mu_{r_1A}^{r_2A}(\mathbb{R}^3)$ is not attained, and thus,

$$(-i\nabla + r_1\tilde{A})^2 u = \mu_1 \frac{|u|^{2^*(s)-2} u}{|x|^s} + \frac{\alpha \gamma}{2^*(s)} |u|^{\alpha-2} |u|^\beta,$$

$$(-i\nabla + r_2\tilde{A})^2 v = \mu_2 \frac{|v|^{2^*(s)-2} v}{|x|^s} + \frac{\beta \gamma}{2^*(s)} |u|^{\alpha} |v|^{\beta-2} v,$$

$u, v \in D_{\tilde{A}}^{1,2}(\mathbb{R}^3)$ has no ground state solution, where r_1 and r_2 are nonzero real numbers.

Acknowledgments. This research was supported by the NSFC (Nos. 11371212, 11271386).

The authors thank the anonymous referee for pointing out an error. Melgaard kindly acknowledges the hospitality of Tsinghua University during his visits in 2014 and 2015.

References

ZHENYU GUO

School of Sciences, Liaoning Shihua University, Fushun 113001, China.

Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China

E-mail address: guozy@163.com

MICHAEL MELGAARD (Corresponding Author)

Department of Mathematics, University of Sussex, Brighton BN1 9QH, Great Britain

E-mail address: m.melgaard@sussex.ac.uk, phone +44 (0) 1273 67 8933

WENMING ZOU

Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China

E-mail address: wzou@math.tsinghua.edu.cn