Base-mediated generation of ketenimines from ynamides: direct access to azetidinimines by an imino staudinger synthesis

Article (Accepted Version)

This version is available from Sussex Research Online: http://sro.sussex.ac.uk/id/eprint/69048/

This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher's version. Please see the URL above for details on accessing the published version.

Copyright and reuse:
Sussex Research Online is a digital repository of the research output of the University.

Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available.

Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.
Accepted Article

Title: Base-Mediated Generation of Ketenimines from Ynamides: Direct Access to Azetidinimines by an Imino Staudinger Synthesis

Authors: Eugénie Romero, Corinne Minard, Mohamed Benchekroun, Ventre Sandrine, Pascal Retailleau, Robert H. Dodd, and Kevin Cariou

This manuscript has been accepted after peer review and appears as an Accepted Article online prior to editing, proofing, and formal publication of the final Version of Record (VoR). This work is currently citable by using the Digital Object Identifier (DOI) given below. The VoR will be published online in Early View as soon as possible and may be different to this Accepted Article as a result of editing. Readers should obtain the VoR from the journal website shown below when it is published to ensure accuracy of information. The authors are responsible for the content of this Accepted Article.

To be cited as: Chem. Eur. J. 10.1002/chem.201702545

Link to VoR: http://dx.doi.org/10.1002/chem.201702545
Base-Mediated Generation of Ketenimines from Ynamides: Direct Access to Azetidinimines by an Imino Staudinger Synthesis

Eugénie Romero, Corinne Minard, Mohamed Benchekroun, Sandrine Ventre, Pascal Retailleau, Robert H. Dodd,* Kevin Cariou*

Abstract: Ynamides were used as precursors for the in situ generation of highly reactive ketenimines which could be trapped with imines in a [2+2] cycloaddition. This imino Staudinger synthesis led to a variety of imino-analogs of β-lactams, namely azetidinimines (20 examples), that could be further functionalized through a broad range of transformations.

Ynamides (1) are versatile nitrogen-containing building blocks composed of an acetylene moiety directly attached to a nitrogen atom that generally bears at least one electron-withdrawing group that stabilizes the molecules.1 The strong inherent polarization of the triple bond, that can be visualized by drawing the main mesomeric form 1', generally drives their reactivity towards nucleophilic addition on the α position and reactions with electrophiles at the β position.1 This trend can be further enhanced by acid activation, since protonation of the substrate yields keteniminium 2 (Scheme 1).2

In order to further expand the potential of this highly reactive intermediate (3), we sought to trap it in a [2+2] cycloaddition.6 By analogy with the well-established Staudinger synthesis of β-lactams,7 and based on the pioneering studies by Ghosez8 and Regitz,9 we envisioned that the N-phenylethenimine 3a generated in situ from ynamide 1a would be sufficiently electrophilic to react with imine 4 to ultimately give azetidinimine 5 (Scheme 2).10 From our previous experience, an unsubstituted N,N-Boc-aryl-ynamide would be the best precursor for the generation of the ketenimine and we assumed an electron-rich nitrogen atom in the imine would favor the desired cycloaddition.

For our part, we have shown that using strongly basic conditions3 an unprecedented nucleophilic addition of various heteroarenes at the β position could take place.4 Moreover, depending on the substitution pattern of the nitrogen atom, the same basic conditions could lead to an α nucleophilic addition, albeit with the loss of the electron-withdrawing group (EWG). In this latter case, base activation would trigger the cleavage of the EWG, leading to an amide that will eventually evolve towards ketenimine 3.4,5

However, direct application of our previously disclosed reaction conditions4 – i.e., 1.0 equiv. of ynamide, 1.0 equiv. of t-BuONa as base, DMF as solvent, with molecular sieves at room temperature – proved totally ineffective, even after prolonged reaction time (Table 1, entry 1). We reasoned that the cycloaddition process required thermal activation and thus, while traditional heating (entry 2) was unsuccessful, switching to microwave conditions11 allowed the reaction to take place (entry 3). By replacing the sodium salt by potassium (entry 4) or lithium (entry 5) t-butanolate the desired azetidinimine 5aa could be isolated with 46% and 47% yield, respectively. Doubling the amount of both the ynamide and the base (X = 2) had little effect (entry 6) unless the temperature was raised to 100 °C (entry 7) which allowed 5aa to be isolated in 50% yield. This 50% threshold could be overcome by using silica gel as the additive instead of molecular sieves (entry 8, 54%). These optimized conditions were then applied to p-chlorobenzaldehyde-derived imine 4b which led to the isolation of 64% of azetidinimine 5ab (entry 9). Improved formation of the latter was attempted by using a catalytic amount of a Lewis acid as the additive (entry 10, 50%) or as a co-additive (entry 11, 52%) but to no avail.

Having determined the optimal reaction conditions, we then explored the scope of this cycloaddition (Table 2). First, the influence of the substituents on the imine partners was assayed. Unsubstituted diphenylaldimine 4c allowed formation of the corresponding azetidinimine 5ac in only 22% yield (entry 3).

[a] Dr E. Romero, Dr C. Minard, Dr M. Benchekroun, Dr S. Ventre, Dr P. Retailleau, Dr R. H. Dodd,* Dr K. Cariou*
Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay
Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
E-mail: kevin.cariou@cnrs.fr
Supporting information for this article is given via a link at the end of the document.
This result appears consistent with the positive effect of having an electron-donating group on the nitrogen (entries 1, 2) and an electron-poor aryl group on the carbon of the imine partner (entry 2). Imines derived from meta- (4d) and ortho-anisidine (4e) were then reacted with ynamide 1a, providing cycloadducts 5ad and 5ae in 26% and 37% yields, respectively (entries 4, 5). These yield variations can be accounted for by standard electronic (meta vs. para/ortho) and steric (ortho vs. para) effects.

Table 2. Scope and limitations of the [2+2] Cycloaddition with Ynamides 1 and Imines 4.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Ar, 1</th>
<th>Ar, 2</th>
<th>Yield, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ph, 1a</td>
<td></td>
<td>54%, 5aa</td>
</tr>
<tr>
<td>2</td>
<td>Ph, 1a</td>
<td></td>
<td>64%, 5ab</td>
</tr>
<tr>
<td>3</td>
<td>Ph, 1a</td>
<td></td>
<td>22%, 5ac</td>
</tr>
<tr>
<td>4</td>
<td>Ph, 1a</td>
<td></td>
<td>26%, 5ad</td>
</tr>
<tr>
<td>5</td>
<td>Ph, 1a</td>
<td></td>
<td>37%, 5ae</td>
</tr>
<tr>
<td>6</td>
<td>Ph, 1a</td>
<td></td>
<td>54%, 5af</td>
</tr>
<tr>
<td>7</td>
<td>Ph, 1a</td>
<td></td>
<td>40%, 5ag</td>
</tr>
<tr>
<td>8</td>
<td>Ph, 1a</td>
<td></td>
<td>63%, 5ah</td>
</tr>
<tr>
<td>9</td>
<td>Ph, 1a</td>
<td></td>
<td>61%, 5ai</td>
</tr>
<tr>
<td>10</td>
<td>Ph, 1a</td>
<td></td>
<td>4%, 5aj = 26%, 5ak</td>
</tr>
<tr>
<td>11</td>
<td>4-Cl-C6H4, 1b</td>
<td></td>
<td>10%, 5al</td>
</tr>
<tr>
<td>12</td>
<td>4-Cl-C6H4, 1b</td>
<td></td>
<td>29%, 5bb</td>
</tr>
<tr>
<td>13</td>
<td>4-Br-C6H4, 1c</td>
<td></td>
<td>11%, 5ca</td>
</tr>
<tr>
<td>14</td>
<td>4-Br-C6H4, 1c</td>
<td></td>
<td>40%, 5cb</td>
</tr>
<tr>
<td>15</td>
<td>4-I-C6H4, 1d</td>
<td></td>
<td>10%, 5da</td>
</tr>
<tr>
<td>16</td>
<td>4-I-C6H4, 1d</td>
<td></td>
<td>29%, 5db</td>
</tr>
<tr>
<td>17</td>
<td>4-CF3-C6H4, 1e</td>
<td></td>
<td>36%, 5ea</td>
</tr>
<tr>
<td>18</td>
<td>4-CF3-C6H4, 1e</td>
<td></td>
<td>36%, 5eb</td>
</tr>
<tr>
<td>19</td>
<td>4-MeO-C6H4, 1f</td>
<td></td>
<td>22%, 5fa</td>
</tr>
<tr>
<td>20</td>
<td>4-MeO-C6H4, 1f</td>
<td></td>
<td>35%, 5fb</td>
</tr>
</tbody>
</table>

[a] Isolated yields. [b] A 2.2 M solution of t-BuOLi in THF was used.
COMMUNICATION

Strongly electron-enriched 3,4,5-trimethoxylated imine 4f reacted smoothly with 1a to give 5af in 54% yield (entry 6) while dianisyl imine 4g led to 5ag in 40% yield (entry 7). In order to allow further functionalization, β-bromo- and β-iodobenzaldehyderivatives (4h and 4i) were subjected to the reaction conditions and the desired adducts were obtained in 63% and 61% yields, respectively (entries 8, 9). Imine 4j bearing a methoxycarboxylate was then used, leading to an overall 30% yield of cycloaddition adduct 5aj during the course of the reaction (entry 10). While various substitution patterns on the imine partner were well tolerated, this was not the case for the ketenimine precursor. Indeed, a series of ynamides was evaluated for which no cycloaddition took place (Table 2, top-right b). These include: sulfonamides (GP = tosyl, mesyl and p-nosylyl) and N-alkyl (R = benzyl or ally) as well as C-substituted (R’ = phenyl, n-butyl and trisopropylsilyl) derivatives. The reaction did not take place, however, when functionalized aryl groups such as para halo- (Cl, Br and I), trifuoromethyl- and methoxy-phenyl were incorporated on the ynamide partner (1b-f). All of these reacted with both imines 4a and 4b (entries 11–20) providing yields of cycloadducts ranging from 10–36% with imine 4a (entries 11, 13, 15, 17 and 19) to 29–40% with imine 4b (entries 12, 14, 16, 18 and 20). Compared with ynamide 1a, yields were systematically lower and this can be attributed to a variety of factors difficult to unambiguously pinpoint since the substitution of this aryl presumably has an influence on both the generation of the active ketenimine and its subsequent stability and reactivity.

Having a wide panel of azetidinimines at our disposal, we then turned our attention to their use for further functionalization. Thus, an additional β-methoxycarboxyl moiety could be added with excellent yields on both the C-aryl (6) or iminoaryl (7) part of the scaffold, using either bromo- (5ah & 5a) or iodo-azetidinimines (5ai & 5da) (Scheme 3).

A strong Lewis acid such as boron tribromide (Scheme 4, Eq. 1) could be employed, without any noticeable degradation of the amidine ring, to selectively cleave the methyl group of 5ab to give phenolic azetidinimine 8. The latter could in turn be alkylated with t-butyl bromoacetate to give 9 in 78% yield. Finally, treatment of carbamate 5aj with a strong acid such as trifluoroacetic acid or a strong reducing agent such as lithium aluminium hydride gave respectively carboxylic acid 10 (96%) and primary alcohol 11 (82%), leaving the four-member ring untouched. Benzylic alcohol 11 could furthermore be transformed into the corresponding chloride 12 in 70% yield, using methanesulfonyl chloride.

In conclusion, we have taken advantage of a specific mode of activation of ynamides under basic conditions to generate N-arylenethimines from Boc-aryl-ynamides and react them with imines in a [2+2] cycloaddition. This reaction further ascertains the intermediacy of the ketenimine intermediate and paves the way for other types of cycloadditions. Moreover, the azetidinimines resulting from this imino Staudinger synthesis can undergo a broad array of chemical transformations that leave the 4-membered amidine ring intact. This work should allow for further exploration around this particular heterocyclic scaffold which can be viewed as an imino-analog of monocyclic β-lactams.13 Studies in these directions are currently ongoing in our laboratory and will be reported in due course.

Experimental Section

Imine 4a (63 mg, 0.3 mmol, 1.0 equiv.), ynamide 1a (130 mg, 0.6 mmol, 2.0 equiv.) and SiO2 (18 mg, 0.3 mmol, 1.0 equiv.) were successively added in a microwave sealable tube and placed under argon before the addition of t-BuOLi (48 mg, 0.6 mmol, 2.0 equiv.) followed by extra dry DMF (900 µL). The sealed tube was placed in a microwave apparatus for 1 h at 100 °C. The crude material was purified by flash chromatography on silica gel (10% ethyl acetate in heptane as eluent) to provide azetidinimine 5aa with 54% yield (53 mg, yellow solid).
Acknowledgements

The authors thank CNRS, ICSN, Labex Lermi (ANR grant ANR-10-LABX-33 under the program Investissements d’Avenir ANR-11-IDEX-0003-01) and FCS Campus Saclay for financial support. E. R., C. M. and S. V. thank Labex Lermi and M. B. thanks FCS Campus Saclay for fellowships.

Author Contributions

K. C. and R. H. D. designed and supervised the experiments and wrote the manuscript; C. M.′ and S. V.′ optimized the reaction conditions and initiated the scope study, E. R.′ and M. B.′ expanded the scope and performed the functionalization of the compounds. P. R. performed the X-ray crystallography experiments. † These authors contributed equally. ‡ These authors contributed equally. The authors declare no competing financial interests.

Keywords: ynamides • ketenimines • [2+2] cyclodaddition • azetidinimines • Staudinger synthesis

[12] CDDC1546588-1546592 (Saa 5ba, Saa 5fa, Saa 5fa 6 respectively) contain the crystallographic data for this paper.

[13] In the context of antibiotic resistance, monocyclic β-lactam antibiotics (monobactams) such as aztreonam hold a special position due to their unique properties, see: C. Ramsey, A. P. MacGowan, J. Antimicrob. Chemother. 2016, 71, 2704 and references therein.
Base Jump: Under strong basic conditions ynamides gave highly reactive ketenimines which could be trapped with imines in a [2+2] cycloaddition. This imino Staudinger synthesis led to a variety of imino-analogs of β-lactams, namely azetidinimines (20 examples), that could be further functionalized through a broad range of transformations.