University of Sussex
Browse
2017 - Chagas et al. - PLoS Biol.pdf (20.29 MB)

The €100 lab: a 3D-printable open-source platform for fluorescence microscopy, optogenetics, and accurate temperature control during behaviour of zebrafish, Drosophila, and Caenorhabditis elegans

Download (20.29 MB)
journal contribution
posted on 2023-06-09, 07:19 authored by Andre Maia Chagas, Lucia L Prieto-Godino, Aristides B Arrenberg, Thomas BadenThomas Baden
Small, genetically tractable species such as larval zebrafish, Drosophila, or Caenorhabditis elegans have become key model organisms in modern neuroscience. In addition to their low maintenance costs and easy sharing of strains across labs, one key appeal is the possibility to monitor single or groups of animals in a behavioural arena while controlling the activity of select neurons using optogenetic or thermogenetic tools. However, the purchase of a commercial solution for these types of experiments, including an appropriate camera system as well as a controlled behavioural arena, can be costly. Here, we present a low-cost and modular open-source alternative called ‘FlyPi’. Our design is based on a 3D-printed mainframe, a Raspberry Pi computer, and high-definition camera system as well as Arduino-based optical and thermal control circuits. Depending on the configuration, FlyPi can be assembled for well under €100 and features optional modules for light-emitting diode (LED)-based fluorescence microscopy and optogenetic stimulation as well as a Peltier-based temperature stimulator for thermogenetics. The complete version with all modules costs approximately €200 or substantially less if the user is prepared to ‘shop around’. All functions of FlyPi can be controlled through a custom-written graphical user interface. To demonstrate FlyPi’s capabilities, we present its use in a series of state-of-the-art neurogenetics experiments. In addition, we demonstrate FlyPi’s utility as a medical diagnostic tool as well as a teaching aid at Neurogenetics courses held at several African universities. Taken together, the low cost and modular nature as well as fully open design of FlyPi make it a highly versatile tool in a range of applications, including the classroom, diagnostic centres, and research labs.

History

Publication status

  • Published

File Version

  • Published version

Journal

PLoS Biology

ISSN

1544-9173

Publisher

Public Library of Science

Issue

7

Volume

15

Page range

1-21

Article number

e2002702

Department affiliated with

  • Neuroscience Publications

Research groups affiliated with

  • Sussex Neuroscience Publications

Full text available

  • Yes

Peer reviewed?

  • Yes

Legacy Posted Date

2017-07-21

First Open Access (FOA) Date

2017-07-21

First Compliant Deposit (FCD) Date

2017-07-21

Usage metrics

    University of Sussex (Publications)

    Categories

    No categories selected

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC