Break-taking behaviour pattern of long-distance freight vehicles based on GPS trajectory data

This version is available from Sussex Research Online: http://sro.sussex.ac.uk/id/eprint/67553/

This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher’s version. Please see the URL above for details on accessing the published version.

Copyright and reuse:
Sussex Research Online is a digital repository of the research output of the University.

Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available.

Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.
Break-taking behaviour pattern of long-distance freight vehicles

based on GPS trajectory data

Daxin Tian¹, Xiongyu Shan¹, Zhengguo Sheng², Yunpeng Wang¹,², Wenzhong Tang¹, and Jian Wang⁴

¹School of Transportation Science and Engineering, Beijing Key Laboratory for Cooperative Vehicle Infrastructure Systems and Safety Control, Beihang University, Beijing, 100191, China
²Department of Engineering and Design, University of Sussex, Brighton, BN1 9RH, United Kingdom
³Jiangsu Province Collaborative Innovation Center of Modern Urban Traffic Technologies, No.2 SiPaiLou, Nanjing, 210096, China
⁴College of Computer Science and Technology, Jilin University, Changchun 130012, China

Abstract

This paper focuses on the break-taking behaviour pattern of long-distance freight vehicles, providing a new perspective on the study of behaviour patterns and simultaneously providing a reference for transport management departments and related enterprises. Based on Global Positioning System (GPS) trajectory data, we select stopping points as break-taking sites of long-distance freight vehicles and then classify the stopping points into three different classes based on the break-taking duration. In the process of classification, we find that the three single classifications can be fitted individually by an exponential distribution and together by a power-law distribution. We then explore the relationship of the distribution of the break-taking frequency between the three single classifications and their combination. We find that the combination is a Gaussian distribution when each of the three individual classes is a Gaussian distribution, contrasting with the power-law distribution of the break-taking duration. We extract the distributions of the break-taking duration and frequency and analyse the law underlying them.

Key words: break-taking behaviour, long-distance freight vehicle, Gaussian distribution, power-law distribution
1. Introduction

Global Positioning System (GPS) trajectory data have triggered substantial interest in the study of behaviour patterns. Various groups have been studied, including people in general [1-3] and drivers in particular, including taxi drivers [4-6] and commercial vehicle drivers [7,8]. However, with the development of the logistic distribution network, long-distance freight vehicles are necessary to be studied. The result can be expected to be useful for transport management departments and related enterprises.

There have been substantial researches related to behaviour patterns. These include time use studies [9-12], which focus on problems related to the statistical analysis of people’s behaviour patterns, and behaviour pattern analyses of various types of vehicle, for example, basic taxi driver’s working status and daily taxi driver’s temporal and spatial activities [13-18], as well as the business patterns of commercial vehicles [19-24]. Researches on long-distance freight vehicles mainly focus on the relationship between the driving hours or the breaking hours and the commercial truck driver safety, and these researches are usually based on the field survey data[25-28].

Compared with others, long-distance freight vehicles have some special characteristics. They transport cargo from city to city and must sometimes load or unload cargo within a transport centre. Their transit time is long; in addition to the temporal and spatial characteristics of their travel, they might sometimes participate at random times and places in specific activities, such as break taking, wherein the vehicle must stop for a period of time. Although in Guangxi Province, where the GPS trajectory data was collected, the traffic police departments take a series of measures in order to control the fatigue driving, however, in reality, for the purpose of profit, the
long-distance freight vehicle drivers are generally entirely free to choose the duration, frequency, and location of their breaks. As the characteristics of break-taking activities can reflect the temporal and spatial characteristics of the vehicle, break-taking provides an opportunity to study the behaviour pattern of the vehicle driver.

In this paper, we study the break-taking behaviour pattern of long-distance freight vehicles based on GPS trajectory data during one week in Guangxi Province, China. We take note of the stopping points, classify the break-taking activities into three classes, and then determine the characteristics of the distribution of the break-taking duration and frequency for the three classes individually. The combination of the break-taking duration follows a power-law distribution, and each of the three classes individually follows an exponential distribution. The combination of the break-taking frequency follows a Gaussian distribution based on two principal conditions as follows. Each of the three classes follows a Gaussian distribution, and the combination of the break-taking duration follows a power-law distribution.

The contribution of this paper is as follows. First, we extract the characteristics of the distribution in terms of statistical indices, such as the break-taking duration and frequency of the break-taking activities. Then, we discuss the relationship among the distributions of the combination and each of the three individual classes in terms of the break-taking frequency. The results of our research can be expected to have significance for the understanding of break-taking behaviour patterns.

2. Behaviour Pattern Analysing Method

As the following work will be related to the selection of the stopping point, the discussion of the distribution on the break duration, as well as the curve fitting of the distribution on the
break-taking duration and break-taking frequency, what’s more, the above-mentioned work need to use the theory as the three-sigma rule, the t-test method and the curve fitting parameters, so that we propose them in this part.

2.1 Three-sigma rule

The three-sigma rule [29,30] is a basic law of mathematical statistics that can be applied to data that follow a normal distribution; hence, data must be checked to determine whether they fit such a distribution using a quantile–quantile (Q–Q) plot. Specifically in this study, it is the velocity of the GPS trajectory data that might or might not fit a normal distribution, and the data must be processed to follow that distribution. The confidence interval of the data can be assured using the three-sigma rule with \(x - 3\sigma \) and \(x + 3\sigma \) being the lower and upper threshold limits, respectively.

If the data do not fit a normal distribution, then the data must be transformed to a pseudonormal distribution to enable the three-sigma rule to be applied. The formula is

\[
x^{(\gamma)} = \begin{cases}
\frac{x^\gamma - 1}{\gamma}, & \gamma \neq 0, \\
\ln(x), & \gamma = 0.
\end{cases}
\] (1)

For the values \(x_1, x_2, x_3, \ldots, \) and \(x_M, \) the optimization of the index \(r \) can be determined by calculating the maximum of the following formula.

\[
l(\gamma) = \max \left(-\frac{M}{2} \ln \left(\frac{1}{M} \sum_{i=1}^{M} (x_i^{(\gamma)} - \bar{x}^{(\gamma)})^2 \right) + (\gamma - 1) \sum_{i=1}^{M} \ln(x_i) \right)
\] (2)

where

\[
\bar{x}^{(\gamma)} = \frac{1}{M} \sum_{i=1}^{M} \frac{x^\gamma - 1}{\gamma}
\] (3)

2.2 t-test method
The t-test [31,32], also known as the student’s t-test, can be used to determine whether two sets of data follow the same distribution on the basis of whether there is a significant difference in the squared deviations of the two sets of data in statistical analysis. The statement of the t-test in MATLAB is \([H,P,C] = \text{ttest}(x,y,\text{ALPHA})\), where \(x\) and \(y\) represent the two sets of data being compared, and \(\text{ALPHA}\) is the significance level of the t-test that is always set to 0.05. \(H\) is the judgment standard of the t-test, reflecting the result; when \(H = 0\), the null hypothesis is not rejected, and when \(H = 1\), the null hypothesis is rejected with a confidence level of 0.05. \(P\) is the probability of the expected result, whether the null hypothesis is to be accepted or rejected. We sequentially perform a comparison of the distribution on the break duration of every vehicle. That is, if \(\text{veh}1\), \(\text{veh}2\), and \(\text{veh}3\), are three vehicles, then we compare \(\text{veh}1\) with \(\text{veh}2\), and then \(\text{veh}2\) with \(\text{veh}3\), continuing in this manner until we traverse every vehicle. Here, \(t\) is the dispersion statistic, \(x\) is the sample mean, \(\mu\) is the population mean, \(\delta\) is the sample standard deviation, and \(n\) is the sample size. The formula is as follows:

\[
t = \frac{x - \mu}{\delta \sqrt{n}}
\]

(4)

2.3 Curve fitting parameters

The three parameters, SSE, MSE, and RMSE, are the sum of squares, the mean sum of squares, and the root mean sum of squares, respectively; \(y_i\) represents the actual data, and \(\hat{y}_i\) represents the fitted data. The number of corresponding data points is \(n\), and \(w_i\) is the weight coefficient specifying the extent to which the data volume of a particular corresponding data point accounts for the data volume overall. The formulas are

\[
\text{SSE} = \sum_{i=1}^{n} w_i (y_i - \hat{y}_i)^2
\]

(5)
\[MSE = \frac{SSE}{n} = \frac{1}{n} \sum_{i=1}^{n} w_i (y_i - \hat{y}_i)^2 \]

(6)

\[RMSE = \sqrt{MSE} = \sqrt{\frac{SSE}{n}} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} w_i (y_i - \hat{y}_i)^2} \]

(7)

As for the parameter R squared, SSR, and SST are the sum of squares of the difference between \(\hat{y}_i \) and \(\bar{y} \), and the difference between \(y_i \) and \(\bar{y} \), respectively, the definitions of \(y_i \), \(\hat{y}_i \), \(n \), and \(w_i \), are the same as above, and \(\bar{y} \) is the mean value of the actual data. In addition, we might also determine that SST = SSR + SSE. The formulas are

\[R - \text{Square} = \frac{SSR}{SST} = \frac{SST - SSE}{SST} = 1 - \frac{SSE}{SST} \]

(8)

\[SSR = \sum_{i=1}^{n} w_i (\hat{y}_i - \bar{y})^2 \]

(9)

\[SST = \sum_{i=1}^{n} w_i (y_i - \bar{y})^2 \]

(10)

3. Analysing Results

3.1 Data description

This research is based on GPS trajectory data of long-distance freight vehicles from a GPS Vehicle Information Management System. That system contains a series of basic stations that record the GPS trajectory data of vehicles with a GPS sensor. The frequency is recorded every 60 s, and there are nearly 36,000 vehicles in total, including nearly 12,000 and 24,000 online and offline vehicles, respectively. In this paper, the GPS trajectory data were collected from July 6 to July 12, 2015, in Guangxi, China, for almost 3,000 vehicles in total, including information such as vehicle ID, date, time, latitude, longitude, velocity, and fuel consumption. On one hand, the selected data can basically reflect the general characteristics, on the other hand, avoid the difficulties probably caused by the excessive amount of data, at the same time, selecting data that
lasts for one week can further ensure the continuity of the data records. The quality of the dataset is relatively reliable, and we perform data checking [33,34] with error records to ensure the reliability of the analysis. The error records can mainly be divided into three cases, first, there are error records in the trajectory data records, such as the vehicle ID, date, time, longitude, latitude and speed, such records must be deleted, second, there are omissions in the trajectory data records, if the problems are among the vehicle ID, date, time, such records can be added directly, if the problems are among the longitude, latitude, speed, such records can be deleted directly, third, there are deviated records in the trajectory data records, especially the longitude and latitude, such records can be corrected by dotting on the map. Guangxi Province covers an area of nearly 240000 square kilometers, the terrain is dominated by mountainous and hilly basins, and the flat occupies 27 percent of the total area. By the end of 2012, the total mileage of the highway in Guangxi Province is 107906 km, the mileage of the expressway is 2883 km, the mileage of the First-Grade Highway is 984 km, the mileage of the Second-Grade Highway is 9720 km, and the others are the Third-Grade or Fourth-Grade Highway, the First-Grade Highway is usually the multi-lane highway, the Second-Grade Highway is usually the two-lane highway which is special for vehicles, and the Third-Grade Highway is usually the two-lane highway which is mainly for vehicles. There three main types of long-distance freight vehicles, such as flat vehicles, high barrier vehicles and container vehicles, and the common tonnage ranges from two tons to about thirty tons.

3.2 Analysis of stopping points

Since this research is based primarily on break-taking activity, we must determine the stopping points of each long-distance freight vehicle based on the GPS trajectory data and then try
to classify them into three classes based on a basic standard.

3.2.1 Selection of stopping points

To find stopping points, we must determine whether GPS trajectory data ever have zero velocity. A GPS measurement always contains some errors; for example, a stopping point might have ten pieces of GPS trajectory data, whose velocity might not be exactly zero. Hence, we need to specify a velocity threshold to judge whether a piece of GPS trajectory data belongs to a stopping point. We can find the threshold using the three-sigma rule. According to the three-sigma rule which has been mentioned above, we calculate the mean value x and the standard deviation σ based on the data records of the velocity, and then set the $x - 3\sigma$ as the lower threshold and the $x + 3\sigma$ as the upper threshold[35]. Then, based on the threshold, we can select the GPS trajectory data whose velocity is less than the lower threshold as the possible stopping points. In addition, if the data records of the velocity can’t be fitted to the normal distribution, then it can be transformed to the pseudonormal distribution according to the method mentioned above, after that the three-sigma rule can also be applied to it.

After the selection of the GPS trajectory data belonging to the stopping points, there are always some pieces of GPS trajectory data belonging to the same stopping point, recorded before and after the adjacent periods. As has been mentioned above, data regarding a stopping point includes vehicle ID, date, time, latitude, longitude, and velocity. Some pieces of GPS trajectory data can be combined in the following manner. Retain the time of the initial portion of the records as the time of the stopping point, as well as the location and duration. Consider the mean latitude and longitude of all portions of the records to be the latitude and the longitude of the stopping point, and the difference between the first and last portions of a record’s times to be the duration
of the stopping point.

3.2.2 Classification of stopping points

Next, we detect stopping points, select three vehicles’ stopping point data, and check their break duration distribution. We divide the break duration from 0 to 480 into 10-min time intervals and statistically analyse the distribution of the break durations. As shown in Figure 1, the three single distributions have similar distribution characteristics; when the break duration changes from short to long, the frequency change from high to low with a long tail.

![Figure 1. Break duration distribution of the vehicles](image)

(a) Vehicle ID = 63014579
(b) Vehicle ID = 63014852
(c) Vehicle ID = 63016248

Figure 1. Break duration distribution of the vehicles. From the above three plots, we can determine that the three can almost be fit to the similar long-tailed distribution.

Based on the three vehicles mentioned above, we further statistically analyse the distribution of the break duration of all the vehicles. The Project “Stardriver” took advantage of a smartphone app to support driver self-observation, and finally offered six mainly measurement categories of drivers’ activities, such as drive, wait, load, unload, break and service (including fueling), combined with the actual situation[36], in general, we can divide the classification of a long-distance freight vehicle driver’s daily break-taking activities into four categories: waiting for a traffic light, having a meal (as the service’s representative), sleeping, and loading or unloading cargo. On this basis, to determine the characteristics of the distribution of the break duration of all the vehicles, we must ensure that the distributions of the break durations of every vehicle have similar characteristics using the t-test method as the significance test. The result shows that the values of H are all zero and that the values of P are all above 0.9. Based on the t-test, the
distributions of the break duration of every vehicle have similar characteristics.

Then, we can determine the characteristics of the distributions of the break duration of all the vehicles. The results can be seen in Figure 2, where the x-axis represents the break duration and the y-axis represents the break frequency. Then, we choose four kinds of original functions for curve fitting: the exponential, Gaussian, power, and lognormal distributions. The performance of the fitting can be evaluated using the parameter R squared, the coefficient of determination, whose value ranges from zero to one, with one representing the best curve fitting. The closer the value is to one, the stronger is the ability of x to explain y. The R squared values of the above four distributions are 0.9875, 0.9872, 0.9971, and 0.1316, respectively, showing that the power distribution has the best fitting. The results are shown in Table 1.

Figure 2. Break duration distribution of long-distance freight vehicles. This plot shows the distributions of the break durations fitted to four general kinds of distribution.
Table 1. Fitting results

<table>
<thead>
<tr>
<th>Function</th>
<th>Parameters</th>
<th>R squared</th>
</tr>
</thead>
</table>
| Exponential | $f(x) = a \cdot e^{bx}$ | $a = 1.046$
| | | $b = -0.08136$ | 0.9875 |
| Gaussian | $f(x) = a \cdot e^{\frac{(x-b)^{2}}{c^{2}}}$ | $a = 2.866e+166$
| | | $b = -9445$
| | | $c = 482.5$ | 0.9872 |
| Power | $f(x) = a \cdot x^{b}$ | $a = 15.86$
| | | $b = -1.523$ | 0.9971 |
| Lognormal | $f(x) = a \cdot \frac{e^{(ln(x-b)^{2})}}{c^{2}}$ | $a = 0.2935$
| | | $b = 0.6731$
| | | $c = 0.02893$ | 0.1316 |

As mentioned above, break-taking activities can involve waiting for a traffic light, having a meal, sleeping, and loading and unloading cargo, however, the waiting time for a traffic light is too short and the frequency of this activity is too frequent, so that we won’t take it into account. Based on the distributions of the break duration, we can divide the records of the stopping points into three classes, less than 1 h, between 1 and 3 h, and more than 3 h, corresponding to the first, second, and third classes, respectively.

3.3 Analysis of the distributions of the break-taking durations

In this research, the break-taking activities of vehicles has been divided into three classes based on the break duration, and we statistically analysed the characteristics of the distributions of the duration based on the combination of the three classifications and the first-, second-, and third-class break-taking activities; then, the corresponding fitting results were provided.

Through the statistical analysis, we can see that of the three classes, the most common break-taking durations are 10 to 22 min, 60 to 84 min, and 180 to 980 min, respectively, based on the threshold of no less than 50% of the total. Moreover, no more than 5% of the total
break-taking duration is more than 48 min, 160 min, and 1,780 min, and no more than 15% of the break-taking duration is more than 40 min, 144 min, and 1,180 min. In addition, to reflect the degree of dispersion of the break-taking duration, we can determine the standard deviations, which are 4.1092, 17.7993, and 409.6710, respectively, for the three classes.

Based on the three classes, we fit the distributions of the break-taking duration of the three classifications and their combination [37,38] to exponential, Gaussian, power, and lognormal distributions. The fitting results are as follows. As discussed above, the distribution of the combination can be fitted to the power distribution with the R squared nearly equal to one. Then, we determine that the distributions of the three classes can be fitted to the exponential distribution, as shown in Figure 3. The fitting results of the exponential and Gaussian distributions show no significant difference. However, the corresponding R squared values reveal that the exponential distribution is better. The fitting results of the others can be seen in Table 2, with a 95% confidence bound. From the fitting result above, we can determine that parameters a and b are increasing over the three classes, showing an increase over the break-taking duration.
Figure 3. Vehicle driver’s break-taking duration distribution of the three classes. These plots show the distributions of the break-taking durations of the three classes, respectively, that are fitted to four general kinds of distribution.
Table 2. Fitting results

<table>
<thead>
<tr>
<th>Function</th>
<th>Parameters</th>
<th>R^2 squared</th>
</tr>
</thead>
<tbody>
<tr>
<td>First class</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exponential</td>
<td>$a = 0.2481$</td>
<td>0.9672</td>
</tr>
<tr>
<td></td>
<td>$b = -0.06688$</td>
<td></td>
</tr>
<tr>
<td>Gaussian</td>
<td>$a = 2.636e+23$</td>
<td>0.9654</td>
</tr>
<tr>
<td></td>
<td>$b = -1681$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$c = 226$</td>
<td></td>
</tr>
<tr>
<td>Power</td>
<td>$a = 3.107$</td>
<td>0.9416</td>
</tr>
<tr>
<td></td>
<td>$b = -1.34$</td>
<td></td>
</tr>
<tr>
<td>Lognormal</td>
<td>$a = 0.9355$</td>
<td>0.5160</td>
</tr>
<tr>
<td></td>
<td>$b = 0.4618$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$c = 0.4541$</td>
<td></td>
</tr>
<tr>
<td>Second class</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exponential</td>
<td>$a = 0.2711$</td>
<td>0.9608</td>
</tr>
<tr>
<td></td>
<td>$b = -0.0199$</td>
<td></td>
</tr>
<tr>
<td>Gaussian</td>
<td>$a = 5.707e+25$</td>
<td>0.9588</td>
</tr>
<tr>
<td></td>
<td>$b = -6212$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$c = 797.7$</td>
<td></td>
</tr>
<tr>
<td>Power</td>
<td>$a = 196.1$</td>
<td>0.9504</td>
</tr>
<tr>
<td></td>
<td>$b = -1.878$</td>
<td></td>
</tr>
<tr>
<td>Lognormal</td>
<td>$a = 0.92$</td>
<td>0.5326</td>
</tr>
<tr>
<td></td>
<td>$b = 0.3832$</td>
<td></td>
</tr>
<tr>
<td>Third class</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exponential</td>
<td>$a = 0.9304$</td>
<td>0.9843</td>
</tr>
<tr>
<td></td>
<td>$b = -0.003792$</td>
<td></td>
</tr>
<tr>
<td>Gaussian</td>
<td>$a = 5.076e+245$</td>
<td>0.9836</td>
</tr>
<tr>
<td></td>
<td>$b = -2.99e+05$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$c = 1.257e+04$</td>
<td></td>
</tr>
<tr>
<td>Power</td>
<td>$a = 757.1$</td>
<td>0.9634</td>
</tr>
<tr>
<td></td>
<td>$b = -1.415$</td>
<td></td>
</tr>
<tr>
<td>Lognormal</td>
<td>$a = 0.9161$</td>
<td>0.2549</td>
</tr>
<tr>
<td></td>
<td>$b = 0.6693$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$c = 0.4174$</td>
<td></td>
</tr>
</tbody>
</table>

3.4 Analysis of the distributions of break-taking frequencies

3.4.1 Distribution of the mixture

Based on the analysis of the stopping points, we fitted the distribution of the break-taking
frequency, regardless of the three classes, to exponential, Gaussian, power, and lognormal distributions and determined that the combination can be fitted to the Gaussian distribution better than the other three classes individually. The results reveal the break-taking frequency distribution and the best-fitted distribution, as well as the other three fitted distributions, as shown in Figure 4. Data points are represented by solid points, and distributions are represented by solid lines.

The values of R squared are shown in Table 3. We can see that the Gaussian distribution is significantly better fitted than the other three because its R squared is very close to one. However, in addition, we can also discuss three other parameters that relate to curve fitting and that can reflect the correctness of data fitting, sum squared error (SSE), mean squared error (MSE), and root MSE (RMSE). These three parameters also measure the error between the original data and the fitting data; the closer the value is to zero, the better the curve fits the data, and the values can also be seen in Table 3.

![Figure 4](image-url)

Figure 4. Vehicle driver’s break-taking frequency distribution for the combination. This plot shows the distribution of the break-taking frequency fitted to four general kinds of distributions.
Table 3. Fitting results

<table>
<thead>
<tr>
<th>Function</th>
<th>Parameters</th>
<th>R squared</th>
<th>SSE</th>
<th>MSE</th>
<th>RMSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exponential</td>
<td>$a = 0.1276$</td>
<td>0.6267</td>
<td>0.0185</td>
<td>0.1703</td>
<td>0.0290</td>
</tr>
<tr>
<td></td>
<td>$b = -0.01185$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gaussian</td>
<td>$a = 0.1423$</td>
<td>0.8932</td>
<td>0.0051</td>
<td>0.1245</td>
<td>0.0155</td>
</tr>
<tr>
<td></td>
<td>$b = 33.1$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$c = 35.49$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power</td>
<td>$a = 0.1085$</td>
<td>0.1475</td>
<td>0.0423</td>
<td>0.2095</td>
<td>0.0439</td>
</tr>
<tr>
<td></td>
<td>$b = -0.2185$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lognormal</td>
<td>$a = 0.1156$</td>
<td>0.0734</td>
<td>0.0914</td>
<td>0.2569</td>
<td>0.0660</td>
</tr>
<tr>
<td></td>
<td>$b = 0.7496$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$c = 0.7956$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.4.2 Distributions of the three individual classes

The distributions of the break-taking frequency of the three individual classes can also be fitted to the Gaussian distribution significantly better than to the other three distributions discussed above. The fitting results can be seen in Figure 5. The best-fitted distribution is represented by the red line, and the other three distributions are represented by lines of other colours.

The fitting parameters can be seen in Table 4 and the value of R squared for the Gaussian distribution is obviously better than that for the other three distributions, as shown in Table 4, where the three parameters SSE, MSE, and RMSE are also listed.
Figure 5. Vehicle driver’s break-taking frequency distribution of the three single classes. The above three plots show distributions of the break-taking frequency of the three classes,
respectively, fitted with four general kinds of distribution.

Table 4. Fitting results

<table>
<thead>
<tr>
<th>First class</th>
<th>Function</th>
<th>Parameter</th>
<th>R squared</th>
<th>SSE</th>
<th>MSE</th>
<th>RMSE</th>
</tr>
</thead>
</table>
| Exponential | a = 0.3523
| | b = -0.02123 | 0.9389 | 0.0078 | 0.1673 | 0.0280 |
| Gaussian | a = 0.3282
| | b = 1.801 | 0.9528 | 0.0054 | 0.1568 | 0.0246 |
| | c = 46.2 | | | | | |
| Power | a = 0.1961
| | b = -0.2426 | 0.5481 | 0.0579 | 0.2759 | 0.0761 |
| | c = 2.323 | | | | | |
| Lognormal | a = 5.867
| | b = 2.993 | 0.9461 | 0.0028 | 0.1323 | 0.0175 |
| | c = 2.323 | | | | | |

<table>
<thead>
<tr>
<th>Second class</th>
<th>Function</th>
<th>Parameter</th>
<th>R squared</th>
<th>SSE</th>
<th>MSE</th>
<th>RMSE</th>
</tr>
</thead>
</table>
| Exponential | a = 0.3888
| | b = -0.08662 | 0.8569 | 0.0247 | 0.2289 | 0.0524 |
| Gaussian | a = 0.3726
| | b = 3.434 | 0.9981 | 0.0003 | 0.0781 | 0.0061 |
| | c = 8.719 | | | | | |
| Power | a = 0.1797
| | b = -0.2927 | 0.4117 | 0.1017 | 0.3260 | 0.1063 |
| | | | | | | |
| Lognormal | a = 0.3928
| | b = 0.8071 | 0.1584 | 0.2830 | 0.4337 | 0.1881 |
| | c = 0.05323 | | | | | |

<table>
<thead>
<tr>
<th>Third class</th>
<th>Function</th>
<th>Parameter</th>
<th>R squared</th>
<th>SSE</th>
<th>MSE</th>
<th>RMSE</th>
</tr>
</thead>
</table>
| Exponential | a = 0.2262
| | b = -0.1084 | 0.7865 | 0.0099 | 0.1876 | 0.0352 |
| Gaussian | a = 0.2106
| | b = -2.77 | 0.8004 | 0.0081 | 0.1847 | 0.0341 |
| | c = 13.21 | | | | | |
| Power | a = 0.1416
| | b = -0.2447 | 0.5182 | 0.0224 | 0.2302 | 0.0530 |
| | | | | | | |
| Lognormal | a = 0.8649
| | b = 3.554 | 0.6596 | 0.0139 | 0.2110 | 0.0445 |
| | c = 3.074 | | | | | |

3.5 Relationship among the combination and the three individual classes

We discuss the relationship among the combination of the three classes of the distributions
on the break-taking frequency and the three individual classes themselves in the background of the distribution of the break-taking duration. First, we should introduce some background information. f(x) is the overall distribution of x, and f(x,n) is the individual distribution of x. f(x,n) is related to the distribution of parameter n, which can be represented as r(n). The formula is

\[f(x) = \int r(n) \cdot f(x,n) dn \] \hspace{1cm} (11)

In addition, we discuss the integral of the Gaussian distribution, whose formula is

\[\int_0^\infty a \cdot e^{-\frac{(x-b)^2}{c^2}} dx \]

\[= \int_0^b a \cdot e^{-\frac{(x-b)^2}{c^2}} dx + \int_b^\infty a \cdot e^{-\frac{(x-b)^2}{c^2}} dx \] \hspace{1cm} (12)

The integral from 0 to \(\infty \) can be divided into two partitions: the integral from 0 to b and the integral from b to \(\infty \). The fitting curve of the distribution is axisymmetric, and on the basis of the symmetry, the result of the former is non-integrable but can have a narrow value. The result of the latter is \(\frac{1}{2} \); hence, we can set the sum of the former and the latter to \(V \), with no effect on the following discussion.

We also discuss the integral of the product of the exponential and power distributions. The formula is

\[\int x^n \cdot e^x dx \]

\[\int_0^\infty x^n \cdot e^x dx \]

\[= x^n \cdot e^x - n \cdot x^{n-1} \cdot e^x + \cdots + (-1)^{n-1} n! x \cdot e^x + (-1)^n n! e^x \]

\[= \left[x^n - n \cdot x^{n-1} + \cdots + (-1)^{n-1} n! x + (-1)^n n! \right] e^x \]
\[
\int_{0}^{\infty} a_1 \cdot x^h \cdot a_2 \cdot e^{b_1 \cdot x} \, dx
= a_1 \cdot a_2 \cdot \left[x^h \cdot e^{b_1 \cdot x} - b_1 \cdot x^{h-1} \cdot e^{b_1 \cdot x} + \cdots + (-1)^{h-1} b_1! \cdot x + (-1)^{h} b_1! \cdot e^{b_1 \cdot x} \right] \\
= a_1 \cdot a_2 \cdot \left[x^h - n \cdot x^{h-1} + \cdots + (-1)^{h-1} b_1! \cdot x + (-1)^{h} b_1! \cdot e^{b_1 \cdot x} \right]
\]

The integral from 0 to \(\infty \) takes advantage of the basic method of integration by parts, and we can set the result to \(W \).

a) Gaussian distribution in the three individual classes of the break-taking frequency

The stopping points have been classified into three individual classes based on the distributions of the break-taking duration, and the distribution on the break-taking duration of every individual vehicle can be fitted to a similar distribution, the power distribution. At the same time, the first, second, and third classes fit a similar distribution tendency. Then, based on the relationship among \(f(x) \), \(r(n) \), and \(f(x,n) \), corresponding here to \(E(t) \), \(r(f) \), and \(P(t,f) \), \(E(t) \) represents the break-taking duration distribution, \(r(f) \) represents the break-taking frequency distribution of the three classes, and \(P(t,f) \) represents the break-taking duration distribution of every individual vehicle, relating to the break-taking frequency distribution. The relationships among \(E(t) \), \(r(f) \), and \(P(t,f) \) are as follows, \(a_1 \), \(b_1 \), \(a_2 \), and \(b_2 \) are the corresponding parameters of the different distributions, and the specific values of the parameters have no effect on the discussion. Thus, we can determine the expression of \(r(f) \) as follows. \(V \) has been discussed above; \(a_3 \), \(b_3 \), and \(c_3 \) are the corresponding parameters of the distribution, and \(t \) can be seen as a constant. We can determine that \(r(f) \) is the Gaussian distribution, corresponding to the Gaussian distribution in the three individual classifications of the break-taking frequency:

\[
E(t) = \int_{0}^{\infty} r(f) \cdot P(t,f) df \\
a_1 \cdot e^{b_1 \cdot t} = \int_{0}^{\infty} r(f) \cdot a_2 \cdot t^{b_2} df
\]
\begin{align*}
a_1 \cdot e^{b_1 t} &= \int_0^\infty r(f) df \cdot a_2 \cdot t^{b_2} \\
\int_0^\infty r(f) df &= \frac{a_1 \cdot e^{b_1 t}}{a_2 \cdot t^{b_2}} \\
\int_0^\infty a_1 \cdot e^{\frac{(f-b_1)^2}{c_1}} \cdot \frac{1}{V} \cdot \frac{a_1 \cdot e^{b_1 t}}{a_2 \cdot t^{b_2}} df &= \frac{a_1 \cdot e^{b_1 t}}{a_2 \cdot t^{b_2}} \\
r(f) &= a_3 \cdot e^{\frac{(f-b_1)^2}{c_2}} \cdot \frac{1}{V} \cdot \frac{a_1 \cdot e^{b_1 t}}{a_2 \cdot t^{b_2}} \\
(14)
\end{align*}

b) Gaussian distribution in the combination of the three classifications of the break-taking frequency

The distribution of the break-taking duration of the combination of the three classifications can be fitted to the power distribution. Similarly, based on the relationship among \(f(x) \), \(r(n) \), and \(f(x,n) \), corresponding here to \(G(f) \), \(r(t) \), and \(G(f,t) \), \(G(f) \) represents the distribution of the break-taking frequency of the combination of the three classes, \(r(t) \) represents the break-taking duration distribution, and \(G(f,t) \) represents the break-taking frequency distribution of the three classes. The relationship among \(G(f) \), \(r(t) \), \(G(f,t) \) is as follows, \(a_1, b_1, a_2, b_2, a_3, \) and \(b_3 \) are the parameters, as we have discussed, and the specific values of the parameter have no effect on the discussion. Thus, we can determine the expression of \(G(f) \) as follows. \(W \) has been discussed previously; \(a_4 \) and \(b_4 \) are the corresponding parameters of the distribution, and \(t \) can also be seen as a constant. We can determine that \(G(f) \) is the Gaussian distribution, corresponding to the Gaussian distribution of the combination of the three classes of the break-taking frequency. In conclusion, we can demonstrate that the distribution of the combination of the three classes of the break-taking frequency can be fitted to the Gaussian distribution. At the same time, the facts that the distribution of the three individual classes of the break-taking frequency can be fitted to the Gaussian distribution and that the distribution of the
break-taking durations fits the power distribution explain the relationship among the combination and the three classes of the break-taking frequency as well as the reason for the emergence of the combination:

\[G(f) = \int_0^\infty r(t) \cdot G(f, t) dt \]

\[G(f) = \int_0^\infty a_4 \cdot t^{b_4} \cdot a_3 \cdot e^{-\frac{(f-b_5)^2}{c_5^2}} \cdot \frac{1}{V} \cdot a_2 \cdot t^{b_2} dt \]

\[G(f) = \int_0^\infty a_4 \cdot t^{b_4} \cdot a_4 \cdot e^{b_4 \cdot t} \cdot \frac{1}{V} \cdot a_3 \cdot e^{-\frac{(f-b_5)^2}{c_5^2}} \cdot a_2 \cdot t^{b_2} dt \]

\[G(f) = \frac{W}{V} \cdot a_3 \cdot e^{-\frac{(f-b_5)^2}{c_5^2}} \]

\[\text{(15)} \]

4. Conclusion and Discussion

In this study, we find that it is of value to perform a statistical analysis of the behaviour pattern of break-taking activity based on GPS trajectory data of long-distance freight vehicles. We take advantage of various indices that enable us to determine the characteristics of the break-taking behaviour pattern, including break-taking duration and frequency, and to simultaneously deepen our understanding of the vehicle’s work status, which is significantly different from the work status of taxis or other vehicles. The results show that the distribution of the break-taking duration of the combination can be fitted to a power distribution and that the distribution of the break-taking duration of the three individual classes can be fitted to an exponential distribution. In addition, the results show that the distribution of the break-taking frequency of the combination can be fitted to a Gaussian distribution and that the distribution of the break-taking frequency of the three individual classifications can be fitted to a Gaussian distribution.

Similarly, the above mentioned distributions show a degree of normality, reflecting the
clustering of the two vehicle’s indices, and the explanation for the emergence of the break-taking frequency distribution of the combination might be that the distributions of the three classes on the basis of the power distribution for the break-taking duration distribution can also reflect the basic relationship among them. In conclusion, the study shows a process of data mining from GPS trajectory data and reflects a series of characteristics of the vehicles’ break-taking behaviour pattern, which can be helpful for the study of behaviour patterns and traffic management.

Because the limitation of the quality of the database and the ability of the computation, here we only utilise 3000 vehicles for this study, in the future research, it is possible to further extend the amount of data. If the research takes advantage of the data that collected in the case of different geographical environment or different laws and regulations, then there may be a distribution with different characteristics, and in the analysis of its formation causes, the factors of the geographical environment and related laws and regulations can be considered, and this will be a very interesting research. As the development of the technology, the data types of the GPS trajectory data of the long-distance freight vehicles will be more and more abundant, such as the vehicle's condition and land-use attribution, so that the future work can be to bridge the knowledge of the behaviour pattern of the vehicles with these reflected by the new data types. And the similar researches will have important significance for the intelligent transport systems, such as assist traffic management departments to better design the national network of rest stops, predict vehicle drivers' behaviour pattern or optimise traffic management systems.
Acknowledgments

This research was supported in part by the National Natural Science Foundation of China under Grant nos. U1564212.

References

[27] Pyllkkönen, M., Sihvola, M., Hyvärinen, H. K., Puttonen, S., Hublin, C., Sallinen, M. Sleepiness, sleep, and use of sleepiness countermeasures in shift-working long-haul truck drivers, Accident; analysis and prevention, 2015, 80, pp. 201-210

[32] Delaney, H. D.: The Effect of Nonnormality on Student's Two-Sample T Test, Monte Carlo Methods, 2000, pp. 30

[34] Runkler, T. A.: Data analytics models and algorithms for intelligent data analysis (Springer Vieweg press, Heidelberg, 2012)

[37] Motulsky, H., Christopoulos, A.: Fitting models to biological data using linear and nonlinear regression, a practical guide to curve fitting (GraphPad Software Inc press, California, 2003)