General features of inhibition in the inner retina

Franke, Katrin and Baden, Tom (2017) General features of inhibition in the inner retina. Journal of Physiology, 595 (16). pp. 5507-5515. ISSN 0022-3751

[img] PDF - Accepted Version
Download (194kB)
[img] PDF (Figure 1) - Accepted Version
Download (1MB)
[img] PDF (Figure 2) - Accepted Version
Download (979kB)


Visual processing starts in the retina. Within only two synaptic layers, a large number of parallel information channels emerge, each encoding a highly processed feature like edges or the direction of motion. Much of this functional diversity arises in the inner plexiform layer, where inhibitory amacrine cells modulate the excitatory signal of bipolar and ganglion cells. Studies investigating individual amacrine cell circuits like the starburst or A17 circuit have demonstrated that single types can possess specific morphological and functional adaptations to convey a particular function in one or a small number of inner retinal circuits. However, the
interconnected and often stereotypical network formed by different types of amacrine cells across the inner plexiform layer prompts that they should be also involved in more general computations. In line with this notion, different recent studies systematically analysing inner retinal signalling at a population level provide evidence that general functions of the ensemble of amacrine cells
across types are critical for establishing universal principles of retinal computation like parallel processing or motion anticipation. Combining recent advances in the development of indicators for imaging inhibition with large-scale morphological and genetic classifications will help to further our understanding of how single amacrine cell circuits act together to help decompose the visual scene into parallel information channels. In this review, we aim to summarise the current
state-of-the-art in our understanding of how general features of amacrine cell inhibition lead to general features of computation.

Item Type: Article
Schools and Departments: School of Life Sciences > Neuroscience
Depositing User: Thomas Baden
Date Deposited: 20 Jun 2017 14:47
Last Modified: 18 Feb 2022 14:57

View download statistics for this item

📧 Request an update
Project NameSussex Project NumberFunderFunder Ref
A window into the fly brain: "dual imaging" of neural circuits involved in locomotor behaviour in DrosophilaG2180MRC-MEDICAL RESEARCH COUNCILMC_PC_15071
Anisotropic retinal circuits for processing of colour and space in natureG2397BBSRC-BIOTECHNOLOGY & BIOLOGICAL SCIENCES RESEARCH COUNCILBB/R014817/1
Anisotropic retinal circuits for processing of colour and space in nature - Lister Institute Research PrizeG2503LISTER INSTITUTEUnset
NeuroVisEco - Zebrafish vision in its natural context: from natural scenes through retinal and central processing to behaviourG1871EUROPEAN UNION677687
Optical Electrophysiology: Establishing fluorescence voltage imaging capability at Sussex NeuroscienceG2018MRC-MEDICAL RESEARCH COUNCILUnset
Philip Leverhulme Prize - Biological SciencesG2276LEVERHULME TRUSTPLP-2017-005