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Dmitry Zaporozhets

Abstract. We give an explicit formula for the probability that the convex hull
of an n-step random walk in R

d does not contain the origin, under the assumption
that the distribution of increments of the walk is centrally symmetric and puts no
mass on affine hyperplanes. This extends the formula by Sparre Andersen (Skand
Aktuarietidskr 32:27–36, 1949) for the probability that such random walk in dimen-
sion one stays positive. Our result is distribution-free, that is, the probability does
not depend on the distribution of increments.
This probabilistic problem is shown to be equivalent to either of the two geometric
ones: (1) Find the number of Weyl chambers of type Bn intersected by a generic
linear subspace of R

n of codimension d; (2) Find the conic intrinsic volumes of a
Weyl chamber of type Bn. We solve the first geometric problem using the theory
of hyperplane arrangements. A by-product of our method is a new simple proof of
the general formula by Klivans and Swartz (Discrete Comput Geom 46(3):417–426,
2011) relating the coefficients of the characteristic polynomial of a linear hyper-
plane arrangement to the conic intrinsic volumes of the chambers constituting its
complement.
We obtain analogous distribution-free results for Weyl chambers of type An−1 (yield-
ing the probability of absorption of the origin by the convex hull of a generic random
walk bridge), type Dn, and direct products of Weyl chambers (yielding the absorp-
tion probability for the joint convex hull of several random walks or bridges). The
simplest case of products of the form B1 × · · · × B1 recovers the Wendel formula
(Math Scand 11:109–111, 1962) for the probability that the convex hull of an i.i.d.
multidimensional sample chosen from a centrally symmetric distribution does not
contain the origin.
We also give an asymptotic analysis of the obtained absorption probabilities as
n → ∞, in both cases of fixed and increasing dimension d.
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1 Introduction

1.1 The absorption problem for random walks. Let Sk = ξ1 + · · · + ξk

be a random walk in R
d, d ≥ 1, with independent identically distributed (i.i.d.)

increments ξ1, ξ2, . . .. We study the probability that the convex hull of the first n
steps of the walk does not contain the origin. In other words, the trajectory S1, . . . , Sn

belongs to some open linear half-space (with 0 at its boundary). This question is a
natural generalization to higher dimensions of the problem to find the probability
that a one-dimensional random walk does not change its sign by the time n. We
will refer to P[0 ∈ Conv(S1, S2, . . . , Sn)] as to the absorption probability and to the
question of its computation as to the absorption problem.

The probability that a one-dimensional random walk stays positive (or negative)
was fully understood by the mid-1950’s. There were no results on the absorption
problem for random walks in higher dimensions until the very recent papers of
Eldan [Eld14], Tikhomirov and Youssef [TY17], Vysotsky and Zaporozhets [VZ17].
This is despite of the fact that convex hulls of multidimensional random walks,
Brownian motions, and other Lévy processes are very popular objects of studies; we
refer to [VZ17] for references, including the general surveys on this broad subject.

Our first result is as follows.

Theorem 1.1. Let S1, . . . , Sn be a random walk in R
d whose i.i.d. increments

ξ1, . . . , ξn have a centrally symmetric distribution (i.e., ξ1
d= −ξ1), and suppose

additionally that P[ξ1 ∈ H] = 0 for every affine hyperplane H ⊂ R
d. Then

P[0 /∈ Conv(S1, S2, . . . , Sn)] =
2

2nn!

�d/2�∑

k=1

B(n, d − 2k + 1), (1)

where B(n, k) are the coefficients of the polynomial

(t + 1)(t + 3) . . . (t + 2n − 1) =
n∑

k=0

B(n, k)tk.

It is remarkable that in any dimension, the above absorption probabilities are
distribution-free, i.e., independent of the distribution of increments of the walk. This
fact was conjectured by Vysotsky and Zaporozhets [VZ17], who found an explicit
formula for the absorption probabilities in the planar case d = 2. Specifying to
d = 1 and noticing that B(n, 0) = (2n−1)!!, we recover the famous distribution-free

Keywords and phrases: Convex hull, Random walk, Random walk bridge, Absorption proba-
bility, Distribution-free probability, Exchangeability, Hyperplane arrangement, Whitney’s formula,
Zaslavsky’s theorem, Characteristic polynomial, Weyl chamber, Finite reflection group, Convex
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orem

Mathematics Subject Classification: Primary 52A22, 60D05; Secondary 60G50, 60G09, 52A23,
52A55, 52C35, 20F55



GAFA CONVEX HULLS OF RANDOM WALKS AND WEYL CHAMBERS

result of Sparre Andersen for the probability that a random walk with continuous
symmetric distribution of increments stays positive:

P[S1 > 0, . . . , Sn > 0] =
(2n − 1)!!

2nn!
=

1
22n

(
2n

n

)
. (2)

We will refer to the condition that P[ξ1 ∈ H] = 0 for every affine hyperplane
H ⊂ R

d as to the general position assumption since it implies that any d random
vectors among S1, . . . , Sn are linearly independent a.s.; see Proposition 2.5 below. We
will impose this or similar assumptions in most of our results. However, even without
it we can show that the absorption probability for any n-step symmetric random
walk1 (for which P[ξ1 ∈ H] may be positive) is lower-bounded by the right-hand side
in (1); see Proposition 2.12 below.

1.2 The equivalent geometric problems. Our proof rests on a newly es-
tablished direct connection between the probabilistic problem and an equivalent
geometric problem concerning Weyl chambers. We solve the geometric problem us-
ing the theory of hyperplane arrangements and find the absorption probabilities
explicitly. This method is entirely different from that of [VZ17], and it even requires
a noticeable effort to check that the formulas for the absorption probabilities match
for d = 2 (we will not include the details but wish to thank the anonymous referee
for showing us this derivation).

Let us state the equivalent geometric problem. A Weyl chamber of type Bn is
any of the 2nn! convex cones in R

n of the form

{(x1, . . . , xn) ∈ R
n : 0 < ε1xσ(1) < ε2xσ(2) < · · · < εnxσ(n)},

where σ(1), . . . , σ(n) is a permutation of 1, . . . , n and ε1, . . . , εn ∈ {−1, 1}. Equiv-
alently, the Weyl chambers are the regions in R

n constituting the complement of
the arrangement of n2 hyperplanes xi = 0 and xi ± xj = 0, i �= j, which form the
hyperfaces of the chambers.

It turns out that under the assumptions of Theorem 1.1, we have

P[0 ∈ Conv(S1, S2, . . . , Sn)] =
Nn,d

2nn!
, (3)

where Nn,d is the constant number of Weyl chambers intersected by a generic non-
random linear subspace of R

n of codimension d. The exact meaning of “generic”
will be explained in Sect. 3, where we compute the value of Nn,d using the for-
mulas of Whitney and Zaslavsky from the theory of hyperplane arrangements; see
Theorem 3.4.

1 By saying that a random walk is symmetric we always mean the central symmetry of the
distribution of its increments.
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There is other connection between the absorption problem and a problem in
spherical convex geometry: we show that for symmetric random walks whose distri-
bution of increments puts no mass on affine hyperplanes,

P[0 /∈ Conv(S1, S2, . . . , Sn)] =
2

2nn!

�d/2�∑

k=1

υd−2k+1(Wn),

where Wn is a Weyl chamber of type Bn and υk are the conic intrinsic volumes. Hence
finding the latter quantities solves the probabilistic problem. Conic intrinsic volumes
are the analogues in conic geometry for intrinsic volumes of convex sets in Euclidean
geometry. Intrinsic volumes include such fundamental geometric characteristics of a
convex set as its volume, surface area, and mean width.

The described connections between the geometric problems via the absorption
problem gave us the insight to obtain a new simple proof of the general formula by
Klivans and Swartz [KS11] that relates the coefficients of the characteristic poly-
nomial of a linear hyperplane arrangement to the conic intrinsic volumes of the
chambers constituting its complement; see Theorem 4.1. We used this result to find
the conic intrinsic volumes υk(Wn) of Weyl chambers of type Bn; see Theorem 4.2.
The particular value υ1(Wn), which corresponds to the planar absorption probabil-
ity, was found in [VZ17] (the conic hull of the orthoscheme path-simplex considered
there is exactly the standard Weyl chamber). Let us mention the very recent papers
by Amelunxen and Lotz [AL] and Schneider [Sch] that consider further extensions
of the Klivans–Swartz formula [KS11]. Both works appeared after the first version
of the present paper; the approach of [Sch, Theorem 1.2] extends our proof of The-
orem 4.1.

The explicit formula given in Theorem 1.1 allows one to find easily the asymp-
totics of the absorption probability in a fixed dimension d as the number of steps
n tends to infinity; see Theorem 5.1. It also allows us to do asymptotic analysis
as the dimension increases and the number of steps n = n(d) grows accordingly
to make the absorption occur with a non-trivial probability. In this case we prove
that the absorption probabilities follow a central limit theorem; see Theorem 5.2.
In particular, our result shows that the phase transition from the non-absorption
to absorption occurs as the number of steps reaches n ≈ e2d. In Theorem 5.5 we
give the sharp asymptotics for the absorption and non-absorption probabilities in
the respective large deviations regions n ≈ e2d/c and n ≈ e2dc for any c > 1. This
refines the much less precise bounds for the large deviations regions by Eldan [Eld14]
and by Tikhomirov and Youssef [TY17]; see the discussion in Sect. 5.3. We also ob-
tain a version of this result for simple random walks, which of course do not satisfy
the general position assumption. In this case a one-sided bound for the absorption
probability in large deviation regions is given in Theorem 5.7.

1.3 Extensions to other types of increments. The Coxeter group Bn is the
symmetry group of the regular cube [−1, 1]n. The 2nn! elements of this group act
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on R
n by permuting the coordinates in arbitrary way and multiplying any number

of coordinates by −1. This is a finite reflection group generated by reflections along
the hyperfaces of any Weyl chamber of type Bn. Every Weyl chamber Wn of type Bn

is a fundamental region for the action of Bn: this means that the sets gWn, g ∈ Bn,
are disjoint and their closures constitute the entire R

n. We refer to [GB85] for an
introduction to finite reflection groups.

Our method actually applies to convex hulls of not only random walks with i.i.d.
increments but also of any sequence of partial sums Sk = ξ1 + · · · + ξk, k = 1, . . . , n,
if their increments ξ1, . . . , ξn are possibly dependent random vectors in R

d whose
joint distribution is invariant under the action of Bn, that is

(ξ1, . . . , ξn) d= (ε1ξσ(1), . . . , εnξσ(n)) (4)

for any permutation σ(1), . . . , σ(n) of 1, . . . , n and any ε1, . . . , εn ∈ {−1, 1}. In this
case we say that the tuple (ξ1, . . . , ξn) is symmetrically exchangeable. There are many
important examples of such tuples with non-i.i.d. entries: say, for d = 1, the tuple
of coordinates of any rotationally invariant non-Gaussian random vector in R

n is
so. The exact statement of Theorem 1.1 extended to symmetrically exchangeable
increments is given in Theorem 2.3 of the next section.

It turns out that our approach can be generalized to solve the absorption prob-
lems for partial sums of increments whose joint distribution is invariant under the
action of other finite groups. These are the reflection groups of types An−1 and Dn,
and direct products of finite reflection groups. Let us explain.

The Coxeter group An−1 is the symmetry group of the regular simplex (defined
as the convex hull of the standard basis vectors in R

n). The n! elements of this group
act on R

n by permuting the coordinates. The tuple (ξ1, . . . , ξn) of random vectors
in R

d is called exchangeable if its distribution is invariant under the action of An−1,
that is

(ξ1, . . . , ξn) d= (ξσ(1), . . . , ξσ(n)) (5)

for any permutation σ(1), . . . , σ(n) of 1, . . . , n. We will use the standard notation
Sym(n) for the symmetric group on {1, . . . , n} of such permutations.

The action of An−1 leaves the hyperplane x1 + · · · + xn = 0 invariant. Restrict-
ing the action of An−1 to this hyperplane allows us to apply the method described
above in Sect. 1.2 to the convex hulls Conv(S1, . . . , Sn−1) of partial sums with ex-
changeable increments that satisfy the condition ξ1 + · · · + ξn = 0 a.s. This covers
the absorption problem for random walk bridges under the corresponding general
position assumption. The respective analogue of (3) rests on counting the number
of Weyl chambers of type An−1 intersected by a generic subspace of codimension d
of the hyperplane x1 + · · · + xn = 0. The exact statement is given in Theorem 2.1.

The Coxeter group Dn is the subgroup of Bn of index two whose action on R
n

changes signs of an even number of coordinates. The corresponding Theorem 2.7,
concerning the joint distribution of increments invariant under the action of Dn,
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applies to the convex hulls of symmetric random walks that are allowed to choose
the sign of the last jump; see the discussion in Sect. 2.

Thus, all the results discussed above in Sect. 1.2 are proved for the convex hulls
of partial sums of increments whose joint distribution is invariant under the action
of one of the finite reflection groups An−1, Bn, or Dn. The corresponding equivalent
geometric statements concern Weyl chambers of the respective types.

Finally, we consider the case when the increments are invariant under the action
of a direct product of reflection groups. We restrict ourselves to direct products of
groups of type B. The corresponding Theorem 2.9 solves the absorption problem
for the joint convex hull of several symmetric random walks with possibly different
number of steps (under the corresponding general position assumption).

In the particular case when all the random walks have the same distribution of
increments and each walk has only one step, Theorem 2.9 implies the well-known
result of Wendel [Wen62]: if ξ1, . . . , ξn are i.i.d. random vectors in R

d with an abso-
lutely continuous centrally symmetric distribution, then

P[0 /∈ Conv(ξ1, . . . , ξn)] =
1

2n−1

d−1∑

k=0

(
n − 1

k

)
. (6)

Thus, our approach brings together the classical distribution-free results (2)
and (6) by Sparre Andersen and Wendel, respectively, on symmetrically distributed
random variables.

Let us explain the structure of the paper. Section 2 contains the explicit formulas
for the absorption probabilities under the different types of increments. These results
are proved in Sect. 6. In Sects. 3 and 4 we provide some basic facts from the theory
of hyperplane arrangements and conic convex geometry, and prove our new results
on the geometric problems equivalent to the absorption problem. The asymptotic
analysis of absorption probabilities is given in Sect. 5. We conclude the paper with
the list of open questions.

2 Main results: convex hulls of random walks and bridges

In this section we present the explicit formulas for the absorption probabilities for
the partial sums

Sk = ξ1 + · · · + ξk, 1 ≤ k ≤ n

with the joint distribution of their increments ξ1, . . . , ξn ∈ R
d invariant under the

action of the finite reflection groups An−1, Bn, Dn, and the analogous result for the
invariance under direct products.
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2.1 Type An−1: random walk bridges. The Coxeter group An−1 is the sym-
metric group Sym(n), which acts on R

n by permuting the coordinates. The number
of elements in this group is n!. The action of this group leaves the hyperplane

L = {(x1, . . . , xn) ∈ R
n : x1 + · · · + xn = 0}

invariant. This explains why the subscript n−1 rather than n appears in the standard
notation An−1. Note that the group An−1 is the symmetry group of the regular
simplex with n vertices, i.e. the convex hull of the standard basis in R

n.

Theorem 2.1. Let (ξ1, . . . , ξn) be an exchangeable tuple (see (5)) of random vectors
in R

d with partial sums S1, . . . , Sn. Assume that Sn = 0 a.s., n ≥ d + 1, and any d
random vectors among S1, . . . , Sn−1 are linearly independent a.s. Then

P[0 ∈ Conv(S1, . . . , Sn−1)] =
2
n!

([
n

d + 2

]
+

[
n

d + 4

]
+ · · ·

)
, (7)

where
[
n
k

]
are the Stirling numbers of the first kind defined by the formula

t(t + 1) . . . (t + n − 1) =
n∑

k=1

[
n

k

]
tk (8)

with the convention that
[
n
k

]
= 0 for k /∈ {1, . . . , n}.

Remark 2.2. The sum in (7) is (as well as many other sums of a similar type
appearing below) contains only finitely many non-zero terms. Combining (7) with
the identity [

n

1

]
+

[
n

3

]
+ · · · =

[
n

2

]
+

[
n

4

]
+ · · · =

n!
2

(9)

(which can be obtained by taking t = ±1 in (8)), yields the following formula for
the probability of non-absorption:

P[0 /∈ Conv(S1, . . . , Sn−1)] =
2
n!

([
n

d

]
+

[
n

d − 2

]
+ · · ·

)
. (10)

In the one-dimensional case d = 1 we obtain from (10) that the probability that
S1, . . . , Sn−1 do not change their sign is

P[S1, . . . , Sn−1 > 0 or S1, . . . , Sn−1 < 0] =
2
n

, (11)

since
[
n
1

]
= (n − 1)!. In fact, Sparre Andersen [And53, Corollary 2] showed that the

probability of staying positive and the probability of staying negative are 1/n each.
Theorem 2.1 can be viewed as a multidimensional generalization of this classical
formula.

The number 1
n!

[
n
k

]
turns out to be the kth conic intrinsic volume of the Weyl

chamber of type An−1, as shown below in Sect. 4.3. It can be also interpreted as the
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probability of having k records in n i.i.d. observations from a continuous distribu-
tion [Nev00, Lecture 13], or as

1
n!

[
n

k

]
= P[δ1 + · · · + δn = k],

where δ1, . . . , δn are independent random variables (the record indicators) with δi ∼
Bernoulli(1

i ).
It is remarkable that Theorem 2.1 (as well as the other similar theorems stated

below) is distribution-free, that is the probability in (7) does not depend on the
distribution of ξ1, . . . , ξn. No moment conditions on the random vectors are imposed.

Let us stress that without the general position condition imposed in Theorem 2.1,
the absorption probabilities become distribution-dependent. For example, for the
bridge of a simple random walk Sk on Z (which makes jumps ±1 with probability
1/2), it is known that for any even n, it holds

P[S1, . . . , Sn−1 > 0 or S1, . . . , Sn−1 < 0 | Sn = 0] =
1

n − 1
,

which is clearly different from (11).

2.2 Type Bn: symmetric random walks. The Coxeter group Bn is the sym-
metry group of the regular cube [−1, 1]n (or of its dual, the regular crosspolytope).
The elements of this group act on R

n by permuting the coordinates in arbitrary way
and multiplying any number of coordinates by −1. The number of elements of this
group is 2nn!.

Theorem 2.3. Let (ξ1, . . . , ξn) be a symmetrically exchangeable tuple (see (4)) of
random vectors in R

d with partial sums S1, . . . , Sn. Assume that n ≥ d and any d
random vectors among S1, . . . , Sn are linearly independent a.s. Then

P[0 ∈ Conv(S1, S2, . . . , Sn)] =
2

2nn!
(B(n, d + 1) + B(n, d + 3) + · · · ), (12)

where B(n, k) are the coefficients of the polynomial

(t + 1)(t + 3) . . . (t + 2n − 1) =
n∑

k=0

B(n, k)tk (13)

and, by convention, B(n, k) = 0 for k /∈ {0, . . . , n}.

Remark 2.4. By taking t = ±1 in (13) we obtain the identity

B(n, 1) + B(n, 3) + · · · = B(n, 0) + B(n, 2) + · · · = 2n−1n!. (14)

It follows that the probability of non-absorption is given by

P[0 /∈ Conv(S1, S2, . . . , Sn)] =
2

2nn!
(B(n, d − 1) + B(n, d − 3) + · · · ). (15)
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The next proposition states a simple sufficient condition for Theorem 2.3 to hold
and yields Theorem 1.1.

Proposition 2.5. If ξ1, ξ2, . . . are i.i.d. random vectors in R
d with partial sums

Sk = ξ1 + · · · + ξk, k ∈ N, then the following conditions are equivalent:

(i) for every 1 ≤ i1 < · · · < id, the random vectors Si1 , . . . , Sid are linearly inde-
pendent with probability 1;

(ii) for every affine hyperplane H ⊂ R
d, we have P[ξ1 ∈ H] = 0;

(iii) for every hyperplane H0 ⊂ R
d passing through the origin and every i ∈ N, we

have P[Si ∈ H0] = 0.

Corollary 2.6. If (ii) or (iii) is satisfied, then Theorem 2.3 applies.

Importantly, the probability in (12) does not depend on the distribution of the
increments. This proves the conjecture of Vysotsky and Zaporozhets [VZ17] for
general d. Specifying (15) to d = 1 and noting that B(n, 0) = (2n−1)!! we obtain the
probability that a symmetric random walk with continuously distributed increments
stays positive:

P[S1 > 0, S2 > 0, . . . , Sn > 0] =
(2n − 1)!!

2nn!
=

1
22n

(
2n

n

)
.

This recovers another classical result of Sparre Andersen [And49]. For a simple
random walk Sk, the formula is different: by the reflection principle,

P[S1 > 0, S2 > 0, . . . , Sn > 0] =
1
2n

(
n − 1[
n−1

2

]
)

.

The numbers B(n, k) are called the B-analogs of the (signless) Stirling numbers
of the first kind; see the entries A028338 (or A039757 for the signed version) in [Slo].
They satisfy the recurrence relation

B(n, k) = (2n − 1)B(n − 1, k) + B(n − 1, k − 1)

and are explicitly given by B(n, k) =
∑n

i=k 2n−i
(

i
k

)[
n
i

]
. These numbers were studied

in detail by Suter [Sut00]. There is a probabilistic representation of B(n, k): it follows
directly from (13) that

B(n, k)
2nn!

= P[δ1 + · · · + δn = k],

where δ1, . . . , δn are independent random variables with δi ∼ Bernoulli( 1
2i) for 1 ≤

i ≤ n. Geometrically, B(n, k)/(2nn!) is the kth conic intrinsic volume of the Weyl
chamber of type Bn; see Sect. 4.3.
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2.3 Type Dn. The Coxeter group Dn acts on R
n by permuting the coordinates

in an arbitrary way and by multiplying any even number of coordinates by −1. It
is a subgroup of Bn of index 2 and the number of its elements is 2n−1n!. Dn is the
symmetry group of the demihypercube constructed from alternation of the regular
cube [−1, 1]n.

Theorem 2.7. Let ξ1, . . . , ξn be random vectors in R
d such that for every permu-

tation σ ∈ Sym(n) and every ε1, . . . , εn ∈ {−1, +1} with ε1 . . . εn = +1,

(ξ1, . . . , ξn) d= (ε1ξσ(1), . . . , εnξσ(n)). (16)

Let S1, . . . , Sn denote the partial sums of ξ1, . . . , ξn, and put S∗
n = Sn−1−ξn. Assume

that n ≥ max{2, d} and any d random vectors from either collection S1, . . . , Sn or
S1, . . . , Sn−1, S

∗
n are linearly independent a.s. Then

P[0 ∈ Conv(S1, . . . , Sn−1, Sn, S∗
n)] =

2
2n−1n!

(D(n, d+1)+D(n, d+3)+ · · · ), (17)

where D(n, k) are the coefficients of the polynomial

(t + 1)(t + 3) . . . (t + 2n − 3)(t + n − 1) =
n∑

k=0

D(n, k)tk (18)

and, by convention, D(n, k) = 0 for k /∈ {0, . . . , n}.

Remark 2.8. The probability of non-absorption is given by

P[0 /∈ Conv(S1, . . . , Sn−1, Sn, S∗
n)] =

2
2n−1n!

(D(n, d−1)+D(n, d−3)+ · · · ). (19)

For example, Theorem 2.7 can be applied when ξ1, . . . , ξn are i.i.d. random vectors
as in Proposition 2.5. It is easy to show (see (55) below) that for any n ≥ 2,

Conv(S1, . . . , Sn−1, Sn, S∗
n) = Conv(S1, . . . , Sn−1, Sn) ∪ Conv(S1, . . . , Sn−1, S

∗
n),

hence the probabilistic problem corresponding to the symmetry group Dn concerns
the convex hull of a symmetric random walk allowed to “choose” the sign of its last
jump in order to absorb the origin.

The numbers

D(n, k) = (n − 1)B(n − 1, k) + B(n − 1, k − 1)

are called the D-analogs of the (signless) Stirling numbers of the first kind; see the
entry A039762 in [Slo] for the signed version. It will be shown in Sect. 4.3 that
D(n, k)/(2n−1n!) is the kth conic intrinsic volume of the Weyl chamber of type Dn.
Moreover, we have

D(n, k)
2n−1n!

= P[δ1 + · · · + δn = k],

where δ1, . . . , δn are independent random variables with δi ∼ Bernoulli( 1
2i) for 1 ≤

i ≤ n − 1 and δn ∼ Bernoulli( 1
n).
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2.4 Direct products of reflection groups. So far we considered probabilistic
problems related to irreducible reflection groups. It is known that a general reflection
group can be represented as direct sum of irreducible ones. In this section we study
the absorption problem for the joint convex hull of several random walks and/or
random walk bridges. The corresponding symmetry groups are the direct products
of finite reflection groups.

To be specific, we restrict ourselves to direct products of the form Bn1 ×· · ·×Bnr

containing only groups of the same type, namely B. Here r ∈ N corresponds to the
number of random walks and ni, where 1 ≤ i ≤ r, stands for the number of steps
in the ith walk. It is straightforward to extend our results to products of the form
An1 × · · · × Anr

, which corresponds to joint convex hulls of several random walk
bridges, and even to mixed direct products containing groups of all 3 types A, B, D.
We omit such extension because it requires more complicated notation.

Theorem 2.9. Let ξ
(1)
1 , . . . , ξ

(1)
n1 , . . . , ξ

(r)
1 , . . . , ξ

(r)
nr be random vectors in R

d such that

for every permutations σ(1) ∈ Sym(n1), . . . , σ(r) ∈ Sym(nr) and every signs ε
(1)
1 , . . . ,

ε
(1)
n1 , . . . , ε

(r)
1 , . . . , ε

(r)
nr ∈ {−1, +1}, we have

(ξ(1)
1 , . . . , ξ(1)

n1
, . . . , ξ

(r)
1 , . . . , ξ(r)

nr
)

d= (ε(1)
1 ξ

(1)
σ1(1)

, . . . , ε(1)
n1

ξ
(1)
σ1(n1)

, . . . , ε
(r)
1 ξ

(r)
σr(1)

, . . . , ε(r)
nr

ξ
(r)
σr(nr)

). (20)

Let S
(i)
k = ξ

(i)
1 + · · · + ξ

(i)
k , 1 ≤ i ≤ r, 1 ≤ k ≤ ni, denote the partial sums.

Assuming that n1 + · · · + nr ≥ d and any d random vectors from the collection

S
(1)
1 , . . . , S

(1)
n1 , . . . , S

(r)
1 , . . . , S

(r)
nr are linearly independent a.s., we have

P[0 ∈ Conv(S
(1)
1 , . . . , S(1)

n1 , . . . , S
(r)
1 , . . . , S(r)

nr
)] =

2(P (d + 1) + P (d + 3) + · · · )
2n1n1! . . . 2nrnr!

, (21)

where the P (k)’s (which also depend on r, n1, . . . , nr) are the coefficients of the
polynomial

r∏

i=1

((t + 1)(t + 3) . . . (t + 2ni − 1)) =
n1+···+nr∑

k=0

P (k)tk (22)

and P (k) = 0 for k /∈ {0, . . . , n1 + · · · + nr}.

Since the proof of Theorem 2.9 is based on the same ideas as the proofs in the
irreducible cases, but requires complicated notation, it will be presented elsewhere.

Example 2.10 (Type Br
1: The Wendel formula). Let us consider the particular case

n1 = · · · = nr = 1 that all random walks make just one step. This corresponds to
the direct product of r groups Z/2Z, where each factor acts on R by multiplication
by ±1.
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The random vectors ξ(1) := ξ
(1)
1 , . . . , ξ(r) := ξ

(r)
1 with values in R

d are required
to satisfy

(ξ(1), . . . , ξ(r)) d= (±ξ
(1)
1 , . . . ,±ξ

(r)
1 ) (23)

for all 2r choices of the signs. Additionally, we assume that any d of these r random
vectors are linearly independent a.s. Then (22), which defines P (k)’s, takes the form
(t + 1)r =

∑r
k=0 P (k)tk so that P (k) =

(
r
k

)
. Theorem 2.9 asserts that

P[0 /∈ Conv(ξ(1), . . . , ξ(r))] =
1

2r−1

((
r

d − 1

)
+

(
r

d − 3

)
+ . . .

)
.

Using the recursive property of the Pascal triangle, we obtain

P[0 /∈ Conv(ξ(1), . . . , ξ(r))] =
1

2r−1

d−1∑

k=0

(
r − 1

k

)
.

This formula is due to Wendel [Wen62], whose proof is essentially based on Schläfli’s
formula (44) presented below; see [SW08, Section 8.2.1].

The same result can be obtained if one considers the symmetry group Ar
1 since

its action on R
2r is isomorphic to the action of Br

1 on R
r.

Remark 2.11. Although some of our arguments can be extended to other group
representations, such extensions do not seem to have a natural probabilistic inter-
pretation. Here is the most meaningful example: by considering the direct product of
r dihedral groups, it is possible to find the probability of absorption of the origin by
the convex hull of r sides chosen uniformly at random in r regular polygons centred
at the origin. We prefer to omit such results here.

2.5 Removing the general position assumptions. As explained above, the
general position assumption is essential in our results. Without this assumption, it
is still possible to obtain a one-sided bound for the absorption probabilities.

Let (ξ1, . . . , ξn) be a tuple of random vectors in R
d that satisfies all the assump-

tions of any of Theorems 2.1, 2.3, or 2.7. Denote by Hn,d the convex hull considered
in the respective theorem. Let (ξ′

1, . . . , ξ
′
n) be any tuple of random vectors in R

d

that satisfies all the assumptions of the corresponding theorem except the general
position one. Put S′

k = ξ′
1 + · · · + ξk, 1 ≤ k ≤ n, and (S∗

n)′ = ξ′
1 + · · · + ξ′

n−1 − ξ′
n,

and denote by H ′
n,d the convex hull of the respective type.

Note that both H ′
n,d and Hn,d are closed, and denote by Int(H ′

n,d) the interior of
H ′

n,d.

Proposition 2.12. For any of the cases An−1, Bn, Dn, we have

P[0 ∈ Int(H ′
n,d)] ≤ P[0 ∈ Hn,d] ≤ P[0 ∈ H ′

n,d]. (24)

In particular, this result covers simple random walks on Z
d, where ξ′

1, . . . , ξ
′
n are

i.i.d. and P[ξ′
1 = ei] = P[ξ′

1 = −ei] = 1
2d for i = 1, . . . , d, with e1, . . . , ed being the

standard basis in R
d.
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Proof. Since the absorption probability is distribution-free under the respective gen-
eral position assumption, we can assume without loss of generality that ξi = ξ′

i +εδi,
where ε �= 0 and δ1, . . . , δn are random vectors in R

d independent of ξ′
1, . . . , ξ

′
n, with

the following distribution. In the Bn and Dn cases, δ1, . . . , δn are i.i.d. standard nor-
mal vectors in R

d, whereas in the An−1 case, they are i.i.d. standard normal vectors
in R

d conditioned on δ1 + · · · + δn = 0. The tuple (ξ1, . . . , ξn) defined in this way
satisfies the assumptions of the respective Theorem 2.1, 2.3, or 2.7.

Note that the convex hull Hn,d is obtained from H ′
n,d by a small random distor-

tion. We have

P[0 ∈ Hn,d] ≤ P[0 ∈ H ′
n,d] + P[0 ∈ Hn,d, 0 /∈ H ′

n,d], (25)

P[0 ∈ Hn,d] ≥ P[0 ∈ Int(H ′
n,d)] − P[0 ∈ Int(H ′

n,d), 0 /∈ Hn,d], (26)

where P[0 ∈ Hn,d] does not depend on ε, whereas

lim
ε→0

P[0 ∈ Hn,d, 0 /∈ H ′
n,d] = lim

ε→0
P[0 ∈ Int(H ′

n,d), 0 /∈ Hn,d] = 0

since H ′
n,d is a closed set and Int(H ′

n,d) is an open set. Letting ε → 0 in (25) and (26)
proves (24). Note that the difference in probabilities in (24) can occur because if 0
is on the boundary of H ′

n,d, then even a small distortion possibly gets Hn,d aside of
0. �

In Sect. 6.3 we will present another proof of Proposition 2.12 which follows our
geometric interpretation in terms of intersections of Weyl chambers. It is easy to
extend Proposition 2.12 to direct products of reflection groups.

3 Hyperplane arrangements

3.1 The main formula for the number of regions. A linear hyperplane
arrangement (or simply “arrangement”) A is a finite set of distinct hyperplanes in
R

n that pass through the origin. The literature on hyperplane arrangements [OT92],
[Sta07] considers the more general concept of affine hyperplane arrangements (the
hyperplanes are not required to pass through the origin) but in the present work we
study only the linear case.

The rank of an arrangement A, denoted by rank(A), is the dimension of the
linear subspace spanned by the normals to the hyperplanes in A. Equivalently, the
rank is the codimension of the intersection of all hyperplanes in the arrangement:

rank(A) = n − dim

(
⋂

H∈A
H

)
.

The characteristic polynomial χA(t) of the arrangement A is defined by

χA(t) =
∑

B⊂A
(−1)#Btn−rank(B), (27)
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where the sum is over all subsets B of A, # denotes the number of elements, and
rank(∅) = 0 under convention that the intersection over the empty set of hyper-
planes is R

n. The original definition of the characteristic polynomial is much more
complicated and uses the notions of the intersection poset of A and the Möbius
function on it; see [Sta07, Section 1.3]. For our purposes we need only the above
equivalent definition. The equivalence was proved by Whitney; see, e.g., [OT92,
Lemma 2.3.8] or [Sta07, Theorem 2.4].

Denote by R(A) the set of open connected components (“regions” or “chambers”)
of the complement R

n\∪H∈AH of the hyperplanes. The following fundamental result
due to Zaslavsky [Zas75] (see also [Sta07, Theorem 2.5]) expresses the number of
regions of the arrangement A in terms of its characteristic polynomial:

#R(A) = (−1)nχA(−1). (28)

Let A be an arrangement in R
n and let Ln−d be a linear subspace in R

n of
codimension d ≤ n − 1. We say that Ln−d is in general position with respect to A if
for every non-empty subset B ⊂ A

dim

(
⋂

H∈B
(H ∩ Ln−d)

)
=

{
n − d − rank(B), if rank(B) ≤ n − d,

0, if rank(B) ≥ n − d.
(29)

Our aim is to find a formula for the number of regions in R(A) intersected
by Ln−d. Consider the induced arrangement A|Ln−d, that is the arrangement in
Ln−d

∼= R
n−d defined by2

A|Ln−d = {H ∩ Ln−d : H ∈ A}.

It is not hard to show, using the fact that R ∩ Ln−d is connected in Ln−d for every
R ∈ R(A), that the regions of the induced arrangement are obtained by intersecting
the regions of A with Ln−d. Then, clearly, we have

#{R ∈ R(A) : R ∩ Ln−d �= ∅} = #R(A|Ln−d).

Lemma 3.1. Let A be a linear hyperplane arrangement in R
n and let Ln−d be a

linear subspace in R
n of codimension d ≤ n − 1 that is in general position w.r.t. A.

Let

χA(t) =
n∑

k=0

(−1)n−kakt
k (30)

2 In this definition we assume that the linear subspace Ln−d is in general position w.r.t. A and
that n − d �= 1. This ensures that every H ∩ Ln−d has codimension 1 in Ln−d (by (29)) and that
all these hyperplanes are distinct. Indeed, if H1 ∩ Ln−d = H2 ∩ Ln−d, then both subspaces have
dimension n − d − 1 by (29), but, on the other hand, H1 ∩ H2 has dimension d − 2 and hence,
H1 ∩ H2 ∩ Ln−d has dimension n − d − 2 ≥ 0 by (29), which is a contradiction. In the case that
Ln−d is a line in general position w.r.t. A, we define A|Ln−d = {{0}}.
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be the characteristic polynomial of A. Then the characteristic polynomial of A re-
stricted to Ln−d is given by

χA|Ln−d
(t) =

d∑

k=0

(−1)n−kak +
n∑

k=d+1

(−1)n−kakt
k−d. (31)

Remark 3.2. It is easy to show that an = 1, an−1 = #A; see [Sta07, p. 400].
Moreover, the sequence a0, . . . , an is strictly positive [Sta07, Corollary 3.5] and uni-
modal [Sta07, Lecture 2, Exercise 9 on p. 419]. Let us also prove the identity

a0 + a2 + · · · = a1 + a3 + . . . . (32)

By the second part of Zaslavsky’s theorem [Sta07, Theorem 2.5], for every affine
hyperplane arrangement, the number of bounded regions in R(A) is (up to the sign)
given by χA(1) =

∑n
k=0(−1)n−kak. Since we are dealing only with linear hyperplane

arrangements, there are no bounded regions, whence (32).

Proof. If Ln−d is a line, then A|Ln−d = {{0}} and χA|Ln−d
= t − 1, which is the

same expression as in (31) by (32) and since an = 1.
Suppose in the following that n−d ≥ 2. It follows from (29) that for every subset

B ⊂ A,

rank(B|Ln−d) =

{
rank(B), if rank(B) ≤ n − d,

n − d, if rank(B) ≥ n − d,
(33)

where the rank is in Ln−d. Also, as we explained in the footnote, #(B|Ln−d) = #B
because Ln−d is not a line. Using (27) (in dimension n − d) and then (33) we obtain

χA|Ln−d
(t) =

∑

B⊂A
(−1)#Btn−d−rank(B|Ln−d)

=
d∑

k=0

∑

B⊂A
rank(B)=n−k

(−1)#B +
n∑

k=d+1

∑

B⊂A
rank(B)=n−k

(−1)#Btn−d−rank(B).

After noting that by (27) and (30),
∑

B⊂A
rank(B)=n−k

(−1)#B = (−1)n−kak,

we obtain the required formula. �
Now we are ready to state the main result of this section.

Theorem 3.3. Let Ln−d be linear subspace in R
n of codimension d that is in general

position w.r.t. a linear hyperplane arrangement A. The number of regions in R(A)
intersected by Ln−d is given by

#{R ∈ R(A) : R ∩ Ln−d �= ∅} = 2(ad+1 + ad+3 + . . . ),

where the ak’s are defined by (30) and we set ak = 0 for k /∈ {0, . . . , n}.
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Proof. By (28) and Lemma 3.1, we have

#{R ∈ R(A) : R ∩ Ln−d �= ∅} =

{∑n
k=0 ak − 2

∑s
k=0 a2k, if d = 2s + 1,

∑n
k=0 ak − 2

∑s
k=1 a2k−1, if d = 2s,

where we used that A|Ln−d is an arrangement in dimension n − d. To complete the
proof, recall (32). �

3.2 Special case: the reflection arrangements. The above results can be
applied to the reflection arrangements in R

n of the types An−1, Bn, Dn. These
arrangements consist of the hyperplanes

A(An−1) : xi = xj , 1 ≤ i < j ≤ n,

A(Bn) : xi = xj , xi = −xj , xk = 0, 1 ≤ i < j ≤ n, 1 ≤ k ≤ n,

A(Dn) : xi = xj , xi = −xj , 1 ≤ i < j ≤ n.

Theorem 3.4. Let Ln−d be a linear subspace in R
n of codimension d that is in

general position w.r.t. to one of the reflection arrangement A(An−1), A(Bn), A(Dn).
Then the number of regions in this arrangement intersected by Ln−d is given, re-
spectively, by

R(A(An−1)|Ln−d) = 2
([

n

d + 1

]
+

[
n

d + 3

]
+ . . .

)
,

R(A(Bn)|Ln−d) = 2(B(n, d + 1) + B(n, d + 3) + . . . ),
R(A(Dn)|Ln−d) = 2(D(n, d + 1) + D(n, d + 3) + . . . ).

Proof. The characteristic polynomials of the reflection arrangements are (see Corol-
lary 2.2 on p. 28 and Section 5.1 in [Sta07])

χA(An−1)(t) = t(t − 1) . . . (t − (n − 1)) =
n∑

k=1

(−1)n−k

[
n

k

]
tk, (34)

χA(Bn)(t) = (t − 1)(t − 3) . . . (t − (2n − 1)) =
n∑

k=0

(−1)n−kB(n, k)tk,

χA(Dn)(t) = (t − 1)(t − 3) . . . (t − (2n − 3))(t − (n − 1)) =
n∑

k=0

(−1)n−kD(n, k)tk,

(35)

where we have used (8), (13), (18). We stress that A(An−1) is an arrangement in
R

n, hence its characteristic polynomial has degree n. �
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3.3 Non-general position. The following lemma compares the number of open
and closed chambers intersected by an arbitrary linear subspace with the respective
number of chambers for a linear subspace in general position.

Lemma 3.5. Let A be a linear arrangement in R
n and let Ln−d, L

′
n−d be linear

subspaces in R
n of codimension d. If Ln−d is in general position w.r.t. A, then

{R ∈ R(A) : R̄ ∩ Ln−d �= {0}} = {R ∈ R(A) : R ∩ Ln−d �= ∅} (36)

and

#{R ∈ R(A) : R̄ ∩ L′
n−d �= {0}} ≥ #{R ∈ R(A) : R̄ ∩ Ln−d �= {0}}, (37)

#{R ∈ R(A) : R ∩ L′
n−d �= ∅} ≤ #{R ∈ R(A) : R ∩ Ln−d �= ∅}. (38)

The proof will be presented in Sect. 6.3.

4 Connection with conic intrinsic volumes

4.1 Definition of conic intrinsic volumes. We call a set C ⊂ R
n a convex

cone if for any x, y ∈ C and a, b > 0 it holds ax + by ∈ C. In the 1940’s a spherical
counterpart of the Steiner formula was developed in [All48,Her43,San50]. In its
modern form (see [SW08, Section 6.5], [San76, Section IV], and [ALMT14,GNP17,
MT14]), this formula expresses the size of angular expansions of a closed convex
cone C in R

n:

P[dist2(θ, C) ≤ λ] =
n∑

k=0

βk,n(λ)υk(C), (39)

where θ is a random variable uniformly distributed on the unit sphere S
n−1 ⊂ R

n and
βk,n(·) is the distribution function of a Beta distribution with parameters (n − k)/2
and n/2. Since the functions β1,n, . . . , βn,n are linearly independent, the formula
defines the coefficients υk(C) uniquely. The quantities υ0(C), . . . , υn(C) are called
the conic intrinsic volumes of the cone C. The normalization is chosen so that
these quantities do not depend on the dimension of the Euclidean space containing
C, and thus conic intrinsic volumes do not change if we consider C as naturally
embedded into a space of higher dimension. Note that the kth conic intrinsic volume
υk(C) equals the (k − 1)th spherical intrinsic volume of C ∩ S

n−1 considered in
[GHS03,SW08].

Following the notation of [ALMT14], for each k ∈ {0, . . . , n}, define the kth
half-tail functional by

hk(C) = υk(C) + υk+2(C) + . . . , (40)

where we set υk(C) = 0 for k /∈ {0, . . . , n}.
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The conic intrinsic volumes satisfy a version of the Gauss–Bonnet theorem (see,
e.g., [SW08, Theorem 6.5.5] or [ALMT14, p. 28]): if C is not a subspace, then

h0(C) = υ0(C) + υ2(C) + . . . =
1
2
, h1(C) = υ1(C) + υ3(C) + . . . =

1
2
. (41)

The conic analogue of the Crofton formula (see, e.g., [SW08, pp. 261–262] or
[ALMT14, Equation 5.10]) is the following relation: if C is a closed convex cone
that is not a subspace, then for every d ∈ {0, . . . , n − 1},

hd+1(C) =
1
2

P[C ∩ Wn−d �= {0}], (42)

where Wn−d is a random (n−d)-dimensional linear subspace in R
n chosen w.r.t. the

uniform distribution on the Grassmannian.

4.2 Characteristic polynomial of linear arrangement and conic intrinsic
volumes. Let A be a linear hyperplane arrangement in R

n with characteristic
polynomial

χA(t) =
n∑

k=0

(−1)n−kakt
k.

The next theorem, conjectured by Drton and Klivans [DK10] and proved by Kli-
vans and Swartz [KS11], relates the coefficients of the characteristic polynomial to
the conic intrinsic volumes of the regions of the arrangement. We will give a com-
pletely different (and very short) proof of this theorem. Our approach was already
extended by Schneider [Sch, Theorem 1.2]. A generalization of the Klivans–Swartz
formula [KS11] was first considered by Amelunxen and Lotz [AL, Section 6], whose
work appeared after the first version of our paper.

Theorem 4.1. For every linear hyperplane arrangement A in R
n,

ak =
∑

R∈R(A)

υk(R), k = 0, . . . , n.

Proof. Let Wn−d+1 be a random (n − d + 1)-dimensional linear subspace in R
n

distributed according to the uniform measure on the Grassmannian, where d ∈
{1, . . . , n}. With probability one, Wn−d+1 is in general position w.r.t. A. Thus, by
Theorem 3.3 we have

#{R ∈ R(A) : R ∩ Wn−d+1 �= ∅} = 2(ad + ad+2 + . . . ) a.s.

On the other hand, for any R ∈ R(A) it follows from (42) that

hd(R) =
1
2

E[1{R∩Wn−d+1 �=∅}].
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Summing up over all R ∈ R(A) and combining the formulas, we obtain that for all
d ∈ {1, . . . , n},

∑

R∈R(A)

hd(R) =
1
2

E[#{R ∈ R(A) : R ∩ Wn−d+1 �= ∅}] = ad + ad+2 + . . . .

By (32), (41), and the equation above for d = 1, it also holds
∑

R∈R(A)

h0(R) = a0 + a2 + . . . .

Using the formula υk(R) = hk(R) − hk+2(R) (which follows from (40)) we obtain
that for all k ∈ {0, . . . , n},

∑

R∈R(A)

υk(R) =
∑

R∈R(A)

hk(R) −
∑

R∈R(A)

hk+2(R) = ak.

This completes the proof. �
4.3 Conic intrinsic volumes of the Weyl chambers. The Weyl chambers
of type An−1, Bn, Dn are the following convex cones in R

n:

C(An−1) := {(x1, . . . , xn) ∈ R
n : x1 < x2 < · · · < xn},

C(Bn) := {(x1, . . . , xn) ∈ R
n : 0 < x1 < x2 < · · · < xn},

C(Dn) := {(x1, . . . , xn) ∈ R
n : 0 < |x1| < x2 < · · · < xn}.

Each Weyl chamber C = C(G) is a fundamental domain for the corresponding reflec-
tion group G = An−1, Bn or Dn. This means that all cones of the form gC, g ∈ G,
which are also called Weyl chambers without any risk of confusion, are disjoint and
that ∪g∈GgC̄ = R

n holds true.

Theorem 4.2. The conic intrinsic volumes of the Weyl chambers of types An−1,
Bn, Dn are given by

υk(C(An−1)) =
1
n!

[
n

k

]
, υk(C(Bn)) =

B(n, k)
2nn!

, υk(C(Dn)) =
D(n, k)
2n−1n!

,

for k = 0, 1, . . . , n, where
[
n
k

]
, B(n, k), D(n, k) are as in (8), (13), (18), respectively.

Proof. To be specific, consider the An−1 case. The coefficients of the characteristic
polynomial of the corresponding hyperplane arrangement are ak =

[
n
k

]
; see the proof

of Theorem 3.4. The regions in R(An−1) are the n! isometric Weyl chambers of the
type An−1. By Theorem 4.1 we obtain

[
n

k

]
= n!υk(C(An−1)),

which proves the required formula. The Bn and Dn cases are analogous. �



Z. KABLUCHKO ET AL. GAFA

4.4 Random arrangements of hyperplanes in general position. Let A be
a linear arrangement in R

n consisting of m ≥ n hyperplanes in general position; in
our terminology, this means that R

n is in general position w.r.t. A; see (29). By (27)
we have that

χA(t) =
n−1∑

k=0

(−1)k

(
m

k

)
tn−k +

m∑

k=n

(−1)k

(
m

k

)
. (43)

Applying (28) and using that the alternating binomial coefficients add up to zero,
we get

R(A) =
n−1∑

k=0

(
m

k

)
+

m∑

k=n

(−1)k+n

(
m

k

)
=

n−1∑

k=0

(
m

k

)
−

n−1∑

k=0

(−1)k+n

(
m

k

)
,

hence by the recursive property of the Pascal triangle,

R(A) = 2
n−1∑

k=0

(
m − 1

k

)
=: C(m, n). (44)

This well-known formula, proved by Schläfli [Sch50, pp.209–212] for a general di-
mension, goes back to Steiner [Ste26] for n = 3; see also [GHS03, Lemma 8.2.1] for a
simple inductive proof and references. We already saw this formula in Example 2.10.

Let X1, . . . , Xm be i.i.d. random vectors on the unit sphere S
n−1 such that their

common distribution is centrally symmetric and assigns no mass to any (n − 2)-
dimensional great subsphere. The hyperplanes X⊥

1 , . . . , X⊥
m, which are in general

position a.s., divide R
n into C(m, n) random cones. We choose one of these cones

uniformly at random to obtain the random Schläfli cone Cm in R
n introduced by

Hug and Schneider in [HS16].
The next result of [HS16] (given there with a slightly different notation) calculates

the expected intrinsic volumes of a random Schläfli cone. This theorem easily follows
from Theorem 4.1.

Theorem 4.3. For any random Schläfli cone Cm in R
n, it holds

E υk(Cm) =
1

C(m, n)

(
m

n − k

)
, k = 0, . . . , n.

Proof. Let A be the arrangement consisting of the hyperplanes X⊥
1 , . . . , X⊥

m. We
have

E υk(Cm) =
1

C(m, n)
E

∑

R∈R(A)

νk(R).

On the other hand, it follows from Theorem 4.1 and (43) that
∑

R∈R(A)

υk(R) =
(

m

n − k

)
a.s.,

which completes the proof. �
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Remark 4.4. As readily seen from the proof, this result holds true for any deter-
ministic vectors X1, . . . , Xm that are in general position. The essential randomness
here is in the uniform measure on the C(m, n) elements of R(A).

5 Asymptotic results

In this section we use the exact expressions of Sect. 2 to study the asymptotic
behavior of the probability that the convex hull of a symmetric random walk or of a
random walk bridge absorbs the origin. The cases An−1, Bn and Dn are very similar.
We work in the setting of Theorems 2.1, 2.3, 2.7, which assume the exchangeability
of increments, the assumption of general position, and in the cases Bn and Dn,
the symmetry of the distribution of increments. Recall that Hn,d ⊂ R

d denotes the
convex hull considered in any of these theorems.

5.1 Asymptotics in constant dimension. The following theorem gives the
asymptotics of the non-absorption probability in the case that the dimension d
is fixed and the number of steps n tends to infinity. In the case d = 2 this re-
sult was obtained by Vysotsky and Zaporozhets [VZ17]. We write xn ∼

n→∞ yn if

limn→∞ xn/yn = 1.

Theorem 5.1. For any fixed dimension d ≥ 2, under the assumptions of any of
Theorems 2.1, 2.3, 2.7, it holds

P[0 /∈ Hn,d] ∼
n→∞

{
2(log n)d−1

(d−1)!n , in the An−1 case,
(log n)d−1

2d−2(d−1)!
√

πn
, in the Bn and Dn cases.

Proof. In the An−1 case, we can use the well-known asymptotics of the Stirling
numbers [Wil93]: for a fixed k ∈ N,

1
(n − 1)!

[
n

k

]
∼

n→∞
(log n)k−1

(k − 1)!
.

Substituting this formula into the statement of Theorem 2.1 (see also (10)) and
noting that the term

[
n
d

]
dominates all other terms, we obtain

P[0 /∈ Hn,d] =
2
n!

([
n

d

]
+

[
n

d − 2

]
+ . . .

)
∼

n→∞
2
n!

[
n

d

]
∼

n→∞
2(log n)d−1

(d − 1)!n
.

In the Bn case, the definition of B(n, k) given in (13) yields

B(n, k) = (2n − 1)!!
∑

1≤i1<···<ik≤n

1
(2i1 − 1) . . . (2ik − 1)

∼
n→∞

(2n − 1)!!
k!

(
1 +

1
3

+ · · · +
1

2n − 1

)k

∼
n→∞

(2n − 1)!!
2kk!

(log n)k,
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where, in order to pass from the first line to the second one, one shows (by an omitted
standard argument) that the contribution of all terms in the sum where at least two
indices im and il are equal is o((log n)k). Substituting the above asymptotics for
B(n, k) into the statement of Theorem 2.3 (see also (15)), and noting that the term
B(n, d − 1) dominates all other terms, we obtain

P[0 /∈ Hn,d] =
2

2nn!
(B(n, d − 1) + B(n, d − 3) + . . . ) ∼

n→∞
2B(n, d − 1)

2nn!
.

Using the asymptotics of B(n, d − 1) and the Stirling formula, we obtain

P[0 /∈ Hn,d] ∼
n→∞ 2

(2n − 1)!!
2nn!

(log n)d−1

2d−1(d − 1)!
∼

n→∞
(log n)d−1

2d−2(d − 1)!
√

πn
.

The computation for the Dn case is similar to the one for the Bn case and yields
the same result. �

5.2 High-dimensional asymptotics: central limit theorem. Consider the
convex hull Hn,d of a symmetric random walk (or any random walk bridge) of length
n in a high dimension d. It is clear that if n is sufficiently small, then the absorption
probability should be close to 0, whereas for sufficiently large n the absorption
probability should be close to 1. Hence, at some value of n (which is a function
of d) there should be a phase transition from non-absorption to absorption. This
transition was studied by Eldan [Eld14] and in the subsequent paper by Tikhomirov
and Youssef [TY17].

In this section we provide a precise description of the location of this phase
transition. It will be convenient for us to make d = d(n) a function of n rather than
considering n as a function of d. The next theorem shows, in particular, that the
absorption probabilities P[0 ∈ Hn,d(n)] exhibit a phase transition at d(n) ≈ 1

2 log n
for symmetric random walks and d(n) ≈ log n for random walk bridges.

Theorem 5.2. Let the dimension d = d(n) be such that for some a ∈ R,

d(n) = u log n + a
√

u log n + o(
√

log n),

as n → ∞, where u = 1 in the An−1 case and u = 1
2 in the Bn and Dn cases. Then

under the assumptions of any of Theorems 2.1, 2.3, 2.7,

lim
n→∞ P[0 /∈ Hn,d(n)] =

1√
2π

∫ a

−∞
e−t2/2dt. (45)

Proof. Consider the case An−1 first. By Theorem 2.1 (see (10)), we have

P[0 /∈ Hn,d(n)] =
2
n!

([
n

d

]
+

[
n

d − 2

]
+ . . .

)
. (46)
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A classical result of Goncharov (see, e.g., [FS09, Sec. IX.5] or [Nev00, p. 63]) states
that the Stirling numbers of the first type satisfy a central limit theorem (CLT) of
the form

lim
n→∞

1
n!

d(n)∑

k=1

[
n

k

]
=

1√
2π

∫ a

−∞
e−t2/2dt. (47)

On the other hand, the Stirling numbers of the first kind are unimodal (in k)
being the (signed) coefficients of the characteristic polynomial of a hyperplane ar-
rangement; see Remark 3.2 and (34). Combining this fact with (47) and the uni-
modality of the standard normal density, we see that the mode mn of the sequence[
n
k

]
satisfies

mn = u log n + o(
√

log n). (48)

Hence if a < 0, then
[
n
k

]
are monotone increasing in k for k < d(n), and thus

1
n!

d(n)∑

k=1

[
n

k

]
≤ P[0 /∈ Hn,d(n)] ≤ 1

n!

d(n)+1∑

k=1

[
n

k

]
. (49)

By the Goncharov CLT (47), this implies the required (45) for a < 0. The
proof for a > 0 follows analogously by considering the complement probabilities
P[0 ∈ Hn,d(n)] and using the monotonicity of

[
n
k

]
for k > d(n). Finally, the case

a = 0 is easily treated using the continuity of the standard normal density. This
completes the proof of Theorem 5.2 in the case An−1.

We now turn to the case Bn. We will use the powerful theory of mod-Poisson
convergence developed in [FMN16,KN10]. Once established, the mod-Poisson con-
vergence yields many limit theorems besides the CLT.

Let Xn be an integer-valued random variable with the distribution

P[Xn = k] =
1

2nn!
B(n, k), k = 0, . . . , n. (50)

Note that the probabilities indeed sum up to one by (13) with t = 1.
We claim that Xn satisfies a central limit theorem of the form

Xn − 1
2 log n

√
1
2 log n

d−→
n→∞ N(0, 1), (51)

where N(0, 1) is the standard normal law. This is analogous to (47).
Denote by (x)n = x(x + 1) . . . (x + n − 1) the rising factorial. By the definition

of B(n, k) given in (13), the moment generating function of Xn is

E[ezXn ] =
1

22nn!
· (ez)2n

(1
2ez)n

.
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Recall that (x)n ∼ nxΓ(n)/Γ(x) as n → ∞. This holds locally uniformly in x ∈ C

and follows from the Weierstrass infinite product formula for 1/Γ(x). Using this
asymptotics and the Stirling formula, we obtain the following.

Lemma 5.3. For the sequence Xn defined in (50), locally uniformly on C we have

lim
n→∞

E[ezXn ]

e( 1
2

log n)(ez−1)
=

2ezΓ(1
2ez)

2
√

πΓ(ez)
. (52)

The denominator e( 1
2

log n)(ez−1) on the left-hand side is the moment generating
function of a Poisson distribution with parameter 1

2 log n. Hence (52) states that Xn

converges in the mod-Poisson sense. This implies the CLT (51) by the general theory
of mod-Poisson convergence; see [KN10, Proposition 2.4, Part (2)].

The rest of the proof is completely analogous to the case An−1. The probability
mass function of Xn is unimodal by Remark 3.2 and (35), and its mode satisfies (48)
(with u = 1

2) by the established CLT (51). By Theorem 2.3 (see (15)) combined
with the definition of Xn given in (50) and the unimodality of B(n, k), we see that
if a < 0, then

P[Xn ≤ d(n) − 1] ≤ P[0 /∈ Hn,d(n)] ≤ P[Xn ≤ d(n)]. (53)

This is analogous to (49) and proves the required (45) in the Bn case for a < 0. The
case a ≥ 0 is covered as above.

The Dn case is completely analogous to the Bn case and yields the same asymp-
totics. �
Corollary 5.4. It holds

lim
n→∞ P[0 /∈ Hn,d(n)] =

⎧
⎪⎨

⎪⎩

0, if lim supn→∞
d(n)

u log n < 1,

1, if lim infn→∞
d(n)

u log n > 1,

1/2, if d(n) = u log n + o(
√

log n).

Proof. The third case follows by taking a = 0 in Theorem 5.2. The other two cases
also follow from Theorem 5.2 since the probability P[0 /∈ Hn,d] is increasing in d if
we restrict d to be even or odd; see Theorems 2.1, 2.3, 2.7. �
5.3 High-dimensional asymptotics: large deviations. In this section we
give the asymptotics for the absorption (non-absorption) probabilities in regions of
large deviations, where the random walk or bridge makes too few (respectively, too
many) steps compared to a typical mode described in the previous section. The
first results of this kind were obtained by Eldan [Eld14], who proved that for some
constants 0 < c1 < c2, non-absorption (respectively, absorption) occurs with a high
probability provided that n < ec1d/ log d (respectively, n > ec2d log d). Tikhomirov and
Youssef [TY17] removed the log d factor and replaced the bounds above by n < ec1d

and n > ec2d, respectively.
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The authors of [Eld14] and [TY17] considered the following four models: a Brow-
nian motion sampled either at times 1, . . . , n or at the points of a homogeneous
Poisson point process restricted to [0, 1]; a simple random walk; and a Rayleigh
random walk (whose i.i.d. increments are uniformly distributed on the unit sphere
S

d−1). Our result presented below is sharp and holds true for any increments that
satisfy assumptions of any of Theorems 2.1, 2.3, 2.7. In particular, it is valid for a
Rayleigh random walk and for a Brownian motion sampled at times 1, . . . , n. Fur-
ther, our result can be easily adapted to a Brownian motion sampled at the jump
times of a Poisson process since the increments in this model are exchangeable; in
fact, conditioning on the number of jumps in [0, 1] makes the times between jumps
exchangeable. However, without the general position assumption, we are able to
cover only one of the two large deviation modes: our Theorem 5.7 implies that the
probability of non-absorption is polynomially small in the number of steps n pro-
vided that n > e(2+ε)d (for symmetric random walks) or n > e(1+ε)d (for random
walk bridges). Thus simple random walks on Z

d are not fully covered.

Theorem 5.5. Suppose that d(n) = uxn log n ∈ N with limn→∞ xn = x for some
constant x > 0, where u = 1 in the An−1 case and u = 1

2 in the Bn and Dn cases.
Then under the assumptions of any of Theorems 2.1, 2.3, 2.7,

P[0 /∈ Hn,d(n)] ∼
n→∞

n−u(xn log xn−xn+1)

√
2πxu log n

L(x)
1 − x2u

, if x < 1,

P[0 ∈ Hn,d(n)] ∼
n→∞

n−u(xn log xn−xn+1)

√
2πxu log n

L(x)
x2u − 1

, if x > 1,

where L(x) = 2
Γ(x) in the An−1 case and L(x) = 2x

√
xΓ(x/2)√
πΓ(x)

in the Bn and Dn cases.

Remark 5.6. Taking the first two terms of the Taylor series for x log x−x+1 yields

P[0 /∈ Hn,[ux log n]] ∼
n→∞

n−u(x log x−x+1)

√
2πxu log n

L(x)x{ux log n}

1 − x2u
, if x < 1,

P[0 ∈ Hn,[ux log n]] ∼
n→∞

n−u(x log x−x+1)

√
2πxu log n

L(x)x{ux log n}

x2u − 1
, if x > 1,

where {y} = y − [y] denotes the fractional part of a y > 0.

Note that the function x log x − x + 1, x > 0, is the large deviations function of
a standard Poisson distribution.

Proof. By Example 3.8 in [FMN16], for any fixed k ∈ Z we have

1
n!

[
n

xn log n + k

]
∼

n→∞
n−(xn log xn−xn+1)

√
2πx log n

x−k

Γ(x)
.
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Similarly, by the general theory of mod-Poisson convergence [FMN16, Theorem 3.4],
which applies since the limit in the right-hand side of (52) is an entire analytic
function non-vanishing for real z, we have

1
2nn!

B
(
n,

1
2
xn log n + k

)
∼

n→∞
n− 1

2
(xn log xn−xn+1)

√
πx log n

2xΓ(x/2)
2
√

πΓ(x)
x−k/2,

1
2n−1n!

D
(
n,

1
2
xn log n + k

)
∼

n→∞
n− 1

2
(xn log xn−xn+1)

√
πx log n

2xΓ(x/2)
2
√

πΓ(x)
x−k/2.

Then the claim follows by summation over even k in the An−1 case or over odd k
in the Bn and Dn cases such that k ≥ 1 if x > 1 or k ≤ 0 if x < 1. The summation
is justified by the dominated convergence theorem and the second statement of
Theorem 3.4 in [FMN16]. �

Recall that for any tuple of random vectors (ξ′
1, . . . , ξ

′
n) in R

d that satisfies all
the assumptions of any of Theorems 2.1, 2.3, 2.7 except the general position one,
H ′

n,d denotes the convex hull of the corresponding type.

Theorem 5.7. For every ε ∈ (0, 1
2) there exist δ = δ(ε) ∈ (0, 1) and C = C(ε) > 0

such that for all n > ed/(u−ε),

P[0 ∈ H ′
n,d] ≥ 1 − Cn−δ,

where u = 1 in the An−1 case and u = 1
2 in the Bn and Dn cases.

Proof. In the case when the general position assumption holds, Theorem 5.5 implies
that P[0 /∈ Hn,d] ≤ Cn−δ for some δ ∈ (0, 1) and C > 0 since d < (u − ε) log n
and x log x − x + 1 is bounded away from 0 if x is bounded away from 1. The claim
follows by Proposition 2.12. �

It is natural to assume that Theorem 5.7 is sharp in the following sense:

Conjecture 5.8. For every ε > 0 there exist δ = δ(ε) ∈ (0, 1) and C = C(ε) > 0
such that for all n < ed/(u+ε),

P[0 /∈ H ′
n,d] ≥ 1 − Cn−δ,

where u = 1 in the An−1 case and u = 1
2 in the Bn and Dn cases.

6 Proofs: Random convex hulls and Weyl chambers

In this section we prove our main probabilistic results Theorems 2.1, 2.3, 2.7 on ex-
act absorption probabilities under the respective general position assumption. Here
we also prove Proposition 2.12 which estimates absorption probabilities for general
random walks. The proofs are based on the same general approach but the partic-
ular details are rather different. For the reason of notation, we present together the
proofs of Theorems 2.1, 2.3, and 2.7, and prove the other two results separately.
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6.1 Reflection groups An−1, Bn, Dn: Proofs of Theorems 2.1, 2.3, and 2.7.
We identify the elements of the Coxeter groups An−1, Bn, and Dn with orthogonal

transformations g : R
n → R

n. The Weyl chambers C(An−1), C(Bn), and C(Dn) are
respective fundamental domains for the actions of these groups. The action of An−1

leaves the hyperplane L given by the equation x1 + · · · + xn = 0 invariant, hence
C(An−1) ∩ L is a fundamental domain for the action of An−1 restricted on L.

Let ξ1, . . . , ξn be random vectors with values in R
d (written as columns), and let A

be the random d×n-matrix with columns ξ1, . . . , ξn. We regard A as a random linear
operator A : R

n → R
d. The kernel Ker A of this operator is a random linear subspace

of R
n. Recall that Hn,d is the common notation for the convex hulls considered in

Theorems 2.1, 2.3, 2.7.

Lemma 6.1. Let G be any of the Coxeter groups An−1, Bn, Dn, and let C denote the
respective domain C(An−1)∩L, C(Bn), or C(Dn). Suppose that the tuple (ξ1, . . . , ξn)
satisfies all the assumptions of the respective Theorem 2.1, 2.3, or 2.7 except the
one on general position. Then for every g ∈ G,

P[0 ∈ Hn,d] = P[KerA ∩ (gC̄) �= {0}].

Proof. We are interested in the probability of the event

E := {KerA ∩ (gC̄) �= {0}} = {Ker(Ag) ∩ C̄ �= {0}}.

Denote by e1, . . . , en the standard basis of R
n, and recall that

S1 = ξ1, S2 = ξ1 + ξ2, . . . , Sn = ξ1 + · · · + ξn.

Type An−1. The elements of An−1 are the orthogonal transformations of the form
gσ : R

n → R
n, where σ ∈ Sym(n) is a permutation on n elements, and

gσ(ek) = eσ(k), k = 1, . . . , n.

It is easy to check that the columns of the matrix Ag are ξσ(1), . . . , ξσ(n). Hence,

E = {∃x ∈ C̄\{0} : ξσ(1)x1 + · · · + ξσ(n)xn = 0}.

There is a bijective correspondence between x = (x1, . . . , xn) ∈ C̄\{0} and y =
(y1, . . . , yn−1) ∈ R

n−1
≥0 \{0} given by

y1 = x2 − x1, . . . , yn−1 = xn − xn−1

or, equivalently,

x1 = y0, x2 = y0 + y1, . . . , xn = y0 + · · · + yn−1,

where y0 ∈ R is chosen to fulfill the condition x1 + · · · + xn = 0. So the event E
occurs if and only if for some y0, . . . , yn−1 with the restrictions above,

ξσ(1)y0 + ξσ(2)(y0 + y1) + · · · + ξσ(n)(y0 + · · · + yn−1) = 0.
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Rearranging the terms, we can write this as

y0(ξσ(1) + · · · + ξσ(n)) + y1(ξσ(2) + · · · + ξσ(n)) + · · · + yn−1ξσ(n) = 0.

Using the assumption ξ1 + · · ·+ ξn = 0 a.s., y0 disappears and we can transform the
above as

y1ξσ(1) + y2(ξσ(1) + ξσ(2)) + · · · + yn−1(ξσ(1) + · · · + ξσ(n−1)) = 0.

The exchangeability assumption (5) on the distribution of (ξ1, . . . , ξn) implies
that

(ξσ(1), ξσ(1) + ξσ(2), . . . , ξσ(1) + · · · + ξσ(n−1))
d= (S1, S2, . . . , Sn−1).

Hence we obtain the required relation

P[E] = P[∃(y1, . . . , yn−1) ∈ R
n−1
≥0 \{0} : y1S1 + y2S2 + · · · + yn−1Sn−1 = 0]

= P[0 ∈ Conv(S1, S2, . . . , Sn−1)].

Type Bn. The elements of Bn are the orthogonal transformations of the form
gσ,ε : R

n → R
n, where σ ∈ Sym(n) is a permutation on n elements, ε = (ε1, . . . , εn) ∈

{−1, +1}n, and

gσ,ε(ek) = εkeσ(k), k = 1, . . . , n.

Note that the columns of the matrix Ag are ε1ξσ(1), . . . , εnξσ(n), as one can see by
computing (Ag)e1, . . . (Ag)en. So we can write the event E in the form

E = {∃x ∈ C̄\{0} : ε1ξσ(1)x1 + · · · + εnξσ(n)xn = 0}. (54)

There is a bijection between x = (x1, . . . , xn) ∈ C̄\{0} and y = (y1, . . . , yn) ∈
R

n
≥0\{0} given by

x1 = y1, x2 = y1 + y2, . . . , xn = y1 + · · · + yn.

Hence we can write the condition for the event E as

ε1ξσ(1)y1 + ε2ξσ(2)(y1 + y2) + · · · + εnξσ(n)(y1 + · · · + yn) = 0,

or equivalently,

y1(ε1ξσ(1) + · · · + εnξσ(n)) + y2(ε2ξσ(2) + · · · + εnξσ(n)) + · · · + ynεnξσ(n) = 0.

The symmetric exchangeability assumption (4) on the distribution of (ξ1, . . . , ξn)
implies that

(ε1ξσ(1) + · · · + εnξσ(n), ε2ξσ(2) + · · · + εnξσ(n), . . . , εnξσ(n))
d= (Sn, Sn−1, . . . , S1),
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hence we obtain the required

P[E] = P[∃y ∈ R
n
≥0\{0} : y1Sn + y2Sn−1 + · · · + ynS1 = 0]

= P[0 ∈ Conv(S1, S2, . . . , Sn)],

Type Dn. This case is very similar to the Bn case as the elements of Dn ⊂ Bn

are the orthogonal transformations gσ,ε such that ε1 . . . εn = 1. There is a bijective
correspondence between x = (x1, . . . , xn) ∈ C̄\{0} and y = (y1, . . . , yn) ∈ (R ×
R

n−1
≥0 )\{0} given by

x1 = y1, x2 = |y1| + y2, . . . , xn = |y1| + y2 + · · · + yn.

So we can write the condition defining the event E in (54) in the form

ε1ξσ(1)y1 + ε2ξσ(2)(|y1| + y2) + · · · + εnξσ(n)(|y1| + y2 + · · · + yn) = 0.

Rearranging the terms, we obtain the equivalent representation

|y1|((sgn y1)ε1ξσ(1) + ε2ξσ(2) + · · · + εnξσ(n))
+ y2(ε2ξσ(2) + · · · + εnξσ(n)) + · · · + ynεnξσ(n) = 0.

Recall that S∗
n = ξ1 + · · · + ξn−1 − ξn. The invariance assumption (16) on the

distribution of (ξ1, . . . , ξn) implies that

(ε1ξσ(1) + · · · + εnξσ(n), −ε1ξσ(1) + · · · + εnξσ(n),

ε2ξσ(2) + · · · + εnξσ(n), . . . , εnξσ(n))
d= (Sn, S∗

n, Sn−1, . . . , S1).

So we obtain that

P[E] = P[∃y ∈ R
n
≥0\{0} : y1Sn + y2Sn−1 + · · · + ynS1 = 0

or y1S
∗
n + y2Sn−1 + · · · + ynS1 = 0],

hence

P[E] = P[0 ∈ Conv(S1, . . . , Sn−1, Sn) or 0 ∈ Conv(S1, . . . , Sn−1, S
∗
n)].

To complete the proof of Lemma 6.1, we need to argue that

Conv(S1, . . . , Sn−1, Sn) ∪ Conv(S1, . . . , Sn−1, S
∗
n) = Conv(S1, . . . , Sn, S∗

n). (55)

The left-hand side is a subset of the right-hand side by definition of the convex hull.
To see the converse inclusion, consider any convex combination

x = α1S1 + · · · + αn−2Sn−2 + αn−1Sn−1 + αnSn + α∗
nS∗

n.

If αn ≥ α∗
n, then by the identity S∗

n = 2Sn−1 − Sn, we obtain

x = α1S1 + · · · + αn−2Sn−2 + (αn−1 + 2α∗
n)Sn−1 + (αn − α∗

n)Sn,
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which represents x as a convex combination of S1, . . . , Sn−1, Sn. Indeed, the sum
of the coefficients did not change, and hence equals one. This also ensures that
the coefficients do not exceed one since all of them are non-negative. Similarly, if
αn ≤ α∗

n, we obtain representation of x as a convex combination of S1, . . . , Sn−1,
S∗

n. �
We are now ready to complete the proofs of Theorems 2.1, 2.3, and 2.7. Applying

Lemma 6.1 to all g ∈ G and taking the arithmetic mean, we obtain

P[0 ∈ Hn,d] =
1

#G

∑

g∈G

P[KerA ∩ (gC̄) �= {0}] =
EN

#G
, (56)

where the random variable

N :=
∑

g∈G

1{Ker A∩(gC̄) �={0}} (57)

counts the number of chambers of the form gC̄, g ∈ G, intersected by KerA.
In the An−1 case, N equals the number of closed Weyl chambers of type An−1

(non-trivially) intersected by L ∩ Ker A, as readily seen from the equation KerA ∩
(gC̄) = (L ∩ KerA) ∩ g(C(An−1)). In the Bn and Dn cases, N equals the number
of closed Weyl chambers of the respective type that have a non-trivial intersection
with Ker A.

It remains to use the following lemmas, whose proof is postponed for a moment.

Lemma 6.2. (Type An−1) Under the assumptions of Theorem 2.1, L ∩ KerA a.s.
has codimension d + 1 in R

n and a.s. is in general position w.r.t. the arrangement
A(An−1).

Lemma 6.3. (Type Bn and Dn) Under the assumptions of Theorems 2.3 or 2.7,
Ker A a.s. has codimension d in R

n and a.s. is in general position w.r.t. A(Bn) or,
respectively, A(Dn).

These lemmas, combined with Lemma 3.5, imply that the value of N does not
change a.s. if we replace C̄ by C in the definition of N . Hence N is a.s. a constant
of the value given by Theorem 3.4, and then Theorems 2.1, 2.3, and 2.7 follow.

6.2 General position: Proofs of Lemmas 6.2, 6.3 and Proposition 2.5.

Proof of Lemma 6.2. We use β1, . . . , βn as coordinates on R
n. Recall that KerA is

the set of solutions to the system of effectively d linear equations β1ξ1+· · ·+βnξn = 0.
Define the linear function T : R

n → L that maps (β1, . . . , βn) to (β1 − b, . . . , βn − b),
where b = 1

n(β1 + · · ·+βn). Note that T (Ker A) = L∩Ker A a.s. by ξ1 + · · ·+ ξn = 0
a.s. Since Ker T = L⊥ = {(a, . . . , a) : a ∈ R} belongs to KerA a.s., the kernel of the
restriction T |Ker A also is L⊥ a.s. Hence

dim(L ∩ KerA) = dim(KerA) − 1 = n − d − 1 a.s.,
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where the last equality holds since ξ1, . . . , ξd are linearly independent a.s., which
in turn easily follows from the a.s. linear independence of S1, . . . , Sd given by the
general position assumption of Theorem 2.1. Therefore the rank of A equals d with
probability 1.

Let us prove that L ∩ KerA is in general position w.r.t. A(An−1). Take a linear
subspace K ⊂ R

n of dimension k that can be represented as the intersection of
hyperplanes from A(An−1), i.e., hyperplanes of the form βi = βj , 1 ≤ i < j ≤ n.
According to (29), we need to show that

dim(K ∩ L ∩ KerA) a.s.=

{
k − d − 1, if k ≥ d + 1,

0, if k ≤ d + 1.

Similarly to the above, we have T (K ∩ KerA) = K ∩ L ∩ KerA a.s. and the
kernel of the restriction T |K∩Ker A a.s. is the one-dimensional linear space L⊥. Thus
it suffices to show that

dim(K ∩ KerA) a.s.=

{
k − d, if k ≥ d + 1,

1, if k ≤ d + 1.

The linear subspace K is given by a system of equations of the following type:
the variables β1, . . . , βn are decomposed into k non-empty groups and required to
be equal inside each group. Since (ξ1, . . . , ξn) is an exchangeable tuple and we can
apply a suitable transformation from the group An−1, it can be assumed without
loss of generality that K is given by the equations

γ1 := β1 = · · · = βi1 , γ2 := βi1+1 = · · · = βi2 , . . . , γk := βik−1+1 = · · · = βn,

for some 1 ≤ i1 < · · · < ik−1 < ik := n.
Using γ1, . . . , γk as coordinates on K, observe that K ∩ KerA is given by the

equations

γ1(ξ1 + · · · + ξi1) + γ2(ξi1+1 + · · · + ξi2) + · · · + γk(ξik−1+1 + · · · + ξn) = 0,

which imply that

γ1Si1 + γ2(Si2 − Si1) + · · · + γk(0 − Sik−1) = 0 a.s.

Let k = dimK ≥ d+1. Then with probability 1, the rank of this system of equa-
tions is maximal (namely, d) because Si1 , . . . , Sid and hence, Si1 , Si2 − Si1 , . . . , Sid −
Sid−1 , are linearly independent a.s. by our general position assumption. We have
used that id < ik = n. Then K ∩ KerA, the space of solutions of the system, has
dimension k − d a.s. as required.

Let now k < d + 1. Take some linear subspace K1 ⊃ K that can be repre-
sented as the intersection of hyperplanes from the arrangement A(An−1) and satis-
fies dim K1 = d + 1. Then apply the above to get dim(K1 ∩ KerA) = d + 1 − d = 1
a.s. This yields dim(K ∩ Ker A) ≤ 1 a.s., but since L⊥ ⊂ K ∩ KerA a.s., we in fact
have dim(K ∩ KerA) = 1 a.s., thus completing the proof. �
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Proof of Lemma 6.3. Consider the Bn case first. By the general position assumption
imposed in Theorem 2.3, the vectors S1, . . . , Sd are linearly independent a.s. Hence
ξ1, . . . , ξd are linearly independent a.s. and the rank of the matrix A equals d with
probability 1. Then the codimension of KerA equals d a.s.

Letting β1, . . . , βn denote the coordinates on R
n, observe that KerA is given

by β1ξ1 + · · · + βnξn = 0. To prove that KerA a.s. is in general position w.r.t.
A(Bn), take a linear subspace K ⊂ R

n of dimension k that can be represented as
the intersection of hyperplanes from A(Bn), that is, hyperplanes of the form

βi = βj (1 ≤ i < j ≤ n), βi = −βj (1 ≤ i < j ≤ n), βi = 0 (1 ≤ i ≤ n).

According to the definition of general position (see (29)), we have to show that

dim(K ∩ KerA) a.s.=

{
k − d, if k ≥ d,

0, if k ≤ d.

The linear subspace K is given by a system of equations of the following form.
The variables β1, . . . , βn are decomposed into k + 1 distinguishable groups, all of
which must be non-empty except the last one. All variables in the last group are
required to be 0. For the remaining variables, there is a unique choice of signs, which
multiplies each variable by +1 or −1, such that the sign-changed variables are equal
inside every group except the (k + 1)st one.

Since the tuple (ξ1, . . . , ξn) is symmetrically exchangeable and we can apply a
suitable transformation from the group Bn, it can be assumed without loss of gen-
erality that K is given by the equations

γ1 := β1 = · · · = βi1 , γ2 := βi1+1 = · · · = βi2 , . . . , γk := βik−1+1 = · · · = βik ,

βik+1 = · · · = βn = 0,

for some 1 ≤ i1 < · · · < ik ≤ n. We consider γ1, . . . , γk as coordinates on K. Then,
K ∩ Ker A is given (inside the linear space K) by the system of equations

γ1(ξ1 + · · · + ξi1) + γ2(ξi1+1 + · · · + ξi2) + · · · + γk(ξik−1+1 + · · · + ξik) = 0.

Using the partial sums, this can be written as

γ1Si1 + γ2(Si2 − Si1) + · · · + γk(Sik − Sik−1) = 0.

Let first k = dim K ≥ d. Then with probability 1, the rank of this system of
equations is maximal (namely, d) since Si1 , . . . , Sid and hence, Si1 , Si2 −Si1 , . . . , Sid −
Sid−1 , are linearly independent a.s. by our general position assumption. Then K ∩
Ker A, the space of solutions of the system, has dimension k − d a.s. as required.

Let now k < d. Take some linear subspace K1 ⊃ K representable as the in-
tersection of hyperplanes from the arrangement A(Bn) and satisfying dimK1 = d.
Applying the above to K1, we get dim(K1 ∩ KerA) = d − d = 0 a.s., which yields
dim(K ∩ KerA) = 0 a.s., completing the proof in the Bn case.
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The Dn case can be treated similarly, and we highlight only the main differences.
Let K ⊂ R

n be a linear subspace of dimension k that can be represented as the
intersection of hyperplanes of the form βi = ±βj , 1 ≤ i < j ≤ n. Then K has
exactly the same form as in the Bn case, but since the arrangement A(Dn) does
not include the hyperplanes βi = 0, the last group of variables (that are required to
be 0) cannot contain exactly one element. Applying an appropriate transformation
from the group Dn allows to change only even number of signs, therefore we can
assume that K either has the same form as in the Bn case, or is given by

γ1 := β1 = · · · = βi1 , . . . , γk−1 := βik−2+1 = · · · = βik−1 ,

γk := βik−1+1 = · · · = βn−1 = −βn,

for some 1 ≤ i1 < · · · < ik−1 < ik := n. In the former case, the same argument as in
the Bn case applies. In the latter case, K ∩ KerA is given (inside the linear space
K) by

γ1Si1 + γ2(Si2 − Si1) + · · · + γk(S∗
n − Sik−1) = 0,

where we recall that S∗
n = Sn−1 −ξn. From now on, we can apply the same argument

as in the Bn case, but with Sn replaced by S∗
n. �

Proof of Proposition 2.5 and Theorem 1.1. It suffices to prove the equivalence of (i),
(ii) and (iii) in Proposition 2.5, because then Theorem 1.1 follows as a particular
case of Theorem 2.3.

Proof of (i) ⇒ (ii). Assume by contraposition that δ := P[ξ1 ∈ H] > 0 for some
affine hyperplane H = H0 + v, where H0 is a hyperplane passing through the origin.
Since the distribution of ξ1 is symmetric, we have P[S2 ∈ H0] ≥ δ2 > 0 and hence,

P[S2 ∈ H0, S4 ∈ H0, . . . , S2d ∈ H0] ≥ δ2d > 0,

a contradiction to (i).

Proof of (ii) ⇒ (iii). Let H0 be given by the equation f(x) = 0, where f : R
d → R

is a linear functional. By (ii), we have P[S1 ∈ H0] = 0. Let i ≥ 2. Using the identity
f(Si) = f(Si−1) + f(ξi), we obtain

P[Si ∈ H0] = P[f(Si) = 0] =
∫

R

P[f(ξi) = −y] P[f(Si−1) ∈ dy] = 0

since by (ii), P[f(ξi) = −y] = 0 for all y ∈ R.

Proof of (iii) ⇒ (i). The vectors Si1 , . . . , Sid are linearly dependent if and only if Sik

can be linearly expressed through Si1 , . . . , Sik−1 for some 2 ≤ k ≤ d, or if Si1 = 0.
The latter event has probability zero by (iii). To prove that the former event also
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has probability 0, denote by lin(y1, . . . , yk−1) the linear subspace spanned by vectors
y1, . . . , yk−1 ∈ R

d. Then

P[Sik ∈ lin(Si1 , . . . , Sik−1)]
= P[Sik − Sik−1 ∈ lin(Si1 , . . . , Sik−1)]

=
∫

Rk−1

P[Sik − Sik−1 ∈ lin(y1, . . . , yk−1)] P[Si1 ∈ dy1, . . . , Sik−1 ∈ dyk−1]

=
∫

Rk−1

P[Sik−ik−1 ∈ lin(y1, . . . , yk−1)] P[Si1 ∈ dy1, . . . , Sik−1 ∈ dyk−1]

= 0

since the integrand is 0 by (iii). Hence the probability that Si1 , . . . , Sid are linearly
dependent is 0. �
6.3 Non-general position: Proofs of Lemma 3.5 and Proposition 2.12.

Proof of Lemma 3.5. Let us prove (36), that is

{R ∈ R(A) : R̄ ∩ Ln−d �= {0}} = {R ∈ R(A) : R ∩ Ln−d �= ∅}. (58)

Since 0 /∈ R, the assumption R ∩ Ln−d �= ∅ clearly implies that R̄ ∩ Ln−d �= {0}. To
prove the other inclusion in (58), we assume, by contraposition, that R̄∩Ln−d �= {0}
but R∩Ln−d = ∅. Note that R̄ is a closed polyhedral cone, that is an intersection of
finitely many closed half-spaces whose boundaries are hyperplanes passing through
the origin.

Given some face F of R̄, we denote by linF its linear hull and by m ∈ {0, . . . , n}
the dimension of linF (we assume that R̄ itself is a face). The relative interior
relintF of the face F is defined as the interior of F taken w.r.t. the linear hull linF
as the ambient space. It is known that R̄ is the disjoint union of the relative interiors
of its faces. Hence, there is a face F �= {0} of R̄ such that Ln−d ∩ relintF �= ∅. Since
R̄ is a cone, the dimension of F is at least one. Note that F �= R̄ by the assumption
that R ∩ Ln−d = ∅, hence dim F = m /∈ {0, n}. Since Ln−d is in general position
w.r.t. A, the dimension of the linear space V0 := Ln−d ∩ linF is max(m − d, 0). In
fact, it equals m − d �= 0, because otherwise we would have Ln−d ∩ linF = {0},
which is a contradiction. Thus, we can construct linear spaces V1 and V2 such that
linF = V0 ⊕ V1, Ln−d = V0 ⊕ V2, and V0 ⊕ V1 ⊕ V2 = R

n. We then have dimV1 = d
and dimV2 = n − m �= 0. Note that V1 and V2 can be taken so that V0⊥V1 and
V0⊥V2 but we do not necessarily have V1⊥V2.

Take some x ∈ Ln−d ∩ relintF . The support (or tangent) cone of R̄ at its face F
is defined as

A(F ) = pos(R̄ − x) = {y ∈ R
n : ∃ε > 0 such that x + εy ∈ R̄},

where pos(M), the positive hull of M , is the minimal convex cone containing the set
M . It is known that A(F ) is a closed convex cone containing linF and not depending
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on the choice of x ∈ relintF . This assumption on x also ensures that there is a δ > 0
such that

Bδ(x) ∩ R̄ = Bδ(x) ∩ (x + A(F )). (59)

Let z ∈ R be some point from the interior of R̄. Write z−x = v0+v1+v2 ∈ A(F )
with vi ∈ Vi, i = 0, 1, 2. Since −(v0 + v1) ∈ linF ⊂ A(F ), we have v2 ∈ A(F ). In
fact, the same argument applies to any point in a sufficiently small ball around z.
Observe that v2 is the projection of z − x onto V2 along V0 ⊕ V1, and that the
projection of the ball around z − x covers some set of the form Br′(v2) ∩ V2, where
Br′(v2) is the ball of radius r′ > 0 around v2. This proves that Br′(v2) ∩ V2 ⊂
A(F ), but since V0 ⊕ V1 = linF ⊂ A(F ), we even have Br(v2) ⊂ A(F ) for some
0 < r ≤ r′ by the convex cone property of A(F ). Then, by the same property,
Bεr(εv2) ⊂ Bδ(0) ∩ A(F ) for all sufficiently small ε > 0. Hence, using (59), we get
Bεr(x + εv2) ⊂ Bδ(x) ∩ (x + A(F )) ⊂ R̄. This implies that x + εv2 is in the interior
of R̄, which is a contradiction because we also have x ∈ Ln−d, v2 ∈ Ln−d and,
consequently, x + εv2 ∈ Ln−d.

Now we prove (37); the proof of (38) is analogous. So, we need to prove that

#{R ∈ R(A) : R̄ ∩ L′
n−d �= {0}} ≥ #{R ∈ R(A) : R̄ ∩ Ln−d �= {0}}.

Let Gr(n−d, n) be the Grassmannian of all (n−d)-dimensional linear subspaces in
R

n endowed with the following metric: the distance between two linear subspaces M
and N is defined as the operator norm of the difference of the orthogonal projections
in R

n onto M and N . This metric coincides with the Hausdorff distance between
the sets obtained by intersecting M and N with the unit ball in R

n; see Akhiezer
and Glazman [AG81, Section 39]. Hence the Grassmannian Gr(n − d, n) is a com-
pact metric space. There is a unique probability measure on it (the Haar measure)
invariant under rotations of R

n.
The set of subspaces that are in general position w.r.t. A is dense in Gr(n−d, n).

Indeed, the complement of this set has zero Haar measure by [SW08, Lemma 13.2.1],
and the Haar measure of any ball in Gr(n − d, n) is strictly positive, which is a
consequence of the compactness of Gr(n− d, n) and the transitivity of the action of
the orthogonal group on Gr(n − d, n). For any chamber R ∈ R(A), the set

{M ∈ Gr(n − d, n) : R̄ ∩ M = {0}}
is open in Gr(n− d, n). Therefore, there exists a neighborhood U of L′

n−d such that
for all linear subspaces M ∈ U we have

{R ∈ R(A) : R̄ ∩ M = {0}} ⊃ {R ∈ R(A) : R̄ ∩ L′
n−d = {0}}.

We finish the proof by taking M ∈ U that is in general position w.r.t. A and noting
that by (36) and Theorem 3.3, it holds

#{R ∈ R(A) : R̄ ∩ M = {0}} = #{R ∈ R(A) : R̄ ∩ Ln−d = {0}}.

�
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Proof of Proposition 2.12. For concreteness, we consider the case Bn and prove only
the inequality

P[0 ∈ Hn,d] ≤ P[0 ∈ H ′
n,d].

Recall that (ξ′
1, . . . , ξ

′
n) is a symmetrically exchangeable tuple of random vectors

in R
d and H ′

n,d = Conv(S′
1, . . . , S

′
n) is the convex hull of the partial sums S′

k =
ξ′
1 + · · · + ξ′

k. Let A′ be the d × n-matrix with columns ξ′
1, . . . , ξ

′
n. By Lemma 6.1,

P[0 ∈ H ′
n,d] =

EN ′

2nn!
,

where N ′ is the numbers of closed Weyl chambers of type Bn (non-trivially) inter-
sected by Ker A′:

N ′ =
∑

g∈Bn

1{Ker A′∩(gC̄) �={0}}.

We imposed no general position assumption on (ξ′
1, . . . , ξ

′
n) and we cannot claim

that KerA′ is in general position w.r.t. the arrangement A(Bn). In particular, the
random variable N ′ need not be a constant a.s. Moreover, we do not even known
the exact codimension of Ker A′, but we can claim that it is at most min(d, n). Let
F ⊂ Ker A′ be any random linear subspace of R

n of a.s. codimension d. For example,
we may define it as follows. Put κ = min(d − codim(KerA′), n) and take F =⋂κ

i=1 X⊥
i ∩ KerA′, where X1, . . . , Xn are i.i.d. random vectors that are distributed

on S
n−1 and independent of A′.

Clearly,

P[0 ∈ H ′
n,d] ≥ EÑ

2nn!
, where Ñ :=

∑

g∈Bn

1{F∩(gC̄) �={0}}.

By Lemma 3.5, we have Ñ ≥ N a.s. for N defined by (57) with G = Bn. By (56),
the claim follows. �

7 Open questions

Our results, except the estimates of Theorem 5.7 and Proposition 2.12, do not apply
to simple random walks on the lattice Z

d. The next problem does not seem trivial
even for d = 2.

Problem 7.1. Let S1, . . . , Sn be a simple random walk on Z
d starting at the origin.

Compute exactly the probability that Conv(S1, . . . , Sn) contains the origin. Compute
exactly the conditional probability that Conv(S1, . . . , Sn−1) contains the origin given
that Sn = 0.

Problem 7.2. Prove analogues of Theorems 5.2 and 5.5 for the simple random
walks (and bridges) on Z

d.
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The answer to the next question should be non distribution-free (for x �= 0) and
seems to be unknown even in the case of standard normal increments.

Problem 7.3. Let S1, . . . , Sn be a random walk in R
d starting at the origin. Com-

pute the probability that Conv(S1, . . . , Sn) contains a given point x ∈ R
d.

The same question makes sense for a Brownian motion.

Problem 7.4. Let {B(t) : t ≥ 0} be a standard Brownian motion in R
d starting at

the origin. Compute the probability that Conv{B(t) : 0 ≤ t ≤ 1} contains a given
point x ∈ R

d.
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