Theory of mind and school achievement: the mediating role of social competence

Article (Accepted Version)

This version is available from Sussex Research Online: http://sro.sussex.ac.uk/id/eprint/69954/

This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher’s version. Please see the URL above for details on accessing the published version.

Copyright and reuse:
Sussex Research Online is a digital repository of the research output of the University.

Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available.

Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.
Theory Of Mind And School Achievement: The Mediating Role Of Social Competence

Serena Lecce*, Marcella Caputi**, Adriano Pagnin*, & Robin Banerjee***

* University of Pavia; ** University Vita-Salute San Raffaele and *** University of Sussex

Author Note

Serena Lecce, University of Pavia, Italy;
Marcella Caputi, University Vita-Salute San Raffaele, Italy;
Adriano Pagnin, University of Pavia, Italy;
Robin Banerjee, University of Sussex, United Kingdom.

All correspondence should be addressed to

Serena Lecce
Department of Brain and Behavioral Sciences, University of Pavia
P.zza Botta 6, 27100 Pavia.
E-mail: slecce@unipv.it,
tel: +39 0382 986485
fax: +39 0382 986132
Recent findings have highlighted the importance of children's social understanding – specifically their reasoning about beliefs and emotions – for school achievement. However, little is known about the processes that may account for such a relationship. In this longitudinal study we examined the role of children's social competence (as indexed by peer relationships and social skills), using a multi-informant and multi-indicator approach. We followed 73 children during the transition to primary school, gathering data at three time points: Time 1 (age 5), Time 2 (age 7) and Time 3 (age 8). Structural equation modelling showed that Time 1 social understanding predicted Time 2 social competence, which in turn predicted Time 3 school achievement, independently of verbal ability. Moreover, social competence mediated the relationship between early social understanding and later school achievement. Theoretical and practical implications of these findings are discussed.

Keywords: social competence, academic achievement, social understanding, theory of mind
Social Understanding and School Achievement: The Mediating Role of Social Competence

1. Introduction

Recent years have seen a dramatic increase in research on children's social understanding, defined as the ability to attribute inner states to oneself and others and to understand the links between these inner states and social behaviour (Wellman, Phillips, & Rodriguez, 2000). This interest is partly due to the fact that individual differences in children’s understanding of mental states are clearly pertinent to different aspects of social behaviour, both in typical and atypical populations (e.g., Flavell, 2004; Hughes & Leekam, 2004). The present study takes as its premise the notion that social understanding is multi-faceted, made up of several components and processes. We focused on two key components: belief (making inferences about others’ thoughts and beliefs) and emotion understanding (making inferences about emotions and feelings in given social scenarios). The importance of considering these components comes from studies showing that these two domains of social understanding develop concurrently (Hughes, 2011) and independently predict social preference (Fink, Begeer, Hunt, & de Rosnay, 2014).

Existing research has been mainly conducted with preschoolers. However, social understanding is likely to play an important role in children's school adjustment as social relationships are a key aspect of school life (Mashburn & Pianta, 2006). As Dunn (1995, p. 188) pointed out, “Children’s adjustment to the world of school, to the judgments of teachers, to the peer culture… may all be linked to some features of their early understanding of others’ inner states”. Yet, despite these considerations, little research has been conducted to expand the study of social understanding beyond developmental psychology to include an educational perspective.

The paucity of research in this area can be explained by both methodological and theoretical reasons. First of all, investigating the effects of social understanding on schooling requires a longitudinal design with a reasonable number of children, which is highly labour-intensive and time-consuming. Second, extending research beyond early childhood implies assessing the multiple
sociocognitive skills possessed by school children, such as higher-order reasoning (Grueneisen, Wyman, & Tomasello, 2015; Perner, Kain, & Barchfeld, 2002) and recognition of complex emotions (Golan, Baron-Cohen, & Golan, 2008). In the present paper, we address both these issues, reporting on a longitudinal investigation of the relationship between children's social understanding and school achievement in primary school. In examining such an issue we were particularly interested in testing whether the hypothesized effect of early social understanding on later school achievement is explained, at least in part, by the mediating effect of children's social competence, expressed as the ability to build positive relationships and show social skills.

1.1 Social Understanding and School Achievement

Researchers are beginning to explore the repercussions of social understanding on school achievement (Wellman, 2016). A number of studies have indeed shown that children with a good level of emotional competence are more likely to develop a positive attitude toward school, to successfully adjust to the world of school and to improve grades and achievement (e.g., Denham, 2006). For example, Izard and colleagues (2001) showed that emotion knowledge (the ability to interpret and name facial expressions) at age 5 predicted children’s school achievements at age 9. More recently, Denham and colleagues (2012) found that 3- and 4-year-olds’ emotion knowledge predicted teacher-reported school success a few months later. Other studies have focused on emotion understanding, defined as the ability to infer others’ emotions and to understand their links with social behaviour. Shields and colleagues (2001) reported emotion understanding as a significant predictor of young children's school adjustment. Another investigation showed that, after accounting for demographic variables, emotion understanding is directly associated with children's performance on a standardized school competence measure (Garner & Waajid, 2008). Finally, where cognitive aspects of social understanding are concerned, Blair and Razza (2007) showed that preschoolers’ false-belief performance predicted later letter knowledge, even when individual differences in age, verbal ability, gender and family income were all taken into account.
Thus, even though belief and emotion understanding can be meaningfully differentiated (Cutting & Dunn, 1999; Fink et al., 2014), they both potentially play a role in children’s school achievement. This perspective fits with results of McKown, Russo-Ponsaran, Allen, Johnson, and Warren-Khot (2015) showing that social-emotional comprehension of children aged kindergarten through fifth grade was related to reading performances. This is also consistent with theoretical work and empirical evidence showing that belief understanding and emotion understanding, while clearly distinguishable, are intimately related indicators of a broader, overarching social understanding construct (Caputi, Lecce, Pagnin, & Banerjee, 2012; Hughes et al., 2000; Hughes et al., 2014; Lecce & Hughes, 2010).

A crucial next step is to learn more about the developmental processes that connect social understanding with school achievement over time. First of all, new longitudinal evidence is needed to elucidate the timing of the associations during the school years. For example, we need to determine whether early social understanding predicts higher school achievement over a period of time. Furthermore, understanding this developmental pathway in turn depends on having an insight into the explanatory mechanisms that may account for the relation between early social understanding and later school outcomes.

1.2 The Mediating Role of Social Competence

One such mechanism concerns children’s social competence, expressed as the ability to build positive relationships and to behave effectively in social contexts (Rose-Krasnor, 1997). A growing number of studies show a developmental association between children’s social understanding and social competence at school (Slaughter, Imuta, Peterson, & Henry, 2015). With reference to peer relationships, for example, Banerjee and colleagues have demonstrated that individual differences on an advanced measure of social understanding are negatively associated with individual differences in peer rejection (Banerjee & Watling, 2005). They also present evidence for a bidirectional model according to which early peer rejection impairs the acquisition of social understanding, and difficulties in social understanding, in turn, predict increased peer
rejection (Banerjee, Watling, & Caputi, 2011). More recently, Caputi and colleagues (Caputi et al., 2012) showed a relationship – mediated by improvements in prosocial behaviour – between social understanding in preschool and lower peer rejection and higher peer acceptance two years later in primary school.

This pattern of connections between social understanding and peer relations is likely to reflect systematic variations in how children behave socially (Hughes & Leekam, 2004). Children with more advanced social understanding are indeed found to exhibit a higher frequency of prosocial behaviour (Caputi et al., 2012; Ensor, Spencer, & Hughes, 2011), to adopt socially competent forms of conflict resolutions with siblings (Foote & Holmes-Lonergan, 2003; Randell & Peterson, 2009), and to show greater social competence (Peterson, Slaughter, & Paynter, 2007). Conversely, impaired social understanding has been suggested to be an important contributor to the development of antisocial behaviours and conduct problems (Hughes, & Ensor, 2007; 2009; Sharp, 2006, 2008; Sharp, Croudace, & Goodyer, 2007), even if antisocial behaviour may arise for various reasons in different individuals (see Hughes, 2011). Nonetheless, the evidence reviewed above provides a strong basis for expecting children’s social understanding to serve as a crucial predictor of the quality of children's social competence in the context of the classroom.

We believe that this connection between social understanding and social competence in turn provides an important key to understanding children’s school achievement. A growing body of research shows that peer acceptance and rejection are strong predictors of school readiness and school success (Ryan & Ladd, 2012). In a pioneering investigation on this issue, Ladd, Kochenderfer, and Coleman (1997) reported that children’s relationships (friendship, peer victimization, and peer acceptance) significantly contribute to school affect, school liking and school performance during kindergarten and Buhs and colleague showed that rejected children were more likely to show a decrease in academic achievement in the short (Buhs & Ladd, 2001) and long term (Buhs, Ladd, & Herald, 2006).
Again, these patterns are likely to reflect the significance of social behaviour patterns. Numerous studies have, indeed, demonstrated that prosocial and well-behaved children are more likely to report better school outcomes than antisocial and aggressive ones (DiPerna & Elliott, 1999; Wentzel, 1993). Notably, the relation between ratings of social competence and school achievement is longitudinal as well as concurrent. For example, Maleki and Elliott (2002) found that students’ social competence, as rated by teachers in the fall of Year 3 and 4, is a significant predictor of their spring academic competence. In a similar vein, Caprara and colleagues (Caprara, Barbaranelli, Pastorelli, Bandura, & Zimbardo, 2000) showed that children’s third-grade prosocial behaviour predicts their eighth-grade school achievement, even after controlling for variation in early school achievement. Whereas prosocial and socially competent behaviours seem to foster school engagement and success, peer problems and aggression are risk factors for school outcomes. Indeed, children with higher levels of externalizing behaviour between toddlerhood and school-age are at increased risk of academic difficulties throughout later childhood and adolescence (Campbell, Spieker, Burchinal, & Poe, 2006; Fergusson & Horwood, 1995). For example, Brennan, Shaw, Dishion, and Wilson (2012) reported that age 2–3 aggression was a significant predictor of age 7.5 academic performance and van Lier and colleagues (2012) showed that externalizing problems at age 6 led to academic underachievement at age 7.

Still more convincing reasons for expecting a significant association between individual differences in children's social competence and school achievement come from intervention studies. Recently, Durlak and colleagues reported results on a meta-analysis on 213 social-and-emotional-learning (SEL) programs designed to foster students’ self-awareness, self-management, social awareness, relationship skills and decision making from kindergarten through high school (Durlak, Weissberg, Dymnicki, Taylor, & Schellinger, 2011). Interestingly, results showed that the SEL programs not only yielded positive effects on targeted competencies (i.e., social and emotional skills), but also positively influenced children’s school achievement (measured by math and reading tests) over a period of six months.
In confirmation of these speculations about the role of social competence in mediating the relationship between social understanding and school achievement, two studies have so far addressed this topic with a short-term longitudinal design. The above cited study conducted by Denham and colleagues (2012), for example, showed that preschoolers’ social-emotional behaviour mediates the relation between emotion knowledge and subsequent school success. Along the same lines, the study conducted by Ziv (2013) found that preschoolers’ social competence partially mediates the relation between social information processing and school readiness. In both these studies, therefore, preschoolers’ early sociocognitive and emotional skills predicted different aspects of subsequent school achievement (school adjustment, language, literacy, mathematical thinking, general knowledge and learning behaviours) by means of a social mediator. It is also important to note here that the seminal paper by Izard and colleagues (2001), although it did not explicitly test this particular mediation model, showed that individual differences in emotion knowledge at age 5 significantly predict teachers’ ratings of children’s social skills at age 9 which, in turn, were significantly related to school achievement.

In sum, there is a strong base for the argument that social competence is a crucial lynch-pin that connects social understanding with school achievement. Drawing on recent advances regarding this topic, we used a multi-informant and multi-indicator approach to provide a broad representation of the underlying social competence construct. We measured children's peer relationships (through peer nominations) and social skills when interacting with classmates (through teachers’ ratings). For the evaluation of peer relationships we examined the extent to which a child is liked (peer acceptance) or disliked (peer rejection) by his/her classmates. The separate measurement of acceptance and rejection is used because, even though these variables are moderately (inversely) related one another, they cannot be considered simply as polar opposites (Bukowski, Sippola, Hoza, & Newcomb, 2000). Moreover, we combined the sociometric nominations with teacher ratings of children’s social maturity and of conduct problems; again, while the latter negative social behaviours within a classroom are certainly important (Burt & Roisman, 2010; van Lier et al.,
positive social behaviours are also likely to be a powerful predictor of school achievement as children grow up (Caprara et al., 2000).

Our multi-informant approach fits with results of existing literature showing significant correlations, both within and across time, between teachers’ rating of social competence and peer ratings of social preference (Chen, Wang & Cao, 2011; Fink, de Rosnay, Peterson, Slaughter, 2013; Ladd, 2005; Newcomb, Bukowski, & Pattee, 1993). It is also important to note that those studies that have adopted a structural equation modelling approach to the study of social competence have combined teacher and peer reports to form composite robust measure (Caprara et al., 2000; Welsh, Parke, Widaman, & O’Neil, 2001).

1.3 The Present Study

The work reported below had two main goals. First, we investigated the existence of a longitudinal relationship between early social understanding and later school achievement. The second aim was to examine the role of children’s social competence in this association, given the evidence above that social understanding predicts social competence and that social competence predicts school achievement. In addition, since verbal ability has been linked with both social understanding (Milligan, Astington, & Dack, 2007) and school achievement (Hohm, Jennen-Steinmetz, Schmidt, & Laucht, 2007; Taanila, Murray, Jokelainen, Isohanni, & Rantakallio, 2005), the present study also evaluated whether the above expected associations were independent of children’s verbal ability.

In order to address these aims, we report results from a bigger longitudinal study designed to investigate socio-cognitive predictors of children’s school adjustment. For the purpose of the present study we focused on three time points, when the children were aged 5, 7, and 8 years (with the first time point in kindergarten, and the later time points in Years 2 and 3 of primary school). Previous studies reporting on data from the same empirical programme have already shown that children's social understanding at age 5 significantly predicts higher peer acceptance and lower peer rejection (Caputi et al., 2012) and level of school achievement at ages 7 and 10 (Lecce et al., 2011, 2014b).
In the study reported here, we integrated the social and cognitive domains of school adjustment for the first time in this large programme of work by evaluating pathways connecting social understanding at age 5, social competence at age 7, and children's actual performance at age 8 on math and reading tests together with teachers' ratings. In line with the previous work, we expected that individual differences in preschool social understanding would predict individual differences in children’s school achievement (in the third year of primary school) over and above verbal ability. Most importantly, we also tested the hypothesis that social competence would mediate the association between early social understanding and later school achievement.

2. Materials and Method

2.1 Participants

A sample of 84 children was recruited in kindergartens to take part in a longitudinal study on socio-cognitive predictors of school adjustment. This paper presents data from the 73 children (41 boys) for whom we have complete data on the three key variables of this study: social understanding in the last year of preschool (Time 1), peer relationships in Year 2 of primary school (Time 2) and school achievement in Year 3 of primary school (Time 3). Children were 5 years old ($M = 64.38$ months, $SD = 3.93$ months, range = 52-65 months) at Time 1, 7 years old ($M = 90.38$ months, $SD = 3.29$, range = 83-96 months) at Time 2, and 8 years old ($M = 103.3$ months, $SD = 3.13$ months, range = 97-109 months) at Time 3. The schools were located in a city of Northern Italy and surrounding towns, in areas with mixed socioeconomic backgrounds. At Time 1, children were attending 13 different kindergartens (16 classes): 11 public schools (13 classes), and two private schools (three classes). At Time 2, children moved to 18 different primary schools (21 classes): 17 public schools (20 classes) and one private school (one class). In each class there were two main teachers. At Time 3, none of the study children changed schools. All the children were of Caucasian origin and native Italian speakers. No participant was clinically referred for cognitive or learning difficulties.
With regard to parental occupation, 18% of the fathers were in professional/managerial occupations, 46% were in skilled non-manual occupations, and 36% were in manual occupations or unemployed; 12% of the mothers were in professional/managerial occupations, 55% were in skilled non-manual occupations, and 33% were in manual occupations or unemployed. With regard to parental education, 40% of fathers and 25% of mothers had a University degree, 33% of fathers and 50% of mothers had high school diploma, and 27% of fathers and 25% of mothers had General Certificates of Secondary Education. In terms of family structure, 100% of children came from two-parent families; 36% of the children were singletons, 56% had one sibling, 7% had two siblings, and 1% had three siblings.

2.2 Procedure

At every time point, each child completed a battery of social understanding tasks and a verbal ability task. At Time 2 we evaluated children’s social competence using sociometric nominations to assess peer relationships and teacher’s ratings to assess social competence. Finally, we gathered children’s school achievement at Time 3 via both children’s performance on reading and math tests and teacher’s ratings. All children were tested individually in an empty classroom of the (pre)school every year between March and April.

2.3 Measures

2.3.1 Verbal ability. Children’s verbal ability was assessed using the Peabody Picture Vocabulary Test - Revised (PPVT-R, Dunn & Dunn, 1981; Italian version by Stella, Pizzoli, & Tressoldi, 2000) at Time 1 and the Test for Reception of Grammar (TROG - Bishop, 1982; Italian adaptation: Cendron, Lonciari, & Sartori, 1995, personal communication) at Time 2 and Time 3. The PPVT-R measures children’s receptive language. The experimenter reads a word and presents four pictures to the child, who is then asked to point to the picture that best represents the word (e.g., “Can you show me the dog?”). The TROG measures children’s understanding of sentences (and not only single words). The child is asked to choose a picture from four alternatives that best corresponds to the meaning of the sentence read aloud by the experimenter. This test comprises 80
items, divided into 20 blocks, presented in a fixed order. Each block contains four items that measure the same syntactic ability. Since the latter verbal ability test focuses on grammar structures, it gave us the possibility to operate a more stringent control for verbal ability in our analyses. It should be noted that the verbal ability measures were robustly correlated with each other across the three time points ($r > .40$, $p < .001$).

2.3.2 Social understanding. At each time point social understanding was evaluated through belief and emotion understanding tasks. Belief understanding was assessed with a battery of false-belief at Time 1 (Hughes et al., 2000) and age-relevant subtests of the Theory of Mind Test (TMT - Pons & Harris, 2002) at Time 2 and 3. Emotion understanding was assessed with a battery of emotion understanding tasks at Time 1 (Hughes et al., 2000) and age-relevant subtests of the Test of Emotion Comprehension (TEC - Pons & Harris, 2000) at Time 2 and 3. The strategy of selecting specific subtests from these two scales has been successfully used in existing studies (De Stasio, Fiorilli, & Di Chiaccio, 2014; Lecce, Bianco, Demicheli, & Cavallini, 2014) as it allows us to tap into individual differences on developmental appropriate skills rather than define the level of development. More details on these tasks are given in the Appendix.

2.3.3 Social competence At Time 2 children’s social competence was evaluated through teachers’ and peers’ ratings. Teachers were asked to evaluate children’s social competence by completing the Conduct Problems scale of the Strengths and Difficulties Questionnaire (SDQ, Goodman, 1997) and the Social Maturity Scale (Peterson et al., 2007). The Conduct Problems subscale is made up of 5 items and evaluates the frequency of problems in the child's social relationships on a 3-point scale (e.g., “Often fights with other children or bullies them”) (range 0-10). The Social Maturity Scale is made up of 7 items and considers children's social skills for interacting with their peer group (e.g., “The maturity of the child’s everyday modes of playing sociably with peers”). Items were rated on a 7-point scale, from 1= “very far behind the average child this age” through 4 = “about average for children this age” to 7 = “very far ahead of the average child this age” (range 7-49). Peers’ ratings were collected following Coie, Dodge and
Coppotelli’s (1982) procedure. Children were asked to nominate three classmates of either sex whom they most liked (ML) and three classmates whom they least liked (LL). The numbers of ML and LL nominations received by every child were standardized within each classroom to give a measure of children’s peer acceptance (ML) and rejection (LL). Peer nominations were provided by the entire class of each participating child; every child made the nominations by identifying names from a complete class roster.

2.3.4 School achievement. At Time 3 we assessed children’s school achievement using teachers’ ratings on the academic competence subscale of the Social Skills Rating System (SSRS - Gresham & Elliott, 1990) and children’s performance on reading (MT - Cornoldi & Colpo, 1995) and math tests (AC-MT - Cornoldi, Lucangeli, & Bellina, 2002). The academic competence subscale of the SSRS is made up of 9 items. Teachers are asked to rate each single child’s performance in comparison with other children in the classroom using a 5-point Likert scale: 1 represents the lowest 10% of the class, 2 the next lowest 20%, 3 the middle 40%, 4 the next highest 20% and 5 the highest 10%. Scores thus ranged between 9 and 45. The MT reading comprehension task consists of a passage that children have to read silently without time limit. After reading, children were required to answer ten multiple-choice questions. All questions probed inferential information. One point was credited for each correct answer, hence scores ranged between 0 and 10. The AC-MT math test consists of a standardized math battery for third graders evaluating four math abilities: judgement of numerosity, transformation from letters into numbers, and re-writing a series of numbers in order of increasing and decreasing size. Each of these four components is made up of three items. One point was credited for each item completed correctly, hence scores ranged between 0 and 12.

3. Results

We begin by showing descriptive analyses and by considering gender differences and associations between variables. We then report results of structural equation modeling to assess the mediating role of social competence in the relation between social understanding and school
achievement. This hypothesis was tested through Mplus software for structural equation modeling. Analyses with latent variables in Mplus allowed us to evaluate longitudinal associations between social understanding, social competence and school achievement, providing error estimates and controlling for verbal ability.

3.1 Preliminary Analyses

Descriptive statistics for all the study variables at each time point are presented in Table 1. A series of independent-samples t-tests showed no significant gender differences on any study measure. Therefore, we report findings for the whole sample collapsed across gender.

Table 1.

Means, Standard Deviations, and possible ranges of Verbal Ability (VA), Social Understanding (SU), Social Competence (SC) and School Achievement (SA) Measures at All Time Points

<table>
<thead>
<tr>
<th>Measure</th>
<th>M (SD)</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VA</td>
<td>74.80 (17.97)</td>
<td>0-175</td>
</tr>
<tr>
<td>SU - Belief understanding</td>
<td>5.04 (2.07)</td>
<td>0-10</td>
</tr>
<tr>
<td>SU - Emotion understanding</td>
<td>9.03 (1.97)</td>
<td>0-12</td>
</tr>
<tr>
<td>Time 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VA</td>
<td>15.04 (2.92)</td>
<td>0-20</td>
</tr>
<tr>
<td>SU - Belief understanding</td>
<td>6.30 (1.36)</td>
<td>0-10</td>
</tr>
<tr>
<td>SU - Emotion understanding</td>
<td>4.16 (1.31)</td>
<td>0-6</td>
</tr>
<tr>
<td>SC - Most like nominations</td>
<td>.42 (.97)</td>
<td>-</td>
</tr>
<tr>
<td>SC - Least like nominations</td>
<td>-.23 (.79)</td>
<td>-</td>
</tr>
<tr>
<td>SC - Social Maturity</td>
<td>30.72 (7.06)</td>
<td>7-49</td>
</tr>
<tr>
<td>SC - Conduct Problems</td>
<td>6 (1.62)</td>
<td>5-15</td>
</tr>
<tr>
<td>Time 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VA</td>
<td>16.49 (2.33)</td>
<td>0-20</td>
</tr>
<tr>
<td>SU - Belief understanding</td>
<td>6.89 (1.66)</td>
<td>0-10</td>
</tr>
<tr>
<td>SU - Emotion understanding</td>
<td>4.11 (1.25)</td>
<td>0-6</td>
</tr>
<tr>
<td>SA - Reading task</td>
<td>7.84 (1.36)</td>
<td>0-10</td>
</tr>
<tr>
<td>SA - Math task</td>
<td>10.08 (1.47)</td>
<td>0-12</td>
</tr>
<tr>
<td>SA - Academic competence subscale</td>
<td>33.95 (7.47)</td>
<td>9-45</td>
</tr>
</tbody>
</table>

This hypothesis was tested through Mplus software for structural equation modeling.
Table 2 shows the correlations among all the study variables. As expected, verbal ability was generally related to belief understanding and emotion understanding within each time point. Table 2 also shows that early and concurrent verbal ability was significantly associated with Time 2 positive aspects of social competence and with Time 3 school achievement. Thus, we controlled for verbal ability in our main analyses.

Preliminary inspection of modification indices indicated significant error covariances between the peer acceptance and peer rejection scores at Time 2 (not surprising given the common informants), and between the Time 1 social understanding construct and the Time 2 verbal ability measure (also conceptually reasonable in view of evidence regarding specific links between social understanding and grammatical constructions; see Milligan, Astington, & Dack, 2007). These two error covariances were therefore included in the model.

Our hypothesized relations were confirmed by the analyses (see Figure 1). The observed value of RMSEA demonstrates satisfactory model fit (Steiger, 1990). Results show that Time 1 social understanding predicted social competence at the subsequent time point, which, in turn, predicted school achievement later on. Moreover, the direct path from Time 1 social understanding to Time 3 school achievement was non-significant. We evaluated our hypothesized indirect (mediated) pathway, calculating standardized estimates in the Mplus model. It should be noted that we accounted for the direct effect of the initial variable (social understanding) on the outcome variable (school achievement) even though it was non-significant, in order to ensure the most accurate estimate of the indirect effect. The indirect effect of Time 1 social understanding on Time 3 school achievement, mediated by Time 2 social competence, was found to be significant (standardized indirect estimate = .42, $p = .038$).
Table 2.

Correlations between study measures: Verbal Ability (VA), Belief Understanding (BU), Emotion Understanding (EU), Most-Like Nominations (ML), Least-Like Nominations (LL), Social Maturity (SM), Conduct Problems (CP), Reading Test (RT), Math Test (MT), and Academic Competence (AC).

<table>
<thead>
<tr>
<th>Time 1</th>
<th>VA</th>
<th>BU</th>
<th>EU</th>
<th>ML</th>
<th>LL</th>
<th>SM</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time 1</td>
<td>VA</td>
<td>.35**</td>
<td>.26*</td>
<td>.42***</td>
<td>.04</td>
<td>.33**</td>
<td>.25*</td>
</tr>
<tr>
<td>BU</td>
<td>-.28*</td>
<td>.29**</td>
<td>.01</td>
<td>.20</td>
<td>.38**</td>
<td>-.21+</td>
<td>.25*</td>
</tr>
<tr>
<td>EU</td>
<td>-.34**</td>
<td>.09</td>
<td>.26*</td>
<td>.21+</td>
<td>-.24*</td>
<td>.37**</td>
<td>-.27*</td>
</tr>
<tr>
<td>Time 2</td>
<td>VA</td>
<td>-.09</td>
<td>.39**</td>
<td>.22*</td>
<td>-.16</td>
<td>.39**</td>
<td>-.18</td>
</tr>
<tr>
<td>BU</td>
<td>-.19</td>
<td>.19</td>
<td>.11</td>
<td>.10</td>
<td>.10</td>
<td>-.02</td>
<td></td>
</tr>
<tr>
<td>EU</td>
<td>-.26*</td>
<td>-.31**</td>
<td>.29*</td>
<td>-.25*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ML</td>
<td>-.54***</td>
<td>.39***</td>
<td>-.29*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LL</td>
<td>-.30**</td>
<td>.33**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM</td>
<td>-.45***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP</td>
<td>-.30**</td>
<td>-.14</td>
<td>-.15</td>
<td>-.37**</td>
<td>-.38**</td>
<td>-.49***</td>
<td></td>
</tr>
<tr>
<td>Time 3</td>
<td>VA</td>
<td>-.30**</td>
<td>-.14</td>
<td>-.15</td>
<td>-.37**</td>
<td>-.38**</td>
<td>-.49***</td>
</tr>
<tr>
<td>BU</td>
<td>-.35**</td>
<td>.30**</td>
<td>.18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EU</td>
<td>-.07</td>
<td>.35**</td>
<td>.30**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT</td>
<td>-.35**</td>
<td>.29*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MT</td>
<td>-.49***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
An inspection of modification indices showed no significant links from any of the indicator variables to the subsequent constructs over and above the pathways between the latent variables. Specifically, neither belief understanding nor emotion understanding appeared to have distinctive value for predicting the subsequent constructs in the analysis, over and above the shared variance reflecting the latent social understanding construct. Finally, we found that the indirect effect of Time 1 social understanding on Time 3 school achievement was virtually unchanged even after entering subsequent measures of social understanding at Time 2 and Time 3 (standardized indirect estimate = .41, \(p = .039 \)); the latter, in fact, did not significantly predict Time 3 school achievement above and beyond the distal effects of Time 1 social understanding.
Figure 1. Structural equation model of relationships between Social Understanding, Social Competence, and School Achievement over the three time points, controlling for verbal ability. Model fit statistics: χ²(47, N = 73) = 64.42, p = .046, root-mean-square error of approximation = .07. Displayed path coefficients are standardized estimates from Mplus, all significant with alpha set to .05. Dashed arrows indicate non-significant paths. Error terms are not displayed.
4. Discussion

The present study takes as its starting point the premise that the understanding of mental states has a critical interface with children's development not only in the social (Banerjee et al., 2011; Caputi et al., 2012) but also in the cognitive domain (Burr & Hofer, 2002; Lockl & Schneider, 2007). To date, the cognitive consequences of children’s social understanding have received surprisingly little research attention, even though it is known that the ability to infer beliefs serves as a key foundation for scientific thinking (Kuhn & Pearsall, 2000), for the understanding of the interpretive nature of knowledge (Carpendale & Chandler, 1996) and for beliefs about learning (Lecce, Caputi, & Pagnin, 2009; Lecce, Caputi, & Pagnin, 2014c). The analysis of results from the present study not only confirms that early (preschool) social understanding predicts children’s school achievement three years later but that this pathway is mediated by variations in children’s level of social competence. Interestingly, this pattern of associations was independent of children's verbal ability and concurrent level of social understanding.

4.1 Social Understanding and School Achievement: A Social Explanation

Our first main finding was the significant longitudinal association between children's social understanding and school achievement: children who outperformed their peers on mental-state understanding tasks in preschool were more likely to achieve better academic results three years later, independently of their verbal ability. Moreover, the link between social understanding and school achievement appears to be distal rather than proximal. Indeed, we found that Time 1 social understanding predicted unique variance in Time 3 school achievement, and that adding concurrent (Time 3) social understanding did not alter this relationship. Interestingly, the few longitudinal studies that have included measures of social understanding at more than one time point, have also stressed the relevance of across-time, rather than concurrent, associations between social understanding and a variety of outcomes including children’s talk with friends about thoughts and feelings (Hughes et al., 2011) and sensitivity to criticism (Cutting & Dunn, 2002; Lecce et al., 2014b; Lecce et al., 2011). This distal effect might indicate that individual differences in
young children’s social understanding have particular significance and are able to capture crucial features of the ability to understand others. On the other hand, other recent work has also shown a distal effect of social understanding in older children; performance on social understanding at age 10 was found to predict later metaknowledge about reading comprehension at age 11 (Lecce, Zocchi, Pagnin, Palladino, & Taumoepeau, 2010). One intriguing explanation is that social understanding at different ages generate variations in other dimensions that, in turn, are relevant to the social and cognitive outcomes outlined above.

This brings us to the main focus of the present research, namely the mediating role of social competence in the association between early social understanding and school achievement. The core finding of the present study is that children’s social competence (as evaluated via both teachers' and peers' reports) at 7 years of age mediated the association between social understanding at 5 years of age and school achievement at 8 years of age. Although conclusive statements about causality cannot be made, this developmental pathway suggests that social understanding may be important for success in school because it affects children's social relationships and behaviours which, in turn, are associated with school achievement. In other words, children's social understanding could sustain children in building positive relationships within the class by reducing the risk of peer rejection and antisocial behaviour, and this social competence, in turn, helps children to capitalize on learning situations and to increase school achievement.

Generally speaking, this result fits with the view that children’s abilities to cope with the social environment in the early school years are important factors in predicting academic performance (Entwisle & Hayduk, 1988; Lynch & Cicchetti, 1997; Pianta, Steinberg, & Rollins, 1995). Indeed, children at school are exposed to a new community of unfamiliar peers and adults, and the extent to which they are equipped with the socio-cognitive abilities necessary to fit into this new social environment is crucial for their school success. Notably, children continue to take advantage from their social experience in the classroom as they progress through primary and middle school, and the associations between social competence and academic outcomes remain
significant after controlling for gender, ethnicity, and cognitive ability (Hamre & Pianta, 2001). The present paper also contributes to a growing body of research emphasizing learning-related experiences in the classroom and, in particular, the quality of children's interactions at school (Binnie, 2005; Davis, 2003, Denham, 2006; Garner & Waajid, 2008; McDermott, Leigh & Perry, 2002; Roorda, Koomen, Spilt, & Oort, 2011).

From a more theoretical point of view, our results fit with the idea that learning and academic self-development are socially situated and rely heavily on interpersonal relationships. Students learn in close collaboration with peers and teachers; therefore, children’s academic engagement and success are likely to be strongly influenced by the quality of these social relationships. Such an interpretation is also in accord with the ecological perspective of socio-cognitive theories (Bandura, 1997; Vygotsky, 1962) that posit that children’s cognitive development is strongly influenced by the social environment and by interpersonal relationships. Accordingly, the construct of school readiness has been extensively revised over the last two decades in order to include not only cognitive factors but also social understanding and social relationships as prerequisites of successful school entrance (for reviews, see Denham, 2006, and Mashburn & Pianta, 2006).

In considering the associations between social competence and school achievement, researchers have also started to investigate the moderators and mediators that might be involved. As noted earlier, skills in executive function and emotional regulation are likely to be crucial for translating mature social understanding into effective social behaviour. Indeed, evidence strongly suggests that the ability to regulate one’s emotions is a crucial predictor of children's school achievement as it underlies children's ability to focus selective attention and to learn (Blair, 2002). For example, two separate studies have reported a significant relationship between emotion regulation and children's academic competence (measured via both teacher's ratings and children's scores on formal tests) at age 5 (Graziano, Reavis, Keane, & Calkins, 2007) and in Year 1 of primary school (Trentacosta & Izard, 2007). This may be related to broader influences of executive
function and self-regulatory skill. For example, Hughes and Ensor (2011) in a recent paper from the Toddlers Up longitudinal study showed that 6-year-old children’s self-perceived academic competence was significantly related to variation in executive function improvement from age 4 to age 6. A key direction for further research is therefore to identify the interaction between social understanding, executive function, and emotion regulation in predicting children’s peer relationships, social behaviour, and subsequent school achievement.

We should also situate the patterns observed in the present study within the wider social context, both in the school and beyond. Several hypotheses (not always directly tested) have been proposed about the link between social competence and academic learning. The first focuses on children's level of concentration on school tasks. According to this, difficulties in peer relationships may hinder the learning process because children get distracted from the learning situations (Welsh, Parke, Widaman, & O'Neil, 2001). The second hypothesis focuses on peer group as a learning context that may facilitate school outcome. In this view, Chen, Rubin and Li (1997) reported that popular children are also more likely to be cooperative, thus creating an environment that is conducive to learning, and to receive aid from classmates during class work if needed.

The third, and perhaps more intriguing, hypothesis is that social relationships impact on children's school liking and affect their motivation to learn. The most convincing evidence for such a process comes from the research conducted by Ladd and colleagues in the last fifteen years (for a review see Ladd, 2003). In a series of related studies they showed that the relation between peer rejection and school achievement is mediated by the negative treatment children receive from peers and reduced engagement in classroom activities. Interestingly, they found support for such a model both in young children attending kindergartners (Buhs & Ladd, 2001) and in older children (Buhs, 2005). More precisely, in a longitudinal study Buhs et al. (2006) followed a group of children from kindergarten through the 5th grade and showed that the effect of peer rejection on school achievement endures over time and is partially mediated by peer exclusion and classroom
participation. Thus, children with poor peer relationships are less involved in classroom activities and make less progress on school tasks.

More recently, Ladd, Herald-Brown and Reiser (2008) extended these data by demonstrating that changes in the quality of peer relationships are associated with changes in school achievement and concluded that the exclusion from the peer group “limit the quality and quantity of rejected children’s participation within classroom and playground activities, including those designed to promote learning and scholastic competence” (Ladd, Herald Brown, & Reiser, 2008, p. 1002). Importantly, research suggests that these patterns should be understood in terms of group processes. For example, Chen, Chang and He (2003) have demonstrated with a sample of Chinese children that the concurrent association between school achievement and social variables is moderated by group academic norms, with the relationship being stronger for groups characterized by higher levels of school performance. This result is interesting in that it is the first that shows how group characteristics play an important role on school achievement. However, more research is needed to confirm this result with children in Western cultures.

Another question concerns the direction of causality in the link between social and academic competence. Although this was beyond the scope of the present study (see limitations below), it is worth noting that some studies on Chinese (Chen et al., 2003; Chen et al., 1997) and Western children (Véronneau, Vitaro, Brendgen, Dishion, & Tremblay, 2010; Welsh et al., 2001) have reported reciprocal influences between peer relationships and academic performances. Thus, not only may good peer relations foster academic results, but also a high level of school performance may lead to positive peer relationships. Future research should investigate whether this is a universal or culture-dependent finding.

Finally, there is an important task ahead in considering the interplay between the multiple mediating mechanisms that have already been identified as relevant to the link between social understanding and school achievement. Work with a subsample of children from the present study has shown that the pathway from social understanding at age 5 to academic competence at age 7
and 10 is partially mediated by children's ability to take teachers' criticism into account (Lecce et al., 2014c; Lecce et al., 2011). Lecce and colleagues have also demonstrated that social understanding in primary school-aged children significantly predicts later metacognitive knowledge about reading comprehension (Lecce et al., 2010), and links between metacognition and school performance are well established (Brown, Armbruster, & Baker, 1986; Garner, 1987; Orasanu, 1986; Paris, Cross, & Lipson, 1984). The present study clearly makes a novel contribution in outlining the role played by much wider social dimensions of children’s school adjustment, but new research looking in more detail at very specific aspects of children’s behaviour in learning contexts (both in terms of performance on academic tasks and in terms of interactions with other children) is now needed to uncover the way in which all of the specific social and cognitive processes come together to influence children’s learning in the classroom.

In the course of this kind of research, it would be particularly fruitful to explore the social and cognitive manifestations of social understanding in the classroom for atypically-developing as well as typically-developing children. For example, we know that a large proportion of children and adolescents with autism spectrum disorder have a low level of academic success (Minshew, Goldstein, Taylor, & Siegel, 1994) with strong limitations in reading comprehension (Nation, Clarke, Wright, & Williams, 2006). These may be due to a combination of the cognitive correlates of social understanding (e.g., drawing inferences, Joliffe & Baron-Cohen, 1999; using implicit inferences to form higher level representations, Saldana & Frith, 2007), and the social and communicative correlates of social understanding (e.g., Jones et al., 2009). The precise nature of this combination needs careful attention in future work.

4.2 Practical Implications and Limitations.

Taken together, our findings have also important implications from an educational perspective. Indeed, at a more practical level, results of the present study shed new light on the possible effects of intervention work designed to improve social understanding. We know it is possible to teach children to infer mental states through conversations about belief (Appleton &
Reddy, 1996; Lecce et al., 2014a) and by providing them with explanations for correct responses (Clements, Rustin, & McCallum, 2000) and feedback (Hale & Tager-Flusberg, 2003; Lohmann & Tomasello, 2003; Melot & Angeard, 2003). The present results raise the intriguing possibility that this kind of training can not only improve children's social understanding but can also have an indirect effect on school achievement via the social mediators investigated here. Support for this view comes from theoretical considerations (Hughes & Lecce, 2010; Kloo & Perner, 2008) and empirical data showing that school-based interventions designed to improve children's socio-cognitive understanding have clear benefits in three broad areas: children’s feelings, adjustment and achievement (e.g., Banerjee, Weare, & Farr, 2014; Bierman et al., 2008; Durlak & Weissberg, 2007). However, intervention work to evaluate the impact of theory-of-mind training on social and academic outcomes is clearly needed.

Here it is also important to note that caution is warranted in the interpretation of our findings for several other reasons. First, the sample size of the present study is limited and clearly more research with larger and more varied samples is needed to confirm our results. Related to this, even though our sample came from a wide range of social classes, we did not have a sufficiently large sample to work with fine-grained data on socioeconomic background in order to examine how this might impact the results. Therefore, future research investigations could address this issue. Second, the change in the verbal ability measure across time made longitudinal analyses more difficult to interpret. However, given the correlation between the PPVT and the TROG found in the present and existing studies (see Facon, Facon-Bollengier, & Grubar, 2002; Robinson, Mervis, & Robinson, 2003) we do not think that the shift from the PPVT to the TROG had a major effect on our results. Nonetheless, there remains an important question about how different aspects of verbal ability may play a substantive role in all three of the key constructs in this study.

Furthermore, even though we examined verbal ability as a covariate, we have noted above that a variety of other unmeasured factors, such as executive functions, inhibitory control and effortful control, could play an important role in the documented pattern of associations (Blair &
In a similar way, the construct of social competence itself could be fruitfully decomposed. Further work with more elaborate measures of the different facets of emotion and belief understanding could also help to clarify differentiated links with these outcomes.

Finally, we did not have measures of children’s social competence and school outcomes at all three time points. This clearly limits the strength of our conclusions and leaves a number of unresolved issues. For example, on the basis of the present research, it is not possible to evaluate the strength of early social understanding as a predictor of changes in school achievement over time; this remains a crucial task for future longitudinal work following children as they get older and academic demands become increasingly salient in the schooling system. Related to this, future research should also evaluate the possible effect of schooling – and the combination of new interactions with peers and adults that this involves – on children’s social understanding. Here, as recently suggested by Hughes (2011), comparing children coming from countries in which the beginning of formal schooling occurs at different ages could be a good strategy (see also Hughes et al., 2014; Lecce & Hughes, 2010). In addition, future research should also investigate whether the pathway from early social understanding to later school achievement is independent of previous measures of academic outcome. Thus, although in the present study we controlled for verbal ability, measuring academic performance also at earlier time points would have enabled a more stringent test of our theoretical model.

In sum, the results of the present investigation add to mounting evidence that there is a systematic and theoretically meaningful interplay between the domains of social cognition, interpersonal relationships, and school functioning. Continued work that helps to shed more light on the developmental pathways that connect these domains will be crucial for improving our understanding of – and our capacity to support – children’s adjustment at school.
5. References

6. Appendix

Belief Understanding

At Time 1 we administered two standard first-order false-belief tasks: an unexpected content (Wimmer & Hartl, 1991) and an unexpected transfer task (Wimmer & Perner, 1983). In each task children were credited with one point if they correctly answered both the experimental and the control question. We also administered two second-order false-belief stories based on the simpler second-order task developed by Sullivan, Zaitchik and Tager-Flusberg (1994). Each story involved a first- and a second-order false-belief question as well as control reality questions. In each story and for each type of false-belief question (1st and 2nd order) children were credited with success (one point) only if they passed both the test and the control question. Finally, we administered two belief-desire reasoning tasks presenting either a nice surprise or a nasty surprise (Harris, Johnson, Hutton, Andrews, & Cooke, 1989). Each story involved a first-order false-belief and then an emotion-based-on–false-belief question as well as control reality questions. Again, children were credited with success (one point) only if they passed both the test and the control question. Therefore possible scores on false-belief understanding at Time 1 range from 0 to 10.

At Time 2 and 3 we administered a selection of items from the Theory of Mind Test (TMT - Pons & Harris, 2002). The TMT evaluates ten components of theory of mind (Flavell, 2004): (a) Level 1 perspective taking; (b) Level 2 perspective taking; (c) Understanding of intentionality; (d) Understanding of ignorance; (e) Understanding of 1st order false belief; (f) Understanding of the distinction between appearance and reality; (g) Understanding of lies; (h) Understanding of jokes; (i) Understanding of 2nd order false belief; (j) Understanding of double-bluff. Considering the age of participants we administered a selection of 10 items out of 30: 2 items for each of components (g) and (h) and 3 items for each of components (i) and (j). Score range: 0-10.

Emotion understanding

At Time 1 children’s understanding of emotions was assessed via the Gordis task (Gordis, Rosen, & Grand, 1989). It is made up of six stories of a storytelling interview used by many studies
(e.g., Caputi et al., 2012; Hughes et al., 2000; Lecce & Hughes, 2010; Lecce et al., 2011; Maguire & Dunn, 1997). In the first "explain" set, children were told three stories, in which it was made explicit that the protagonist felt two conflicting emotions and children were asked to explain why the character felt each emotion. Below an example is given: “Steve’s mother is taking him to the swimming pool tomorrow. His best friend David is going to come too. But that evening, David telephones and says he can’t go swimming because he has the flu. So Steve will have to go on his own”. In the second “infer + justify” set, children were told three stories, and asked both to infer and explain how the character felt. Children’s answers were scored: 0 for no emotions explained/stated, 1 for one emotion (e.g., I was sad because David could not come”), or 2 for two opposite-valence emotions (e.g., I was happy because I went to the swimming pool but I was also a bit sad because David could not swim with me”). Possible scores therefore ranged from 0 to 12 points. Coding was completed by the two authors of the present paper; 20% of the transcripts were independently double-coded and a Cohen’s kappa of .86 supported the reliability of this coding.

At Time 2 and 3 we administered a selection of items from the Test of Emotion Comprehension (TEC - Pons & Harris, 2000). The TEC evaluates nine components of emotion understanding: (I) Emotion understanding based on facial expression; (II) Understanding of external causes of emotion; (III) Emotion understanding based on desires; (IV) Emotion understanding based on beliefs; (V) Understanding of the influence of a reminder on the present emotional state; (VI) Understanding of the capacity to control a felt emotion; (VII) Understanding of the capacity to hide an emotion; (VIII) Understanding of mixed emotions; (IX) Understanding of moral emotions. Considering the age of participants, children in the present study were administered components 4 to 9. Score range: 0-6.