
PHYSICAL REVIEW A 95, 043642 (2017)

Quantum Fisher information as a predictor of decoherence in the preparation
of spin-cat states for quantum metrology

Samuel P. Nolan1,* and Simon A. Haine2

1School of Mathematics and Physics, University of Queensland, Brisbane, Queensland, Australia
2Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom

(Received 14 November 2016; published 28 April 2017)

In its simplest form, decoherence occurs when a quantum state is entangled with a second state, but the results
of measurements made on the second state are not accessible. As the second state has effectively “measured”
the first, in this paper we argue that the quantum Fisher information is the relevant metric for predicting and
quantifying this kind of decoherence. The quantum Fisher information is usually used to determine an upper
bound on how precisely measurements on a state can be used to estimate a classical parameter, and as such it
is an important resource. Quantum-enhanced metrology aims to create nonclassical states with large quantum
Fisher information and utilize them in precision measurements. In the process of doing this it is possible for states
to undergo decoherence; for instance atom-light interactions used to create coherent superpositions of atomic
states may result in atom-light entanglement. Highly nonclassical states, such as spin-cat states (Schrödinger
cat states constructed from superpositions of collective spins) are shown to be highly susceptible to this kind of
decoherence. We also investigate the required field occupation of the second state, such that this decoherence is
negligible.
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I. INTRODUCTION

Quantum metrology is the science exploiting quantum
correlations to estimate a classical parameter χ , such as a
phase, beyond the sensitivity available in uncorrelated systems.
Given a metrological scheme with access to N total particles
there is an upper bound on the precision, �χ � 1/N , called
the Heisenberg limit [1,2]. For a two-mode interferometer
with conserved total particle number, called an SU(2) inter-
ferometer, the class of states which yield Heisenberg-limited
sensitivity are spin-cat states, an example of which is the
well-known NOON state, which achieves Heisenberg-limited
sensitivities via a parity measurement [3–6].

As NOON states are highly nonclassical, possibly massive
superpositions, they could also find a number of applications
outside quantum metrology. In particular these states could be
well suited for testing macroscopic realism [7,8], gravitational
decoherence [9], and spontaneous wave function collapse
theories [10–12], as well as realizing the Greenberger, Horne,
and Zeilinger (GHZ) state, which could test local hidden
variable theories [13]. Optical GHZ states could also find
applications in quantum communication and computation
[14–17].

A spin-cat state in a Bose-Einstein condensate would be
well suited to a number of these applications, particularly
metrology. However, this state has yet to be realized, due to
the immense challenge of maintaining the quantum coherence
of the state [18,19]. This is despite a number of proposed
methods, previously relying on Josephson coupling between
two modes [20–22], collisions of bright solitons [23], and
through the atomic Kerr effect [24–27]. Although the atomic
interaction times have been too small to generate spin-cat
states, the Kerr effect has successfully been used to gen-
erate large numbers of entangled particles in Bose-Einstein
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condensates [28–31]. There has also been success outside the
realm of quantum atom-optics, with NOON states having been
realized in modestly sized systems such as superconducting
flux qubits [32], optics [33], and in trapped ions [34–36], the
latter with up to 14 particles.

In any case, to actually do anything useful with such
a state, it may be necessary to perform a unitary rotation.
This could be, for example, to prepare the state for input
into an interferometer. However, unitary evolution is only an
approximation, valid when the system used to perform this
operation is sufficiently large such that it can be considered
classical.

In this paper we relax this approximation, and investigate
rotations caused by interaction with a quantized auxiliary
system. As an example, consider a two-component atomic
Bose-Einstein condensate. A rotation of the state on the Bloch
sphere can be implemented by interaction with an optical
field via the ac Stark shift [37]. It is often the case that
the number of photons in this state is sufficiently large that
the quantum degrees of freedom of the light are ignored.
However, in metrology we are are often interested in quantum
states that are particularly sensitive to decoherence, such as
spin-cat states; therefore in this paper we investigate the effect
of treating this optical field as a quantized auxiliary system.
Decoherence in systems such as these has been considered
previously [38], using a stochastic wave function approach in
small systems. Although quantum Fisher information (QFI) of
quantum states with decoherence has also been considered in
the literature [39–41], the goal of this paper is to employ the
approach of defining QFI for the optical field.

It has been shown that in the presence of entanglement
between the state and some auxiliary system, the metrological
usefulness of the state may be enhanced by allowing mea-
surements on the auxiliary system [42–48]. However in this
paper we take a different approach, and study the metrological
usefulness of a state if measurements of the auxiliary system
are forbidden. The goal is not to devise schemes to enhance
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metrological sensitivity, but to study the sensitivity of quantum
states (particulary spin-cat states) to this kind of decoherence.

After introducing the formalism in which we work in Sec. II,
we demonstrate the central idea of this paper in Sec. III
by studying the intuitive case of a simple operator product
Hamiltonian. In this situation a number of results may be
obtained analytically, which we use to understand decoherence
in terms of the noise properties of the initial auxiliary state. In
Sec. IV we turn our attention to a beam-splitter Hamiltonian,
which is less intuitive. In Sec. V we introduce a semiclassical
formalism which gives us a simple picture of this decoherence,
and also an efficient means of simulating the full composite
system. Finally, in Sec. VI we apply this method to study
the limits of this decoherence, deriving the required auxiliary
field occupation to negate significant entanglement between
the systems.

II. FORMALISM

The generic problem considered in quantum metrology is
this: given an initial quantum state ρ̂(0) that undergoes unitary
evolution Ûχ = exp(−iĜχ ), how precisely can the classical
parameter χ be estimated? The answer is given by the quantum
Cramér-Rao bound (QCRB) which places a lower bound on
the sensitivity, i.e., �χ � 1/

√
F , where

F = 2
∑
i,j

(λi − λj )2

λi + λj

|〈ei |Ĝ|ej 〉|2 (1)

is the QFI [49–52] and λi , |ei〉 are the eigenvalues and
eigenvectors of ρ̂(0). When ρ̂(0) is pure, Eq. (1) reduces to
the variance of Ĝ, specifically F = 4V (Ĝ). The QFI does not
depend on the choice of a particular measurement signal, only
on the input state and the Hermitian operator Ĝ, called the
generator of χ .

The system we consider in this paper is illustrated in Fig. 1.
We begin with some quantum state |ψA〉, called the probe state,
which could be used to probe a classical parameter χ . Before
this happens the state must be prepared in some way. Ideally,
this would occur by performing some unitary operation Ûprep

on the initial state |ψA(0)〉: |ψA〉 = Ûprep|ψA(0)〉 [Fig. 1(a)].
However in practice, treating this preparation step as unitary
is usually an approximation, as the physical mechanism to
achieve this preparation can involve entanglement with some
auxiliary subsystem B. In this case we replace Ûprep (that
is assumed to operate only on subspace A) with ÛAB =
exp(−iĤABt/h̄), which can potentially cause entanglement
between subsystems A and B, and therefore cause decoherence
in subsystem A when system B is ignored. In this case system
A is described by the state ρ̂A = TrB{|ψAB〉〈ψAB|}, where
|ψAB〉 = ÛAB |ψA(0)〉 ⊗ |ψB(0)〉 [Fig. 1(b)].

To illustrate this concept, consider the example of an
optical parametric oscillator (OPO), used to create the well-
known squeezed vacuum states by creating pairs of photons
via a Hamiltonian ĤA = η(ââ + â†â†) [37]. The physical
mechanism that achieves this process involves the annihilation
of a photon of twice the frequency from a pump beam,
which we label system B. This process is described by the
Hamiltonian ĤAB = g(b̂†ââ + b̂â†â†). In this context, the
approximation that the entanglement between the systems

(a)

(b)

FIG. 1. A visual summary of our scheme. (a) The ideal situation
in quantum metrology. A state |ψA(0)〉 is prepared unitarily for input
into the interferometer Ûχ = exp(−iĜAχ ); i.e., the quantum Fisher
information of Ûprep|ψA(0)〉 with respect to ĜA is valuable. (b) If the
preparation involves interaction with some other quantum system,
then they may become entangled. If we cannot measure anything
about system B then system A is now mixed, and we have lost
quantum Fisher information with respect to Ûprep|ψA(0)〉. In this
paper we investigate this decoherence, and determine under what
circumstances scheme (b) is well approximated by scheme (a).

can be ignored such that ĤAB can be replaced with ĤA is
often referred to as the undepleted pump approximation. While
this is usually a good approximation, there are experimentally
accessible regimes where it becomes invalid [53–55]. If we do
not permit measurements on B, then the entanglement between
the two systems will result in decoherence, which we quantify
as a reduction in the QFI of the probe system FA, because
FA � 4V (ĜA).

In what follows we work in the standard formalism for
SU(2) interferometers [56], whereby our probe system consists
of a conserved total number of NA = 〈â†

1â1 + â
†
2â2〉 bosons

each in one of two modes, with bosonic annihilation operators
â1 and â2, respectively. Collective observables are represented
as pseudospin operators Ĵk = 1

2 (â†
1 â

†
2)σk(â1 â2)T , where σk

is the kth Pauli matrix; hence the system is described by the
well-known SU(2) algebra. The auxiliary system has a mean
field occupation of 〈n̂B〉 = NB bosons, which for simplicity are
confined to a single mode b̂, with number operator n̂B = b̂†b̂.

In the absence of quantum correlations between particles, an
ensemble of two-level particles is well described by a coherent
spin state (CSS) [57,58], which can be thought of as a rotation
of the maximal Jz eigenstate: |CSS〉 = |θ,φ〉 = R̂(θ,φ)|NA,0〉
where (up to a global phase) R̂(θ,φ) is the rotation operator,

R̂(θ,φ) = e−iĴzφe−iĴx θ , (2)

and the state |N1,N2〉 indicates N1(2) bosons in mode 1
(2). Coherent spin states have the useful property that
they are an extreme eigenstate of the rotated pseudospin
operator Ĵθ,φ = R̂†(θ,φ)ĴzR̂(θ,φ) = Ĵz cos(θ ) + [Ĵx sin(φ) +
Ĵy cos(φ)] sin(θ ).

We are interested in a class of states called spin-cat (SC)
states, which are an equal superposition of opposite coherent
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spin states, i.e., the maximum and minimum Ĵθ,φ eigenstates,

|SC〉 = 1√
2

(|max〉 + eiϑ |min〉). (3)

These states are highly nonclassical and have the maximum
QFI for an SU(2) interferometer, FA = N2

A, so long as ĜA =
Ĵθ,φ . In contrast, coherent spin states are shot-noise limited,
with FA � NA with respect to ĜA = Ĵθ,φ .

When Ĵθ,φ = Ĵz, the spin-cat state is the well-known
NOON state, |NOON〉 = (|NA,0〉 + |0,NA〉)/√2 [59,60].
NOON states are particularly relevant as many experiments
would be limited to performing measurements on the probe
system in the number basis. However another relevant basis
is Ĵy , as it is straightforward to show that the well-known
one-axis twisting interaction will eventually lead to a spin-cat
in the Ĵy basis, i.e., |SC〉 = exp(−iĴ 2

z π/2)|π/2,0〉.

III. SEPARABLE INTERACTIONS

In this section we consider the case where the interaction
Hamiltonian between systems A and B is a separable tensor
product of operators acting on each Hilbert space. Specifically,

ĤAB = h̄gĤA ⊗ ĜB. (4)

Such an interaction may arise when the Hermitian opera-
tor ĤA is required in the state preparation of system A,
but is moderated by the Hermitian operator ĜB acting on
subspace B.

A. Some general results

For an initially separable and pure state |ψAB(0)〉 =
|ψA(0)〉 ⊗ |ψB(0)〉, in terms of the dimensionless time τ = gt

the evolved state is

|ψAB(τ )〉 =
∑
m

cm|m〉 ⊗ (e−iλmĜBτ |ψB(0)〉). (5)

In terms of the eigenstates |m〉 and eigenvalues λm of ĤA, the
reduced density matrix ρ̂A = TrB{|ψAB(τ )〉〈ψAB(τ )|} takes
the simple form

ρ̂A(τ ) =
∑
m,n

cmc∗
nCm,n(τ )|m〉〈n|, (6)

where 〈j |ψA(0)〉 = cj is the initial state. We have defined

Cm,n(τ ) = 〈ψB(0)|e−i(λm−λn)ĜBτ |ψB(0)〉, (7)

which we call the coherence matrix of the probe system, as it
is responsible for the decay of the off-diagonal terms of ρA.
This term is a direct consequence of a partial trace over the
auxiliary system B.

If Cm,n = 1 then ρ̂A remains pure, and if Cm,n = δm,n then
ρ̂A is a completely incoherent mixture of eigenstates |m〉〈m|.
More generally the relationship between the purity of the probe
system γ = Tr{(ρ̂A)2} and Cm,n is

γ =
∑
m,n

|cm|2|cn|2|Cm,n|2. (8)

As we are interested in maintaining states with high values
of FA, we are particularly interested in the magnitude of

|Cm,n|2, as states with lower purity usually have reduced QFI.
Expanding the magnitude of Cm,n to second order in even
powers of �m,n = (λm − λn)τ (odd powers do not contribute)
reveals a link between the QFI of the auxiliary system with
respect to ĜB and the resultant decoherence in the probe
system:

|Cm,n|2 = 1 − FB

4
�2

m,n + O
(
�4

m,n

)
, (9)

where FB = 4V (ĜB) is the QFI of |ψB(0)〉 associated with
measuring some classical parameter η under evolution Ûη =
exp(−iĜBη). For short times at least, we identify this QFI
as being the relevant parameter to predict the decay of the
off-diagonal matrix elements of ρ̂A.

Such an identification is particularly intuitive for consid-
ering the role of |ψB(0)〉 in the decoherence of system A:
if one considers the possibility that the outgoing state of
system B could be measured by an observer, then if this
state carries information which can distinguish between the
eigenvalues λm and λn, we no longer expect there to be a
coherent superposition of these components. The interaction
with system B effectively measures system A. That is, states
with high QFI with respect to their ability to estimate the
physical observable corresponding to ĤA cause the most rapid
decoherence.

Even if Cm,n is known, calculating the QFI of the probe
system requires diagonalization of the reduced density matrix
[see Eq. (1)]. Fortunately for evolution under a separable
Hamiltonian, some simple analytic results exist for some initial
states. For any state that is initially a spin-cat state of extreme
Ĵθ,φ = ĤA eigenstates, there is a simple relationship between
the probe QFI and the purity of the reduced density matrix:

FA = N2
A(2γ − 1), (10)

and from Eq. (8) the purity is given by

γ = 1
2 (1 + |Cmax|2), (11)

where Cmax = CNA+1,1 = (C1,NA+1)∗ is the extreme off-
diagonal term of the coherence matrix; i.e., for a spin-cat in
Ĵθ,φ , the QFI of the auxiliary system depends only on the purity
of ρ̂A, which at least for short times depends only on the QFI
of the initial auxiliary state |ψB(0)〉; i.e., FA is a function only
of FB and time.

From these relations, to second order in |Cmax|2 [Eq. (9)
with λm − λn = NA] we have

γ ≈ exp
(− 1

8FBN2
Aτ 2) (12)

and

FA ≈ N2
A exp

(− 1
4FBN2

Aτ 2
)
. (13)

Although these relations only hold for small time, they do not
assume anything about the input state of the auxiliary system.
For any |ψB(0)〉, the QFI with respect to ĜA = ĤA and purity
of a Ĵθ,φ = ĤA spin-cat state simply decay exponentially with
FB and time squared, at a rate proportional to N2

A, as one
might expect for a state capable of reaching the Heisenberg
limit. This kind of scaling has been seen in previous studies of
Heisenberg-limited states under decoherence [18,19], but not
in this context.
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FIG. 2. Time evolution under ĤAB = h̄gĴz ⊗ n̂B of the quantum Fisher information FA and purity γ of ρ̂A(τ ), for a variety of initial
states with average particle number NA = 20 and NB = 100 and dimensionless time parameter τ = gt . Panels (a) and (b) have initial CSS
|ψA(0)〉 = |π/2,0〉, and (c) and (d) have |ψA(0)〉 = |NOON〉. Note that the normalization of FA is different for (a) compared to (c). Insets in
(c) and (d) show short evolution times. Each plot also varies the initial auxiliary state for the cases discussed in the text, i.e., a Glauber-coherent
state (solid black), an amplitude-squeezed state with r = 1 (dashed blue), a phase-squeezed state with r = −1 (dashed red), and a Fock state
(magenta asterisks); the Fock states have been included for completeness, although they have FB = 0 so no coherence is lost. For all auxiliary
input states we chose β to be real. Time scales can vary greatly between experimental systems, for instance g ≈ 102 rad/s [72], 104 rad/s [73],
up to values as high as 106 rad/s [74].

B. An example

We will now study the decoherence imparted on a probe
after evolution under a ĤA = Ĵz rotation, specifically

ĤAB = h̄gĴz ⊗ n̂B . (14)

This kind of interaction describes a number of systems, for
instance superconducting qubits coupled to a microwave cav-
ity [61–63], or the weak probing of an ensemble of two-level
atoms with light detuned far from resonance [31,42,47,64–71].
This Hamiltonian generates a Ĵz rotation, which corresponds
to a relative phase being imparted between the two levels
available to the probe system. Although we are agnostic about
the specific system being studied, for convenience we will
adopt the language of atom-light interactions, and will often
refer to the quanta of the auxiliary field as photons.

An interaction of the form Eq. (14) leads to entanglement
between the Jz spin projection of system A and the the phase
of system B, as n̂B is the generator of phase. Identifying
ĜB = n̂B , it is immediately obvious that the optimal choice
for |ψB(0)〉 is a Fock state (i.e., an n̂B eigenstate) as this state
has FB = 4V (n̂B) = 0, and the operation can be performed
without generating any entanglement between the systems,
i.e., |Cm,n|2 = 1, which is illustrated in Fig. 2. This is consistent
with our view of system B carrying away information about
Jz, as Fock states have an entirely undefined phase, so cannot
be used to make a measurement via the interaction Eq. (14).
However, as Fock states are difficult to engineer, it is important
to consider the behavior of other states.

Throughout this paper we will focus on commonly acces-
sible states such as Glauber coherent states and quadrature

squeezed states, which have the form

|ψB(0)〉 = D̂(β)Ŝ(r)|0〉, (15)

where D̂(β) = exp(βb̂† − β∗b̂) is the coherent displacement
operator with coherent amplitude β, and Ŝ = exp{r[b̂2 −
(b̂†)2]/2} is the single mode squeezing operator with real
squeezing parameter r and optical vacuum |0〉. In particular
we focus on three cases, the Glauber-coherent state (r = 0),
the amplitude-squeezed state (r > 0), and the phase-squeezed
state (r < 0), which, for a fixed mean photon number, have
Fphase

B > F coherent
B > F amplitude

B .
It is possible to evaluate the coherence matrix [Eq. (7)]

analytically for these states. Because we have ĤA = Ĵz

the spin-cat states that obey the relations Eq. (10) and
Eq. (11) are NOON states. The generator ĜA = Ĵz has integer
eigenvalues, and so we make the substitution λm − λn =
m − n. For simplicity we will restrict ourselves to real
β, although it is not necessary to do so. By observing
that exp[−i(m − n)n̂Bτ ]D̂(β)Ŝ(r)|0〉 = D̂(β ′)Ŝ(r ′)|0〉, where
β ′ = β exp[−i(m − n)τ ] and r ′ = r exp[−2i(m − n)τ ], the
problem is reduced to evaluating the overlap of two squeezed
coherent states, see for instance [75,76]. We obtain

Cm−n(β,r,τ ) =
exp

(
β2[1+coth(r)][e−i(m−n)τ −1]

e−i(m−n)τ +coth(r)

)
√

cosh2(r) − e−2i(m−n)τ sinh2(r)
(16)

as the coherence matrix for a squeezed coherent state. For
completeness we also provide the result for a Glauber-coherent
state, obtained by simply taking the limit r → 0,

Cm−n(β,τ ) = exp[NB(e−i(m−n)τ − 1)]. (17)
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FIG. 3. Time evolution under ĤAB = h̄gĴz ⊗ n̂B of the quantum
Fisher information FA and purity γ of ρ̂A(τ ), with NA = 20. In (a)
we plot the QFI for the CSS |ψA(0)〉 = |π/2,0〉 for three different
initial states, all with FB = 100. We evolve from different auxiliary
states, a Glauber-coherent state with β = √

25, (solid black), an
amplitude-squeezed state with β = √

50, r ≈ 0.352 (blue asterisk),
and a phase-squeezed state with β = √

20, r ≈ −0.111 (red circles).
The excellent agreement indicates that FB rather than |ψB (0)〉
is the relevant quantity to consider when predicting this kind of
decoherence, not only for NOON states. In (b) and (c) we plot
FA against FB for a NOON state (b), normalized to N2

A, and CSS
(c), normalized to NA. The QFI of the auxiliary system is varied in
different ways for a number of initial states, (1)–(3) varying |β|2 and
(4) varying r , both with arg(β) = 0. Each point was evolved for a
fixed rotation angle φ = τNB (β,r) = π and as such in (b), (c) we
take FB = 4V (n̂B/NB ). Arrow indicates oversqueezed regime.

Evaluating the coherence matrix analytically for a squeezed
coherent input state allows us to extend the short-time
results presented in the previous section to longer times.
For |ψA(0)〉 = |NOON〉 with generator ĜB = n̂B [not, for
instance, Ĝ = n̂B/NB , which we consider in Figs. 3(b) and
3(c)], when β2 
 sinh2(r) we obtain

FA ≈ N2
A exp

(
1
2FB[cos(NAτ ) − 1]

)
. (18)

Expanding this to second order in NAτ recovers Eq. (13),
but this expression also predicts revivals in the QFI. Because
this result was derived from Cm−n(β,r,τ ), we emphasize that
unlike Eq. (13) it is not general in |ψB(0)〉; it only holds for
squeezed coherent states and Fock states, the latter simply
because FB = 0.

In Fig. 2 we show the probe QFI and purity for a NOON
state compared to a coherent spin state, for a number of input
states, and clearly see the QFI of the auxiliary state correctly
predicts the rate of decoherence. It is evident that coherent
spin states are more robust to this kind of decoherence. As we
have shown, the QFI of NOON states decays exponentially

at a rate directly proportional to N2
A, which is clearly not the

case for coherent spin states [see Eq. (12) and Eq. (13)]. As
an example, using the experimental parameters of the system
demonstrated in [73], for the situation considered in Fig. 2
with coherent light, the QFI of the NOON state would halve
in approximately 10−6 seconds, while the QFI of the coherent
spin state would take roughly an order of magnitude longer to
decay by the same amount. Other time scales are discussed in
the figure legend.

In Fig. 3 we demonstrate that FB remains an excellent
predictor of decoherence where simple analytic expressions
are unavailable. In Fig. 3(a) we plot the QFI as a function
of time for a CSS for three different input states, resulting in
identical dynamics even for large times. This seems to indicate
that our results are not restricted to spin-cat states. Up until
now we have neglected the contribution of n̂B to the magnitude
of the rotation; i.e., to rotate the state about Ĵz by some angle φ

we require an interaction time τ = φ/NB . This must be taken
into account in order to meaningfully compare the ability of
different states |ψB(0)〉 to perform some fixed rotation φ, so in
Figs. 3(b) and 3(c) we take our generator to be ĜB = n̂B/NB .
In this case our full expression for FA [Eq. (18)] does not hold,
and although it is straightforward to obtain a more general
expression from the coherence matrix, it is not particularly
enlightening. Because FB(r) is not one-to-one, when the state
is oversqueezed there is a turning point in Figs. 3(b) and 3(c).
We also see revivals which are predicted by Eq. (18). These
revivals occur as a result of the quantization of the fields;
for instance, if |ψA(0)〉 = |NOON〉 they will occur when τ =
2πk/NA, where k = 1,2,3, . . . .

Within the limitations discussed above, FB entirely de-
termines the subsequent dynamics. The starting point for this
entire analysis was identifying an operator ĜB , which we were
able to do because the reduced density matrix could be written
in terms of Cm−n [Eq. (6)], which was a direct consequence of
the operator product form of the Hamiltonian. We now turn
our attention to a beam-splitter Hamiltonian, where this is not
the case.

IV. NONSEPARABLE INTERACTIONS (BEAM SPLITTER)

A kind of interaction highly relevant to quantum metrology
is an atomic beam splitter: a non-photon-conserving process
that transfers population between our atomic modes. A
common method for atomic interferometry is a Mach-Zehnder
interferometer, which may be realized by performing two of
these pulses, separated by a phase shift. This kind of evolution
is also highly relevant to the preparation of spin-cat states; for
instance it may be useful to rotate a Ĵy spin-cat state, perhaps
generated via the atomic Kerr effect, to a NOON state, which
would require a rotation about Ĵx . If we perform this rotation
without assuming classical light, how might this decohere our
atomic system?

In particular, as the transfer of an atom is correlated with
the creation or annihilation of a photon, the number of photons
in the optical beam carries information about the number
of transferred atoms, thus destroying the coherence of the
superposition. This will be particularly relevant when creating
NOON states, as the creation of this state results in the creation
of ∼±NA/2 photons which, depending on the initial state, may
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FIG. 4. Loss of QFI and purity from evolution fully quantized beam-splitter Hamiltonian ĤAB = h̄g(X̂ ⊗ Ĵx + Ŷ ⊗ Ĵy) as a function of
time. Time is normalized to the beam-splitter angle θ = 2|β|τ , for |ψA(0)〉 = |NOON〉 with NA = 20 and |ψB (0)〉 = |β〉, with arg(β) = 0. The
QFI is calculated with respect to ĜA = Ĵz, such that after a π/2 rotation about the Ĵx axis the state approaches the QFI for a NOON state. Fmax

is the QFI of the probe system in the limit of classical light, i.e., as the coherent amplitude becomes sufficiently large that we may substitute
b̂ → β in the beam-splitter Hamiltonian [Eq. (20)].

be easily distinguishable. If the Hamiltonian for this process
is not separable, i.e., of the form Eq. (4), can we identify a
generator and corresponding Fisher information which is a
useful predictor for this decoherence?

A. The Tavis-Cummings model

The fully quantized Hamiltonian for an atomic beam splitter
generated from atom-light interaction is the Tavis-Cummings
Hamiltonian, which describes an ensemble of NA, two-level
atoms (with energy difference h̄ω0 = E2 − E1) interacting
with a single-mode optical field of frequency ω through dipole
coupling [77],

HAB = h̄ωn̂B + 1
2 h̄ω0Ĵz + 1

2 h̄g(Ĵ+ + Ĵ−) ⊗ (b̂† + b̂).

(19)

If we were to ignore the quantum degrees of freedom of the
light, the interaction term would simply result in a rotation
about Ĵx = 1

2 (Ĵ+ + Ĵ−).
In typical experimental systems the field is close to reso-

nance, ω ≈ ω0, and the coupling g is small compared to ω0, ω.
Therefore the rotating wave approximation is often made, and
it is a good approximation to neglect the energy-nonconserving
terms Ĵ+b̂† and Ĵ−b̂.

Before throwing away these terms, the interaction part of
the Hamiltonian can be written as Hint = h̄gĴx ⊗ (b̂ + b̂†)
which certainly looks separable; however the evolution caused
by Ĥ0 = h̄ωn̂B + 1

2 h̄ω0Ĵz cannot be neglected. Moving into
the interaction picture allows us to evolve the initial state
forward in time under Ĥint only, but transforming this
Hamiltonian into the interaction picture and integrating the
resultant interaction picture Hamiltonian in time gives rise to
nonseparable evolution.

However, moving into the interaction picture reveals that
quantities such as the purity of the reduced density matrix and
expectation values of any observable that commutes with Ĵz

(such as the QFI with ĜA = Ĵz) are unchanged by evolution
under Ĥ0. So long as we are only interested in calculating these
quantities, we neglect Ĥ0 and the interaction and Schrödinger

pictures coincide with

ĤAB = h̄g(X̂ ⊗ Ĵx + Ŷ ⊗ Ĵy), (20)

which we call the beam-splitter Hamiltonian, where X̂ =
b̂ + b̂† and Ŷ = −i(b̂ − b̂†) are the standard optical amplitude
and phase quadratures. To arrive at this Hamiltonian we have
assumed the field is on resonance ω = ω0 and have made the
rotating wave approximation.

As in Sec. II, retaining a quantized description of the
auxiliary system introduces decoherence to the evolution.
Figure 4 shows the QFI and the purity of a Ĵy spin-cat state
(|SC〉) being rotated by a quantized beam splitter [Eq. (20)]
against the evolution time, parametrized by the beam-splitter
angle θ = 2|β|τ , compared to evolution under a classical
beam splitter Ûclassical = exp(−iĴxθ ), obtained by taking the
classical limit for the optical field b̂ → β. We see that as
|β|2 becomes large, the full evolution approximates a classical
beam splitter.

B. Identifying a generator

In Sec. III we found that the QFI of the generator of time
evolution for system B was an excellent tool for predicting de-
coherence. However, the difficulty with using this approach for
decoherence introduced under the beam-splitter Hamiltonian
[Eq. (20)] is that because the evolution is not separable, the
reduced density matrix cannot be written in the form of Eq. (6).
This means it is unclear how to identify a generator for the
auxiliary system. Clearly under the beam-splitter Hamiltonian
the optical field quadratures X̂ and Ŷ are responsible for
generating the atom-light entanglement; however the basis in
which the off-diagonal density matrix elements will decay
depends on the argument of the coherent amplitude β. To
isolate the role of the quantum fluctuations in each quadrature,
we make the approximation that quantum fluctuations in one of
the quadratures is negligible. Specifically, restricting ourselves
to light with real coherent amplitude β, we compare the full
quantum evolution [Eq. (20)] to two cases:

(1) classical Y : ÛX = exp [−i(X̂ ⊗ Ĵx + 〈Ŷ 〉Ĵy)τ ] =
exp [−iX̂ ⊗ Ĵxτ ],
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FIG. 5. Comparison of quantized beam-splitter evolution, ne-
glecting quantization of different optical quadratures. (a) QFI of
probe system as a function of beam-splitter angle θ = 2|β|τ for each
case with |ψB (0)〉 = |β〉, and bottom: QFI as a function of squeezing
magnitude. The system was simulated exactly for NA = 20 atoms and
β = √

100 for an initial Ĵy spin-cat state, rotated about the Ĵx axis.
Both plots are a comparison of the fully quantized evolution [Eq. (20)]
to the two cases “classical X” and “classical Y”. As in Fig. 4, Fmax is
the QFI due to the rotation only, without decoherence. In (b) we fix
θ = π/2 (the optimum value) and vary r . The magenta circles are an
analytic calculation [Eq. (26)], based off the approximate generator
ĜB ≈ Ŷ /〈X̂〉.

(2) classical X: ÛY = exp [−i(〈X̂〉Ĵx + Ŷ ⊗ Ĵy)τ ], i.e.,
Eq. (20) with the substitution Ŷ → 〈Ŷ 〉 = 2Im(β) = 0 for ÛX

and X̂ → 〈X̂〉 = 2β for ÛY .
Figure 5 shows the QFI of a Ĵy spin-cat state evolved

under Eq. (20) compared to the two cases ÛX and ÛY .
For comparison, we have also shown Fmax. This is the QFI
FA = 4V (Ĵz) for a Ĵy spin-cat state evolved under Ûclassical =
exp(−iĴxθ ) which imparts no decoherence; therefore FA <

Fmax. Figure 5(a) indicates that ÛX agrees well with the
classical evolution and has only a small impact on the
coherence, and that ÛY agrees well with the evolution due
to Eq. (20). Figure 5(b) varies the squeezing parameter r

at the optimum beam-splitter angle θ = 2|β|τ = π/2, and
shows good agreement with the outcome of Fig. 5(a) for
moderate |r|, i.e., that fluctuations in Ŷ are predominantly
responsible for the decoherence. This picture breaks down for
highly phase-squeezed initial auxiliary states, and it becomes
important to consider quantum fluctuations in X̂ rather than Ŷ

to correctly describe the system.
Motivated by Fig. 5 we continue by studying evolution

under ÛY only. Ignoring the quantum fluctuations in X̂ allows
us to define the commuting operators φ̂ = arctan(Ŷ /〈X̂〉) and

θ̂ = 〈X̂〉τ
√

1 + (Ŷ /〈X̂〉)2, such that

e−i(〈X̂〉Ĵx+Ŷ Ĵy )τ = e−iφ̂Ĵz e−iθ̂ Ĵx eiφ̂Ĵz . (21)

Evaluating expectation values with respect to a squeezed
coherent state gives 〈X̂〉 = 2|β| ≈ 2

√
NB if |β|2 
 sinh2(r).

Thus for large NB we expand in 1/〈X̂〉 to first order, giving
φ̂ ≈ Ŷ /〈X̂〉 and θ̂ ≈ 〈X̂〉τ ≡ θ . This decouples the part of the
Hamiltonian which generates entanglement from the part that
generates the rotation.

Restricting ourselves to an initial state |ψA(0)〉 = |SC〉, and
θ = π/2, we note that exp(−iφ̂Ĵz) will cause dephasing of
off-diagonal terms in the Jz basis. The exp(−iθ Ĵx) term will
then rotate this state such that it is approximately aligned with
the maximal and minimal Jz eigenstates, before it undergoes
further decoherence due to exp(−iφ̂Ĵz). For NA 
 1, if the
fluctuations in φ̂ are much less than 1, then this second
dephasing process will be much more significant than the first,
as the off-diagonal terms are significantly more separated after
the π/2 rotation. As such, it is a reasonable approximation to
neglect the effect of the first dephasing step, and in terms
of the pseudospin eigenspectrum Ĵα|m; α〉 = λα

m|m; α〉 with
α = x,y,z, the reduced density matrix of system A becomes

ρ̂A(θ ) ≈
∑

m,m′,n,n′
cm′ (cn′)∗Am,m′ (An,n′ )∗Cz

m−n

× |m; z〉〈n; z|e−i(λx
m′ −λx

n′ )θ , (22)

where cj = 〈j ; x|ψA(0)〉 is this initial sate in the Ĵx eigenbasis
and Aj,k = 〈j ; z|k; x〉 is a change of basis. In analogy to Eq. (7)
we identify (using λz

j = j )

Cz
m−n = 〈ψB(0)|e−i(m−n)Ŷ /〈X̂〉|ψB(0)〉 (23)

as the term responsible for decay of coherence in the Ĵz

eigenbasis.
As an example, for Glauber-coherent states (with β real)

Cz
m−n(β) = exp

[
− (m − n)2

8NB

]
. (24)

Now, proceeding as in Sec. III we can identify the QFI for the
auxiliary system as FB = 4V (ĜB) with

ĜB ≈ Ŷ /〈X̂〉. (25)

For coherent states, V (Ŷ ) = 1, so FB = 1/NB , indicating that
increasing the number of photons used to implement the beam
splitter reduces the decoherence. A qualitative explanation for
this is, if the initial state contains a large number of photons, it
is more difficult to distinguish the creation or annihilation of
∼ NA/2 photons. Conversely, a Fock state has V (Ŷ ) = 2NB +
1, and 〈X̂〉 = 0, indicating that it has a very high QFI and will
cause extremely rapid decoherence. Again, this fits with our
intuitive picture, as the creation or annihilation of one photon
from a Fock state is immediately distinguishable, indicating
that it cannot be used to create a coherent superposition of
atomic population. The generator ĜB ≈ Ŷ /〈X̂〉 also indicates
that phase-squeezed states should cause less decoherence than
amplitude-squeezed states.

If we are restricted to rotations θ = π/2, such that
exp(−iĴxπ/2)|SC〉 = |NOON〉, then the reduced density ma-
trix takes the form of Eq. (6), and the results obtained in Sec. III
can be applied here but with ĜB = Ŷ /〈X̂〉. We have

FA

(
θ = π

2

)
≈ N2

A exp

(
−1

4
FBN2

A

)
, (26)
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which although similar to Eq. (13), does not depend on time as
we have fixed θ . The purity can be obtained from Eq. (10). This
result agrees well with the exact (numeric) evolution, shown
in Fig. 5, indicating that the generator is well approximated by
ĜB ≈ Ŷ /〈X̂〉.

V. A SEMICLASSICAL PICTURE OF DECOHERENCE

The results presented in the previous section were obtained
by evolving the full quantum state |ψAB〉, which becomes
increasing challenging as our basis size increases. We also
found that it was an excellent approximation in most regimes
to neglect the quantum fluctuations in one quadrature, which
allowed us to treat the interaction as separable such that we
could identify a generator for system B. Here we present
an approximate, general approach to studying decoherence
arising from the entanglement of a probe with an auxiliary
quantum field. This approach does not require us to neglect
quantum fluctuations in X̂ or Ŷ to identify a generator, and
also affords us an efficient way of simulating the system
numerically. We make use of this in Sec. VI, where we use
this method to explore the required auxiliary field occupation
to negate decoherence arising from the entanglement between
the systems.

This is done by modeling the reduced density matrix
as an average over a set of noisy classical variables X,
which have some distribution function P (X), characterized by
|〈X|ψB(0)〉|2. Following a series of measurements, the reduced
density matrix is well approximated by

ρ̂A ≈
∫

dXP (X)Û (X)|ψA(0)〉〈ψA(0)|Û †(X). (27)

A similar model of decoherence has been considered else-
where, where it was used to prove a general link between the
probe QFI and purity [78]. This relation is approximate in the
sense that the quantization of the optical field is neglected;
for instance revivals predicted by Eq. (18) are absent in this
picture. Nevertheless, for sufficiently short times, Eq. (27) is an
excellent approximation to the exact dynamics followed by a
partial trace. In the inset of Fig. 7 we compare this method
to an exact calculation for small NA for the beam-splitter
Hamiltonian, and find excellent agreement.

Although conceptually similar, we emphasize that this ap-
proach is distinct from stochastic phase space methods [79,80]
commonly used to model Bose-Einstein condensates beyond
a mean-field treatment, such as the well-known truncated
Wigner approximation [81–83]. Significantly, in these phase
space methods expectation values of observable quantities
are reconstructed by averaging over phase space trajectories,
whereas in this method we have full access to the (approxi-
mate) reduced density matrix. This allows us to easily calculate
the QFI, which for a mixed state is difficult to obtain via a
phase space method. Additionally, although we often evaluate
the integral in Eq. (27) numerically, we do this by performing
a Riemann sum over P (X) rather than stochastically sampling
from the distribution.

For the two rotations we study, it is useful to choose
these noisy, classical variables to be the Bloch sphere angles
X = {φ} for the separable Hamiltonian or X = {θ,φ} for the
beam-splitter Hamiltonian. This approach has a number of

uses; for instance it is simple in this picture to study the effects
of entanglement generated by X̂ and Ŷ simultaneously. Addi-
tionally, it is only ever necessary to manipulate matrices which
belong to the probe vector space, rather than constructing and
evolving the full dim(A) × dim(B) state before performing a
partial trace to obtain ρ̂A, which rapidly becomes intractable
even for modest particle numbers.

A. Ĵz rotation

As an example we first show that this method can recover
the results presented in Sec. III. As we have alluded to,
decoherence under the separable Hamiltonian [Eq. (14)] can be
understood by averaging over a single parameter X = {φ} with
Û (φ) = exp(−iĴzφ), with the noise properties of φ related to
the quantum fluctuations of the operator φ̂ = n̂Bτ . In the Ĵz

eigenbasis this gives the reduced density matrix

ρ̂A ≈
∑
m,n

cmc∗
n

∫
dφP (φ)e−i(m−n)φ |m〉〈n|. (28)

If we identify Cm−n = ∫
dφP (φ)e−i(m−n)φ , this has the same

form as Eq. (6). If we assume P (φ) is Gaussian with mean φ

and standard deviation σφ , then we can evaluate this integral
to obtain

Cz
m,n = e−i(m−n)φe− 1

2 (m−n)2σ 2
φ , (29)

adding the z superscript to denote decoherence in the Ĵz

eigenbasis. For coherent light, this expression agrees with
Eq. (17) by identifying φ = 〈φ̂〉 = |β|2τ and σ 2

φ = V (φ̂) =
|β|2τ 2, which is seen easily by expanding exp[−i(m − m)τ ]
to second order in τ .

We have identified FB = 4V (n̂B) which tells us that
ĜB = n̂B and so we associate φ with the mean and noise
properties of the operator n̂B . Although this description
correctly predicts ĜB it is only approximate, and because we
have neglected the quantization of the photon field it will not
capture the revivals seen in Figs. 2(c) or 2(d).

B. Beam splitter

Now we turn our attention to studying the decoherence
generated by evolution under the beam-splitter Hamiltonian
[Eq. (20)]. As in Sec. IV B we study the approximate
rotation Û (θ,φ) = exp(−iĴzφ) exp(−iĴxθ ), identifying X =
{θ,φ}. Again, we assume the distribution functions for θ and
φ, P (θ,φ) = Q(θ )Q(φ), are Gaussian. We interpret (θ,φ) as
the azimuthal and elevation Bloch sphere angles, respectively,
and identify

X = θ cos(φ)

τ
, Y = θ sin(φ)

τ
. (30)

These are to be interpreted as noisy classical variables with
X = 〈X̂〉 and σ 2

X = V (X̂) (with analogous relations for Y ),
which imply that the angles are related to the coherent
amplitude of the light, with θ = 2|β|τ and φ = arg(β).

Following a procedure similar to that in Sec. V A we arrive
at the reduced density matrix,

ρ̂A ≈
∑

m,m′,n,n′
cx
m′ (cx

n′)∗Am,m′ (An,n′ )∗

× Cz
m,n(φ,σφ)Cx

m′,n′ (θ,σθ )|m,z〉〈n,z|, (31)
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which is of the form of Eq. (22), with the difference that the
phase factor has been replaced by Cx

m′,n′ which directly causes
decay of the off-diagonal matrix elements in the Ĵx eigenbasis
also. Both Cx

j,k , Cz
j,k have the same form as Eq. (29), but in

terms of the relevant classical variable.
The reduced density matrix Eq. (31) with the relations

Eq. (30) affords us an understanding of decoherence in terms
of the noise properties of the optical quadratures X̂ and Ŷ . If
β is real, we set φ = 0 (which corresponds to performing our
rotations about Ĵx only), and we obtain the following noise
relations:

σ 2
θ = θ

2
V (X̂)

4|β|2 , σ 2
φ = V (Ŷ )

4|β|2 . (32)

Observing that 〈X̂〉 = 2|β|, these relations agree with result
Eq. (25) that the generator responsible for decay of the off-
diagonal matrix elements of ρ̂A in the Ĵz eigenbasis is Ĝz

B ≈
Ŷ /〈X̂〉, but they also allow us to identify Ĝx

B ≈ θX̂/〈X̂〉, as
the generator of decay in the Ĵx eigenbasis. However, Fig. 5
indicates that for the rotation of a Ĵy spin-cat state about Ĵx ,
noise in Ŷ dominates.

VI. MITIGATING DECOHERENCE

In Fig. 4, it is apparent that as β increases, FA approaches
the classical limit. This agrees with the result that FB =
1/|β|2, as Ĝz

B ≈ Ŷ /〈X̂〉, with 〈X̂〉 = 2|β| and V (Ŷ ) = 1 (for
coherent light). We also see this behavior in Figs. 3(b) and 3(c);
when comparing FA for a fixed rotation angle φ = τNB

the decoherence vanishes as FB = 4V (n̂B)/N2
B ∝ 1/NB goes

to zero, which corresponds to the limit of large photon
number. Motivated by these observations, here we study
the following question: given evolution under either of the
entangling Hamiltonians we have considered, what is the
required auxiliary field occupation to mitigate decoherence
in the probe system?

More specifically, we calculate the required NB , such that
after rotating the probe state by a fixed angle the probe QFI
has at least FA = N2

A/2, which we will call NTFS
B . This is the

QFI of the twin-Fock state, defined as |TFS〉 = |NA/2,NA/2〉
with respect to ĜA = Ĵy . Our motivation for this metric is that
twin-Fock states are far less exotic than spin-cat states, and can
be realized simply by a projective measurement in the Jz basis.
Superpositions of twin-Fock states also have FA ≈ N2

A/2,
and can be manufactured via any pairwise particle creation
process, such as four-wave mixing [84,85] and spin-exchange
collisions [86–89]. Although a TFS would be less attractive
than a NOON state for a number of fundamental tests, it is
an excellent candidate for quantum metrology. If one had a
spin-cat state, and were unable to maintain the QFI above
what could be achieved with a twin-Fock state (which is much
simpler to create), it would be much less challenging to simply
use the latter.

A. Ĵz rotation

As we have analytic results for rotating a NOON state under
HAB = h̄gĴz ⊗ n̂B , this is our starting point. From Eq. (13),

0 2 4 6 8
0

0.5

1

(a)

φ/π

F A
/N

2 A

coherent
amplitude
phase

0 20 40 60 80 100
0

10

20

30

(b)

NA

N
T

F
S

B

coherent
amplitude
phase

FIG. 6. (a) FA for a Ĵy spin-cat state under a Ĵz rotation as
a function of rotation angle φ = τNB . Simulation was performed
exactly for NA = 20 and NB = 100, with |r| = 1 for the amplitude
and phase squeezed states. (b) NTFS

B after a φ = π rotation, which
corresponds to the first revival in (a) for r = |0.5|.

making the substitution τ = φ/NB we obtain

NTFS
B [|NOON〉] ≈ φ2e−2r

ln(2)
N2

A, (33)

which is valid within the same approximations as Eq. (13),
although this does not explicitly depend on FB , as expected
states with larger FB per photon (for instance phase-squeezed
states) would require more photons to perform this rotation
while maintaining FA � N2

A/2.
This scaling is intuitive if we consider that the information

relating to the Ĵz projection of system A is encoded onto
|ψB〉 as a phase shift. In order to maintain coherence between
the maximal and minimal Jz eigenstates, we require that this
information be hidden in the quantum fluctuations of the
phase of |ψB(0)〉. More specifically, in order to maintain
indistinguishability, we require that the magnitude of the
phase shift after time τ , say φcat = φNA/NB , that each
component of the superposition causes on |ψB(0)〉 is less than
the characteristic phase fluctuations of |ψB(0)〉, V (n̂B/NB) ∼
er/β. Setting φcat ∼ √

V (n̂B/NB ) gives NTFS
B ∼ e−2rφ2N2

A.
Interestingly, Ĵy spin-cat states are surprisingly robust to

decoherence arising from this Hamiltonian. Figure 6(a) plots
the FA for this state as a function of time (parametrized by the
rotation angle φ = NBτ ), calculated with respect to ĜA = Ĵy .
The oscillations in FA are a consequence of the rotation; FA

is maximum when the state is aligned along the Ĵy axis. In
Fig. 6(b) we plot NTFS

B for a φ = π rotation, which corresponds
to the first revival in Fig. 6(a). The quadratic scaling NTFS

B ∝
N2

A exhibited by NOON states under this rotation is not evident
here; instead we find that NTFS

B is approximately independent
of NA.
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FIG. 7. The required number of photons such that the rotated
spin-cat state has QFI equal to that of a twin-Fock state, for a
Glauber-coherent state, and amplitude and phase squeezed states.
Lines are a least-squares linear fit; the gradients are for comparison
to Eq. (35). Simulation was performed with arg(β) = 0 and r = 0.5
for the squeezed states, using the semiclassical picture [Eq. (27)]. NB

was varied by changing |β|2 rather than r . Inset: Comparison of exact
solution (points) to semiclassical picture (shapes) for small particle
numbers.

The origin of the N2
A scaling for NOON states is the linear

NA dependence of φcat, which is absent for a Ĵy spin-cat
rotating about the Ĵz axis. Here, the coherence is carried by
the distinguishability of extreme Ĵy eigenstates. Fluctuations in
ĜB = n̂B/NB will cause diffusion of the phase of each branch
of the superposition. This phase diffusion will be of order
�φ = √

V (GB) ∼ e−r/β. As �φ increases, the separation be-
tween the two branches decreases, becoming indistinguishable
when �φ ∼ π/2. In this case the nonclassical nature of the
state is lost, and we expect FA ∼ NA. We expect that the phase
diffusion that leads to FA = N2

A/2 will occur well before this
at some value �φTFS. Setting �φ = �φTFS gives

NTFS
B [|SC〉] ≈

(
φ

�φTFS

)2

e−2r , (34)

and from Fig. 6(b) we estimate that �φTFS ≈ π/3 is a good
rule of thumb.

B. Beam splitter

Likewise, we can use Eq. (26) to estimate NTFS
B for a Ĵy

spin-cat rotating about Ĵx by θ = π/2; we obtain

NTFS
B ≈ e2r

4 ln(2)
N2

A. (35)

Crucially, in this relation the squeezing factor exp(2r) has
the opposite sign to that of Eq. (33), as we expect from FB ≈
4V (Ŷ /〈X̂〉) that states with small fluctuations in Ŷ will require
the least number of photons. As this result is approximate
we compare it to a numeric solution in Fig. 7, both using
exact diagonalization for small NA, and using the semiclassical
picture presented in Sec. V for a much larger range of NA.
We find excellent agreement between the exact numerics, the
semiclassical picture, and this analytic result, which uses the
approximate generator ĜB ≈ Ŷ /〈X̂〉.

VII. CONCLUSIONS

In quantum metrology it is sometimes necessary to prepare
a state for input into a metrological device via an operation
such as a beam splitter or Ĵz rotation. This evolution may
be performed via an interaction with an auxiliary system,
and although it is commonplace to assume this auxiliary
system is sufficiently large that any entanglement between
the two systems may be neglected, here we retain a quantized
description of both systems. We find that the QFI associated
with the auxiliary system’s ability to estimate the Ĵz projection
of our primary system through the interaction Hamiltonian is
an excellent predictor of decoherence and loss of metrological
usefulness.

It is simple to define this QFI for a separable Hamiltonian
[Eq. (4)], and we also derive an approximate QFI for a beam-
splitter Hamiltonian [Eq. (20)]. By introducing an alternative
picture of this decoherence, viewing the reduced density matrix
as an average over an ensemble of noisy classical variables,
we are also able to generalize our result for the beam-splitter
case by defining two generators responsible for the decay of
off-diagonal coherence in both the Ĵx and Ĵz eigenbases. In
summary it is desirable to chose initial auxiliary states with
small QFI, especially for NOON states which are particularly
susceptible to this kind of decoherence; see Fig. 2.

We have also estimated the required auxiliary field occupa-
tion to negate this kind of decoherence in both situations. As an
example, it would require roughly 1 × 105 coherent photons
to impart a π phase shift on a 100 atom NOON state, or about
3 × 103 coherent photons to rotate a 100 atom Ĵy spin-cat state
by π/2 about the Ĵx axis, while maintaining the QFI above that
of a twin-Fock state.
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