Raptor code-enabled reliable data transmission for in-vehicle power line communication systems with impulsive noise

Article (Accepted Version)

Xu, Zhaopeng, Yang, Chuanchuan, Tan, Zhongwei and Sheng, Zhengguo (2017) Raptor code-enabled reliable data transmission for in-vehicle power line communication systems with impulsive noise. IEEE Communications Letters, 21 (10). pp. 2154-2157. ISSN 1089-7798

This version is available from Sussex Research Online: http://sro.sussex.ac.uk/id/eprint/68350/

This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher’s version. Please see the URL above for details on accessing the published version.

Copyright and reuse:
Sussex Research Online is a digital repository of the research output of the University.

Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available.

Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.
Raptor Code-enabled Reliable Data Transmission for In-vehicle Power Line Communication Systems with Impulsive Noise

Zhaopeng Xu, Chuanchuan Yang, Senior Member, IEEE, Zhongwei Tan, and Zhengguo Sheng, Member, IEEE

Abstract—With the rapid development of in-vehicle data transmission systems, the power line communication (PLC) technology is considered as a good alternative due to the reduction of cable harness. However, PLC suffers from severe impulse noise which hinders the correct reception of data packets and hence leads to a poor transmission performance. In this paper, we propose a raptor code-enabled data transmission scheme for different traffic classes in in-vehicle PLC systems. Simulation results show that the proposed scheme is suitable for in-vehicle data transmission and can provide good protection against the impulsive noise while a considerable reception overhead is needed.

Index Terms—In-vehicle power line communication (PLC), impulsive noise, raptor code, traffic class.

I. INTRODUCTION

WITH the emerging automated tasks in vehicle domain, the development of in-vehicle communications is increasingly important and subjected to new applications [1]. Although both wired and wireless communications have been largely used for supporting diverse applications, most of the in-vehicle applications with mission-critical nature, such as brake and engine controls, still prefer dedicated wired networks for reliable transmission. According to Ford Motor Company, today’s vehicles have more than 2,000 wires, which would measure more than a mile in length [2]. The weight of a wire harness is in the region of 20 to 50 kilograms per car, which makes up the third heaviest and costliest component in a car, right behind the chassis and engine.

Over the past few years, we have witnessed an increasing interest in the use of power line communication (PLC) for home automation systems, automatic meter reading, real-time energy management systems, and many other applications. The use of PLC is promising for in-vehicle applications which features enormous advantages in terms of weight, space and cost since it would remove most part of the wires [3]. Understanding the characteristics of power wires in vehicle as a communication channel has been the drive for many measurement campaigns [4], [5]. The findings show that in-vehicle power lines constitute a harsh and noisy transmission medium with significant impulsive noise, e.g. [6], [7], which can seriously deteriorate the transmission performance. Although traditional forward error correction (FEC) such as Reed Solomon codes and Turbo codes has been considered to be applied in PLC to solve this problem, the challenge is that these methods cannot guarantee a reliable transmission when severe impulsive noise is induced because these codes cannot provide protection across several impulse.

We introduce raptor codes [8] into in-vehicle PLC systems to cope with the side effects caused by impulsive noise. Raptor codes are originated from the family of fountain codes, i.e., the encoder can generate a limitless stream of the encoding packets as desired on-the-fly from the source packets of a source block. The decoder is able to recover the source block from any set of encoding packets only with limited increasing of the numbers compared with source packets. Once the decoder gets enough source packets for recovering the source block, the decoder will send feedback to the transmitter so that a new block is transmitted. There are many kinds of fountain codes such as Luby Transform (LT) codes [9], Online codes [10] and Raptor codes. Raptor codes are an enhancement on LT codes which are random bipartite codes where each encoded packet is a linear combination (XOR) of the transmitted packets. Raptor codes help protect the transmitted data across several impulse, rather than across a single impulse with traditional FEC [11].

In this letter, we propose a raptor code-enabled data transmission scheme for in-vehicle PLC systems considering the effects induced by the impulse noise. The parameters for raptor code are specially designed in order to meet the max end-to-end delay requirement of in-vehicle mission-critical transmission and the parameters characterizing the impulsive noise. Different traffic classes are investigated under this scheme. By designing and employing raptor code-enabled data transmission scheme, a reliable error free transmission can be achieved.

II. THE RAPTOR CODE-ENABLED DATA TRANSMISSION SCHEME FOR IN-VEHICLE PLC SYSTEMS WITH IMPULSIVE NOISE

Table I shows the max end-to-end delay and service rate for two in-vehicle traffic classes, one of which is the control data and the other is safety data. Different traffic classes have different requirements. The end-to-end delay is a crucial parameter when designing the raptor code-enabled data
Amplitude of source packets by correcting erasures not recovered by the Gaussian elimination [13] so the original packets. In systematic raptor decoder, following the known code and is detailed in [13]. Then the regeneration of impulse noise in two example vehicles (a) and (b) from the observed data in [6].

where A is the peak amplitude of the impulse which is modeled as Gaussian distribution with mean value of A and variance of σ, b is the speed the impulse fading away, ω_p is the frequency and d is the duration of the impulse.

The impulsive noise comprised of many impulses can be described as follows:

$$n(t) = \sum_i n_s(t - t_i) = A \sum_i e^{-b(t-t_i)} \sin[\omega_p(t - t_i)],$$

where t_i denotes the time when the impulses occur. Poisson process is employed to calculate t_i [14]. In Fig. 2, we regenerate the impulsive noise of two example vehicles from the observed data in [6], and it has been shown by [6] and [7] that Poisson process is a perfect model in calculating the inter-arrival time of the in-vehicle impulse noise. It is a frequently applied model to calculate the occurrence of sporadic events. The mean inter-arrival time is described by $1/\lambda$ where λ is the mean number of events in a specialized time period. Figure 3 illustrates the impulsive noise over a period of 5 ms with \bar{A} of 5 and $1/\lambda$ of 300 s. Each impulse is damped sine shaped. The impulse noise is considered as an additive noise in the time domain.

Based on the description above, parameters of raptor codes must be carefully designed for reliable transmission due to the max end-to-end delay and the statistical character of impulsive noise. The number of the redundant packets r only depends on the packet error rate denoted as p and the number of source packets k. In order to achieve a reliable error-free transmission, for all the N_B block transmitted, r must satisfy

$$r > kp/(1-p).$$

The parameters of the impulse noise $1/\lambda$, \bar{A} and d can significantly affect the packet error rate p, leading to the
change of r and k.

The mean inter-arrival time $1/\lambda$ is an important parameter for designing the packet length L. For a considerable reception overhead ε, L should satisfy

$$L < (1/\lambda) \cdot \sqrt{m} \cdot R/a,$$

where a is the coefficient, R denotes the baud rate and m QAM is used for OFDM subcarriers. Equation (4) shows that the value of L is limited by $1/\lambda$, this is because when $1/\lambda$ is fixed, larger L can cause higher packet error rate p and a higher ε has to be taken account. So for a proper value of ε, the value of L must be limited.

For different traffic classes, raptor codes should be designed differently because of the different max end-to-end delay. In order to meet the demand on delay, we have

$$(k + r) \cdot L < \text{delay} \cdot \sqrt{m} \cdot R.$$

The raptor codes scheme for different traffic classes should satisfy equation (3)-(5). In the simulation we found that: when the noise is 7 times the amplitude of the signal A of 5 and $1/\lambda$ of 300 s.

III. PERFORMANCE EVALUATION

In the network model, the data baud rate R is 3 Mbps, OFDM modulation with subcarriers of 1024 is realized. In each subcarrier, QPSK is selected as modulation formats. Besides the impulsive noise, additive white Gaussian noise with signal to noise ratio of 10 dB is also added. The impulse response for direct connections in [15] is employed as the transfer channel. A fine channel estimation and equalization is realized at the receiver.

A number of 1000 blocks are transmitted both for control data (a) and safety data (b) using the proposed raptor code-enabled data transmission scheme. In this case, the parameters of the impulse noise d is set as 1 s, A is set as 5 and $1/\lambda$ is 300 s. The impulses are with A of 5, d of 2 s, ω_p of 10 MHz , σ of 1 and b of $4/d$. For control data with max end-to-end delay of 2.5 ms, smaller packet length L and block size k are necessary due to the low end-to-end delay. In the simulation, L is set as 19 bytes and k is 70. 24-bits cyclic redundancy check (CRC) is used for packet checking. The minimum reception overhead needed is about 1.17%. For safety data with much longer delay of 45 ms, L and k can be larger. In this case, L is set as 50 bytes and k is 300, where 32-bits CRC is used and the minimum overhead required is 2.1%. With the help of the specially designed raptor code, a reliable transmission can be guaranteed both for control data and safety data with a considerable amount of overhead required when the impulsive noise exists. Raptor code can help solve the side effects caused by impulsive noise both for control data and safety data.

We compared our raptor codes scheme to Reed-Solomon (RS) code trying to prove its superiority. We simulated 1000 blocks with L of 50 bytes and k of 200. d is set as 2 s, A is 5 and $1/\lambda$ is 300 s. Figure 4 illustrates the packet error rate (PER) versus reception overhead when both codes are used. For raptor code, the minimum reception overhead required for reliable transmission is 0.084. As for RS code, a (200, 230, 50 bytes) code is required whose overhead is 0.15. The overhead of RS code is much larger than that of raptor code. Raptor code outperforms RS code in terms of reception overhead.

We analyzed the lowest reception overhead ε needed in the circumstance of different noise parameters on the premise of reliable transmission when control data is selected as the traffic class which is illustrated in Fig. 5. In other words, all blocks simulated are decoded successfully and the data is correctly transmitted in this case.

Figure 5 (a) shows the reception overhead ε as a function of the impulse noise duration d. Four cases with different packet length L and block size k are simulated. A is set as 5 and $1/\lambda$ is 300 s. It can be seen from the figure that the reception overhead gets higher when the noise duration is longer. Lower reception overhead is achieved when using smaller L and larger k which means that lower packet error rate is achieved in this case. Besides, when the noise duration increases, the slope of the curves also increase which means that longer duration induces severer influence.

Figure 5 (b) shows the reception overhead ε as a function of the mean value of the noise amplitude A. $1/\lambda$ is 300 s and d is 2 s. We can see that higher noise amplitude causes higher reception overhead. Smaller packet length L and larger block size k outperforms the other three cases. We also found that when the noise is 7 times the amplitude of the signal transmitted, reception overhead can reach up to 20% which significantly reduces the transmission efficiency.

Figure 5 (c) shows the reception overhead ε as a function of the mean inter-arrival time $1/\lambda$. A is 5 and d is 1 s. We found that the reception overhead decreases when increasing the mean inter-arrival time $1/\lambda$. Lower reception overhead is also achieved when smaller packet length L and larger block size k are used. Furthermore, we found that the reception
overhead is more vulnerable to $1/\lambda$ than d and \bar{A}. When $1/\lambda$ decrease to 100 s, the reception overhead can be up to 40%. The mean inter-arrival time $1/\lambda$ is the key parameter when designing the reception overhead of raptor code.

We calculate the PER with different block size k and packet length L to find out why the case of lower reception overhead always occurs with smaller L and larger k. Figure 6 (a) shows the PER a function of the packet length L. We can see from the figure that PER increases when L increase. Since smaller L means less error probability within a packet, smaller L helps decrease the packet error rate and hence the redundant packets needed in this case is also lower. As shown in Fig. 6 (b), little change of PER when different k are considered, so PER is not the reason for the larger k needed. In the raptor decoding part, larger block size k help the raptor code work more efficient, so that's why the case of smaller L and larger k always achieves the lowest reception overhead in the 3 figures. When designing the parameters of raptor code for different traffic classes, a relative smaller L and larger k should be chosen on the premise of different end-to-end delay to guarantee a lower reception overhead needed. However, L should not be too small because too small can decrease the transmission efficiency when the data bits added for CRC is fixed.

The proposed raptor code scheme can be well used in the circumstance of the real impulsive noise shown in Fig. 2. For vehicle (a), when L is 50 bytes and k is 500, the minimum reception overhead needed is 8.7%. For vehicle (b) with weaker impulsive noise, the minimum overhead needed is 5.5%. Raptor codes can be well adopted for real in-vehicle power lines to solve the side effects caused by impulsive noise.

IV. CONCLUSION

In this paper, we have proposed a raptor code-enabled data transmission scheme for in-vehicle PLC systems which can be used for different traffic classes. For control data and safety data, the parameters of raptor code are specially designed and simulated and a reliable error-free transmission is achieved. In the simulation, we found that the mean inter-arrival time $1/\lambda$ is the key parameter when designing the reception overhead of raptor code compared with the others. We further noticed that smaller packet length L and larger block size k help to achieve a lower reception overhead in the data transmission. And we prove that raptor code outperforms RS code in terms of reception overhead in our system researched.

REFERENCES