A research pathway for experimental psychopathology: the role of external validity criteria

Article (Accepted Version)

This version is available from Sussex Research Online: http://sro.sussex.ac.uk/id/eprint/67499/

This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher’s version. Please see the URL above for details on accessing the published version.

Copyright and reuse:
Sussex Research Online is a digital repository of the research output of the University.

Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available.

Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

http://sro.sussex.ac.uk
A Research Pathway for Experimental Psychopathology: The Role of External Validity Criteria

By

Graham C L Davey
University of Sussex, Brighton, UK

Correspondence to:

Graham Davey, Ph.D.,
Professor of Psychology,
School of Psychology,
The University of Sussex,
Brighton,
BN1 9QH
UK.

Email: grahamda@sussex.ac.uk
Tel: +44 1273 678485
ABSTRACT

This paper outlines a putative pathway for experimental psychopathology research developing psychological models of clinical disorders. The pathway uses established external validity criteria to define the pathway and clarifies the important role that research conducted on healthy participants can play in our understanding of clinical disorders. Defining a research pathway for experimental psychopathology in this way has a number of benefits. It would (1) make explicit the need to address the external validity of developed models, (2) provide a clear set of criteria that would be required to extend research on healthy individuals to diagnostic populations, and (3) recommend using general psychological knowledge when developing models of psychopathology.

Key terms: Experimental psychopathology; external validity; psychological models; healthy participants
Introduction

In its broadest sense experimental psychopathology is the study of psychopathology processes under highly controlled conditions for the purpose of developing detailed models of how psychopathology is acquired and can be treated. This research is often carried out on nonhuman animals or on healthy human participants in order to create models of psychopathology that mimic or predict the processes found in individuals diagnosed with mental health problems (e.g. Abramson & Seligman, 1977; Vredenburg, Flett & Krames, 1993). There is no doubt that experimental psychopathology as a research approach has made significant contributions to understanding psychopathology across many domains, including depression and anxiety (Vervliet & Raes, 2013; Steimer, 2011), schizophrenia (Jones, Watson & Fone, 2011), neuropsychiatric disorders (Nestler & Hyman, 2010), substance abuse and addiction (Lynch, Nicholson, Dance, Morgan & Foley, 2010), and pharmacological treatments of psychological disorders (van Gestel, Kostrzewa, Adan & Janhunen, 2014) to name just a few.

This article will focus on some specific, and perhaps neglected issues in experimental psychopathology that relate most significantly to the development of *psychological models* of psychopathology. A full understanding of the processes that contribute to mental health problems will require the development of both biological and psychological models of a disorder, and these different explanatory paradigms will complement each other in many ways. For example, both paradigms will reveal details of processes that will need to be accounted for in the models developed in the other paradigm. In addition, the importance of psychological models should not be underestimated, given that such approaches offer a broader perspective than
biological models by providing a means of integrating cognitive, behavioural and social factors into unified models of aetiology and intervention (Davey, 2015).

However, the elaboration of psychological models of psychopathology has often developed chaotically rather than via an accepted and validated research pathway (Davey, 2003). First, clinical psychology research is frequently driven by clinical experience and the practitioner’s need to develop more effective and efficient interventions (Dawes, 1994). As a result many clinical psychology researchers develop models of disorders that are specific to their own clinical experience, researched in ways that often lack required levels of empirical rigour, and are built around esoteric constructs that do not match simply onto accepted and basic psychological operations related to perception, cognition and action, and in many cases may simply be redescriptions of the symptoms that it is often claimed they explain (Davey, 2003, 2013a).

Second, it is often difficult for experimental psychopathologists developing psychological models to place their research in established clinical psychology and psychiatry journals – especially if their models have been developed on healthy individuals. Given that many relevant journals have a publication requirement that research must be carried out on clinical populations with a diagnostic label, this has not only made it more difficult for experimental psychopathology researchers to find suitable outlets for their research, it also means that such research may become scattered across a wider range of either secondary journals or mainstream psychology journals rather than being published in frontline clinical psychology or psychiatry journals. This is likely to give the erroneous impression that such research does not
belong to a body of research that represents a significant and alternative unified approach to understanding psychopathology\(^1\).

Thirdly, those using experimental psychopathology methods to develop psychological models of psychiatric disorders have often been negligent in ensuring the validity of their research to clinical populations – especially if it is psychopathology-relevant research conducted on healthy individuals. Whilst external validity has been an important issue in other forms of experimental psychopathology (especially using animal models) (e.g. Belzung & Lemoine, 2011; Stewart & Kalueff, 2015), it has only recently been discussed as a significant issue in the development of psychological models using healthy human participants (Vervliet & Raes, 2013). In the case of the experimental study of psychological models conducted on healthy individuals, lack of attention to external validity can seriously undermine the value of a piece of experimental psychopathology research. Researchers may need to indicate more clearly where the research fits into a putative research pathway from basic models developed on healthy individuals to researching processes that are proven to be unique to the relevant clinical population – a validation process that has been much more transparent and fully argued in the case of nonhuman animal models of psychopathology (cf. Vervliet & Raes, 2013).

Given these background issues in the use of experimental psychopathology to develop psychological models of mental health problems, the main purpose of this article is to suggest a possible research pathway along which the development and application of such models can progress. This would have a number of benefits: it would (1) make explicit the need to address the external validity of developed models,

\(^1\) Recent changes in scope to Behaviour Research & Therapy and the launch of Journal of Experimental Psychopathology will improve the available outlets for experimental psychopathology research conducted on healthy individuals.
i.e. to provide a fuller set of arguments as to why experimental psychopathology studies can be generalized to clinical populations and diagnostic categories, (2) provide a clear program of research that would be recommended when extending research on healthy individuals to diagnostic populations, and (3) recommend using general psychological knowledge when developing models of psychopathology.

The External Validity of Psychological Models of Human Psychopathology

When experimental psychopathologists have received a full and proper training in scientific and experimental methods there should be no need to question their empirical skills. What is at issue is the need to apply principles of external validity to that research to justify the relevance of the laboratory studies to the clinical populations to which those developed models are applied. This is not an issue that is specific to experimental psychopathologists developing psychological models of disorders, it is an issue that is highly relevant to all translational research. Understanding the different forms and types of external validity is a first step to developing a research pathway that will bridge the translational gap, so it is worth looking at some of the forms of external validity that have been postulated as relevant to translational research in general.

External validity criteria vary considerably in their strength and relevance. Table 1 provides a list of validity criteria that can be found in the broader experimental psychopathology literature (e.g. animal models of psychiatric disorders) and whose definitions are adapted to be relevant to the development of psychological models of psychopathology (adapted from Geyer & Markou, 1995; Stewart & Kalueff, 2015; Belzung & Lemoine, 2011; and Vervliet & Raes, 2013).
Face validity is the weakest of these criteria, but is usually the starting point for many researchers creating laboratory models of psychopathology. This criterion stresses there should be a formalistic or phenomenological similarity between the behaviour in the laboratory model and the symptoms in the disorder. Thus, a fear conditioning procedure conducted in the laboratory might have face validity as a model of specific phobias because the physiological measures of anxiety conditioned to the CS+ formalistically approximate to the fear elicited by phobic stimuli in phobic populations (e.g. Delgado, Olsson & Phelps, 2006; Lissek, Powers, McClure, Phelps, Woldehawariat, Grillon & Pine, 2005; Davey, 1992). Other examples might include the use of mood induction procedures to generate anxious or depressed moods in healthy participants to examine how these moods might affect performance on a selection of disorder-relevant tasks (e.g. Davey, Bickerstaffe & MacDonald, 2006; Teasdale & Fogarty, 1979; Hepburn, Barnhofer & Williams, 2006; Grant, Stewart & Birch, 2007). Alternatively, some researchers have used healthy participants who score high on the relevant psychopathology (e.g. depression) but are at sub-clinical levels (e.g. Vredenburg, Flett & Krames, 1993).

Predictive validity is the first step to demonstrating that your model and the processes defined within it do have some relevance to the clinical disorder. The requirement here is that your laboratory model predicts behaviour in the disorder. For example, manipulating appraisals of ‘inflated responsibility’ (the belief that one has power to bring about or prevent crucial negative outcomes) in healthy individuals may be found to have a direct effect on perseverative activities such as compulsive checking (Lopatka & Rachman, 1995; Bouchard, Rheame & Ladouceur, 1999), and so such a manipulation predicts behaviour found in certain forms of obsessive-compulsive disorder.
What you do not know from simply applying a predictive validity criterion is whether the behaviour in your model and the behaviour in the disorder are generated by the same underlying mechanisms or processes. When adopting predictive validity you know that the outcome of your model matches the outcomes expected in the disorder, but you do not have evidence of whether the outcomes in the laboratory model and the clinical case are achieved via the same mechanisms. To establish whether the mechanisms of the laboratory model match the mechanisms operating in the clinical case requires a more stringent criterion and can be accomplished by applying criteria provided either by construct validity or aetiological validity.

Construct validity requires that the laboratory model compares favourably with a clinical model of the disorder (and that this favourable comparison can be established at the level of at least some of the mechanisms within the laboratory model and the clinical model). This can be achieved in a number of ways. First, it should be possible to demonstrate that the various causal processes in your model can also be identified when those processes are examined in the relevant clinical population. For example, while a model of perseverative depressive rumination can be developed in the laboratory in healthy individuals (Hawksley & Davey, 2010), experimental studies can then be undertaken to identify whether the variables important in the model are generating depressive rumination in a clinical population (Chan, Davey & Brewin, 2013). Secondly, the processes relevant to the laboratory model can also be identified in clinical populations through the collection and examination of patient aetiological case histories. For example, a laboratory conditioning model may demonstrate that fear or anxiety elicited by a stimulus (CS) can be generated by a combination of sensory preconditioning (the association of two innocuous but contiguous stimuli – e.g. a geometric shape presented on a computer screen followed by a nonaversive
60dB ‘beep’) and a subsequent process which inflates the aversiveness of the second
of the two contiguous stimuli (the nominal UCS – such as increasing the loudness of
the ‘beep’ to an aversive 100dB). This UCS inflation then has the effect of generating
fear to the first of the associated stimuli (White & Davey, 1989). This process gives
the impression that the fear-eliciting stimulus has never actually been contiguously
paired with an aversive UCS. However, a search of relevant case histories in patients
with anxiety disorders does provide many examples of where this two-process model
has been active in the aetiology of their anxiety problems (Davey, de Jong & Tallis,
1993), providing some good evidence for the construct validity of the laboratory
conditioning model. Thirdly, if the laboratory model has already been constructed
from an established aetiological model of the clinical disorder, then construct validity
is a given. However, there are further theoretical advantages to the use of the
laboratory model to test the clinical model. For instance, if the clinical model is based
on principles derived from a broader, well-established theoretical approach, then the
laboratory model can be used to explore the further implications of that theoretical
approach for the disorder. One example is the use of conditioning theory to help
explain the aetiology of disorders such as specific phobias and panic disorder (Davey,
1997; Bouton, Mineka & Barlow, 2001), PTSD (Keane, Zimering & Caddell, 1985),
and substance use disorders (O’Brien, Childress, Ehrman & Robbins, 1998), and to
understand therapeutic processes such as the roles of inhibition and extinction during
exposure therapy (Craske, Liao, Brown & Vervliet, 2012). The broad existing
knowledge base around conditioning theory can then be used to test out new
hypotheses about how associative or learning processes might be involved in the
aetiology of the disorder (e.g. Davey, 1992), and thus enhance our understanding of
the clinical model. Aetiological validity is a slightly stronger version of construct
validity in that it specifies that evidence should show that the laboratory and clinical models are identical. By its very definition, aetiological validity implies that the laboratory model is a faithful reconstruction of the clinical model, but this may be very difficult to achieve in practice, and perhaps can only be achieved in circumstances where the laboratory model has been built explicitly on knowledge of the clinical model. In contrast, construct validity merely implies that the laboratory model can be compared favourably with the clinical model (i.e. has at least some important similarities) and that the laboratory model may merely mimic the processes important in the clinical model. In many cases it may be sufficient to mimic the processes in the clinical model because of the difficulty in establishing exactly how causal processes work in the clinical model, and this is true of network models of brain processes involved in psychopathology when the details of the actual brain processes involved in the psychopathology are only poorly understood (e.g. Menon, 2011).

Convergent and Discriminant validity are criteria by which a researcher would attempt to demonstrate the degree to which their laboratory model is either similar to or different from other models of the disorder. Convergent validity will be helpful to a researcher when they are attempting to develop a new laboratory model of a disorder and showing that it predicts similar outcomes to more established and proven models. Discriminant validity is applicable when the researcher is attempting to test between laboratory models to demonstrate that one model has more validity than another. Both types of validity are important in each of these distinct roles.

Finally, diagnostic validity is a criterion described by Vervliet & Raes (2013) as one of particular importance for experimental psychopathologists developing psychological models. Over and above showing that the laboratory model compares
favourably with the detail of the mechanisms underlying the clinical model (construct validity), diagnostic validity requires in addition that the researcher should be able to demonstrate that the laboratory model taps into processes or characteristics that are unique to the clinical population exhibiting the disorder. For example, if a researcher has developed their laboratory model of a disorder on a group of healthy participants, why is it that only a relative minority of the population acquires the disorder? One implication of this question is that the clinical population may possess characteristics that make them highly vulnerable to the critical variables and causal processes in the laboratory model, and diagnostic validity will be achieved when it can be demonstrated that there are unique features of the clinical population that do make them vulnerable to these important processes within the model. For example, laboratory models of ‘jumping to conclusions’ (the process of making a decision about the meaning or importance of an event on the basis of insufficient evidence) have been central to recent cognitive models of paranoia in psychosis (Savulich, Shergill & Yiend, 2012), but why doesn’t everyone ‘jump to conclusions’ and so consequently develop paranoia? The answer may lie in the fact that jumping to conclusions is significantly related to deficits in cognitive functions such as working memory, verbal memory and cognitive processing speed (Ochoa, Haro, Huerta-Ramos, Cuevas-Esteban, Stephan-Otto, Usall, Nieto & Brebion, 2014), and these are deficits that are regularly found during, and even prior to, the onset of psychotic symptoms (Carrion, McLaughlin, Auther, Olsen, Correll & Cornblatt, 2015), and so will make those individuals vulnerable to the development of paranoia through the model’s important process of ‘jumping to conclusions’. Another example of diagnostic validity is one from our own lab. We have developed a laboratory model of perseverative worrying (a cardinal diagnostic characteristic of Generalized Anxiety
Disorder) based on the mood-as-input model (Davey, 2006; Meeten & Davey, 2011). One feature of this model is that worriers use their concurrent mood to evaluate their progress at the worry task, and if they are in a negative mood (which is common in pathological worriers), that negativity informs them that they haven’t yet succeeded in dealing with the worry and so must continue worrying. Not everyone is a pathological worrier, so what is it about pathological worriers that makes them particularly vulnerable to the processes within this model of worry? The answer seems to be that they possess a number of characteristics that make them especially vulnerable to using their negative mood as information during a worry bout, and so are much more likely to perseverate when worrying in a negative mood (Meeten & Davey, 2011, pp1266-69). The fact that diagnostic validity makes the researcher think carefully about how their model relates to the unique characteristics of clinical populations adds another dimension to validating the model, and may even extend the model to providing psychological markers of vulnerability for psychopathology.

A Research Pathway for Experimental Psychopathology

It’s quite easy to see that the external validity criteria listed in the previous section begin with rather weak formalistic criteria and develop onwards to significantly stronger criteria that attempt to equate the laboratory model with the clinical phenomenon on a range of different levels. The important questions these criteria ask are sequentially: (1) Do the outcomes of your laboratory model superficially look like the clinical phenomenon? (2) Does your model predict what happens in the clinical phenomenon? (3) Can you show that the processes in your model closely resemble the
processes in the clinical phenomenon? And (4) does your model explain why the relevant clinical population is differentially vulnerable to the clinical disorder?

This sequence of criteria lends itself to the construction of a virtual research pathway for experimental psychopathology in which an initial basic laboratory model is developed in stages using a succession of empirical methodologies to answer the questions posed by each set of more rigorous validity criteria. This research pathway is illustrated in Table 2.

Stage 1 – Proof of Concept: This proof of concept stage is where the researcher constructs their model and demonstrates its feasibility and potential for use in explaining the clinical phenomenon. This process may involve the adaptation of core knowledge from other areas of psychology to help explain the clinical phenomenon (e.g. the use of existing knowledge of perception, memory, and decision-making processes to construct models explaining the attentional and interpretational biases that underlie anxious responding). But more commonly, this stage will involve the use of basic experiments under highly controlled conditions for the purpose of identifying causal relations between events. It is the identification of important causal relations using experimental procedures that is one of the defining features of experimental psychopathology, and the detection of causal relations is the very basis of effective theory building. However, experimental procedures are not just useful for detecting causal relations, they can also be used to infer the existence of processes that cannot be directly observed, directly manipulated or directly measured. Inferential methodologies have been a significant feature of experimental psychology over the years, and in particular were an important methodology in the development of cognitive models of animal learning where self-report methods are not an option
(Rescorla, 1980; Dickinson, 1980), and in the construction of models of human memory. Inferential techniques are a useful way of developing models of the cognitive processes that underlie clinical disorders, and some specific examples of how this type of methodology has been used to elucidate cognitive processes in psychopathology include (1) identifying some of the associative processes that underlie learned fear and anxiety (Davey, 1992; White & Davey, 1989; Davey & McKenna, 1989), (2) describing the detailed cognitive processes that contribute to attentional and interpretation biases in anxiety and mood disorders (Blanchette & Richards, 2010), and (3) clarifying the role of working memory in the efficacy of eye movement desensitization and reprocessing (EMDR) interventions (van den Hout & Engelhard, 2012). These are just three of many examples, but in each of these cases respectively, the associative processes, attentional processes, and role of working memory cannot be directly observed and had to be inferred from manipulations conducted in elegantly designed experiments.

Stage 2 – Clinical Validity: At this stage the predictions of the model need to be tested against knowledge of what actually happens in the clinical phenomenon. Clinical participants can be tested experimentally to determine whether the important variables in the model are relevant in causing or maintaining the significant symptoms (e.g. Chan, Davey & Brewin, 2013). However, in at least some cases, this approach may be problematic because of the additional distress it may cause to already distressed individuals (e.g. subjecting these individuals to variables that may increase symptoms such as anxiety or depression). Alternative methods include examining case histories for evidence of the processes described by the model in the aetiology of clinical patients (e.g. Davey, de Jong & Tallis, 1993), or investigating the aetiologies
of clinical patients using self-report questionnaires and surveys (e.g. Öst & Hugdahl, 1981; Merckelbach, Arntz & de Jong, 1991).

Stage 3 – Diagnostic Validity: This stage represents the final link up between the psychological model developed in Stage 1 and the relevant clinical phenomenon. Because not everyone acquires a particular psychopathology, we need to ask what it is about the relevant clinical population that makes them differentially vulnerable to the disorder, and then clarify how the model explains this. Some progress towards this goal can be made using literature reviews and meta-analyses to demonstrate that the clinical population has characteristics that make them vulnerable to the important variables and processes in the model. But arguably more convincing evidence for diagnostic validity would come from experimental studies showing that members of the clinical population are significantly more reactive or sensitive to the model’s processes than healthy control participants. For example, the reasoning bias of ‘jumping to conclusions’ is a critical variable in cognitive models of paranoid delusions, and as predicted by the model experimental tests show that a higher percentage of participants with paranoid delusions jump to conclusions compared to non-clinical control participants (Garety, Hemsley & Wessely, 1991; Fine, Gardner, Craigie & Gold, 2007; Savulich, Shergill & Yiend, 2012). This provides some validation for the cognitive model in that jumping to conclusions is a critical variable in the model that is significantly more prominent in the relevant clinical population. However, as argued below, it may not be necessary to make explicit comparisons between clinical populations and healthy individuals in this final stage – diagnostic validity might also be addressed in other ways.
One example is by comparing healthy individuals with participants who score high on measures of the disorder but are at sub-clinical levels (e.g. Vredenburg, Flett & Krames, 1993). This approach is likely to be helpful and valid for disorders that are known to be dimensional rather than categorical in nature (Krueger & Piasecki, 2002), and examples of disorders with known dimensional latent structures include Generalized Anxiety Disorder (Niles, Lebeau, Liao, Glenn & Craske, 2012), Obsessive-Compulsive Disorder (Olatunji, Williams, Haslam, Abramowitz & Tolin, 2007), and at least some psychotic experiences (Johns & van Os, 2001). The fact that the symptoms of some disorders appear to be dimensional rather than categorical may initially appear contradictory to establishing diagnostic validity by identifying characteristics that specifically define clinical populations and make them differentially vulnerable to the model being tested. But there is no reason to suppose that these differential vulnerability factors are not themselves dimensional. The vulnerability factors themselves may be specific diagnostic identifiers (e.g. in the examples we have used so far, characteristics such as jumping to conclusions, potential to use mood as information, etc.), but once triggered may facilitate symptoms in a non-linear or exponential way.

A second example is to test healthy individuals and to manipulate the critical variables in the model known to cause the disorder so that they approximate the levels of those characteristics in the clinical population. This is only possible, of course, if the researcher has prior knowledge that the clinical population possesses these characteristics, and an example will be provided in the next section.

You can see from this discussion that there is no one single method to conclusively demonstrate diagnostic validity, and it is likely to be a convergent process bringing together existing knowledge of the characteristics of the clinical
population, experimental studies comparing clinical and healthy populations, and even studies of the model’s critical variables conducted on healthy individuals.

Some Implications of the Research Pathway: Clearly, a research programme can be constructed across all three stages of the pathway, addressing each of the validity criteria in turn, but this is likely to be a lengthy and burdensome process and would seem appropriate only for the development of entirely new or novel psychological models. Alternatively, research can be conducted at any individual stage if the knowledge required by earlier stages is already available. For example, research can commence directly at Stage 2 if well-developed psychological models exist and convincingly address the validity questions posed at Stage 1. One clear example of this is when conditioning models are applied to psychopathology. The conditioning models have been well-developed elsewhere (e.g. in the animal learning literature), have a formalistic resemblance to the psychopathology (e.g. anxiety/fear learning), and so can be used to determine whether the processes defined by the model predict behaviour in the clinical disorder (e.g. Davey, 1989, 1992; Davey, de Jong & Tallis, 1993). What is relatively unclear in this stage-based model is what would constitute sufficient evidence to be able to move confidently from one stage of the research pathway to the next. There may be no objective criteria by which to judge this, although the potential impact of the model on theory and/or practice may require more or less convincing validity evidence depending on the importance of the research questions being addressed.

It may also be the case that certain types of research could be prioritized at particular stages of the pathway. For example, it may be risky to start at Stage 1 by spending excessive time and funding on research that turns out not to be clinically
relevant. In contrast, the higher costs of intervention research may be better placed in the later stages of the pathway – especially if there is evidence that the intervention may already be viable, and to focus on diagnostic validity as a means of determining the effectiveness of the intervention in relation to the diagnostic characteristics of the relevant clinical population.

Models of psychopathology that postulate new mechanisms of aetiology may have to progress through all three stages of the pathway, beginning with proof of concept in Stage 1, through clinical validity in Stage 2, and ending with diagnostic validity in Stage 3. One interesting feature of this full pathway is that it would in principle be possible to answer validity questions at all three stages using studies conducted entirely on healthy individuals. It would require that certain relevant information about the pertinent clinical population was available in the literature, but studies conducted on healthy individuals could be sufficient to address all validity questions, including those posed by diagnostic validity. For example, it would be quite normal practice to construct the clinical model in Stage 1 on healthy participants to demonstrate its feasibility and potential for use in explaining the clinical phenomenon. Secondly, if information is available in the clinical literature about some of the basic processes through which clinical populations develop their disorder (e.g. that some specific phobias are acquired by contiguous experiences with aversive events), the predictive validity of the model could be tested on healthy individuals by seeing if the model produces outcomes that are consistent with aetiological knowledge in the clinical literature (e.g. White & Davey, 1989; Alvarez, Biggs, Chen, Pine & Grillon, 2008; Davey & Matchett, 1994). At Stage 3, the model should be in a well-developed state that enables the researcher to identify the significant variables that generate the disorder via the model. If these variables represent known
characteristics of the clinical population, then the researcher may be able to manipulate these variables in healthy participants and predict outcomes representative of the disorder (providing some evidence for diagnostic validity). For example, the mood-as-input hypothesis of perseverative worrying argues that pathological worriers use their negative mood as information that they have not achieved the goals of their worry and so persevere with their worrying (Meeten & Davey, 2011). But not everyone in a negative mood perseveres when worrying, so what makes pathological worriers different? A search of the social psychology literature on mood reveals that when people are engaged in a task (such as worrying) they will only use their moods as information under certain conditions (e.g. when they lack expertise in the task, only when they know their mood is relevant to the task in some way, or when they are experiencing high cognitive load) (Schwarz & Clore, 1983; Ottati & Isbell, 1996; Siemer & Reisenzein, 1998). Interestingly, all these factors are active in individuals identified as pathological worriers. Pathological worriers have poor problem-solving confidence, and so lack confidence in their expertise to deal with the worry problem (Davey, 1994; Laugesen & Dugas, 2000), are actively attempting to repair negative mood, and so their mood is very relevant to the task (Clark & Isen, 1982), and anxiety is known to increase cognitive load and reduce working memory capacity, and thus be more likely to render mood relevant as information (Hayes, Hirsch & Mathews, 2008; Eysenck & Calvo, 1992). Given this knowledge of the relevant clinical population, the experimental psychopathology researcher can now test the diagnostic validity of the mood-as-input model by experimentally manipulating these factors in healthy individuals to simulate conditions that are characteristic of the clinical population.

Conducting experimental psychopathology research fastidiously via this three-stage virtual programme of research will be a lengthy process. But research at each
level is valid in its own right. A consequence of this is that journal editors and funding bodies should not be asking researchers at Stage 1 to provide concrete evidence that their research or model is relevant to a clinical population. They also should not be insisting that the research is only clinically valid if it is done on clinical populations. Indeed, as I’ve argued above, it is entirely possible for all three stages of the research to be conducted on healthy individuals and still be perfectly clinically relevant and clinically valid if linked to the relevant clinical literature.

Conclusions

Over the past decade there have been many challenges facing the experimental psychopathologist studying psychological models of clinical disorders. These have ranged from clinical research on healthy participants being excluded from clinical journals, to intensive competition for funds with popular alternative explanatory approaches such as neuroscience and genetics (Davey, 2015). One way in which experimental psychopathology can begin to compete with these alternative approaches is to be very clear about what constitutes valid experimental psychopathology research and the pathway by which such research needs to progress and be validated. This paper outlines a putative pathway for experimental psychopathology research developing psychological models of clinical disorders, and will hopefully encourage researchers to specify in the introduction to their papers the research framework in which their models have been developed and the validation processes they have adopted to justify their models. This will communicate to the broader clinical research community that psychological models derived from experimental psychopathology methodologies are a valid and coherent contribution to
understanding and treating mental health problems, and provide a valuable alternative perspective to neuroscience and genetic approaches.
REFERENCES

Carrion RE, McLaughlin D, Author AM, Olsen R, Correl CU & Cornblatt BA (2015)
The impact of psychosis on the course of cognition: A prospective, nested case-control study in individuals at clinical high-risk for psychosis. Psychological Medicine, in press.

always useful. The Psychologist, 16, 412-416.

Fine, C., Gardner, M., Craigie, J., & Gold, I. (2007). Hopping, skipping or jumping to
conclusions? Clarifying the role of the JTC bias in delusions. Cognitive Neuropsychiatry, 12, 46-77.

Johns L C & van Os J (2001) The continuity of psychotic experiences in the general

Stewart AM & Kalueff AV (2015) Developing better and more valid animal models of brain disorders. Behavioural Brain Research, 276, 28-31

ACKNOWLEDGEMENT

The author is very grateful for the views of two anonymous reviewers whose comments have been significant in shaping this version of this article.
Table 1: A list of validity criteria taken from the broader experimental psychopathology literature and adapted to the development of psychological models of psychopathology.

<table>
<thead>
<tr>
<th>Validity Criterion</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Face Validity</td>
<td>The phenomenological similarity between the behaviour in the laboratory model and the symptoms of the disorder</td>
</tr>
<tr>
<td>Predictive Validity</td>
<td>Performance in the laboratory model predicts performance in the disorder</td>
</tr>
<tr>
<td>Construct Validity</td>
<td>The model developed in the laboratory can be compared favourably with existing clinical models of the disorder. The processes described in the laboratory model parallel the clinical processes of interest.</td>
</tr>
<tr>
<td>Aetiological Validity</td>
<td>It can be shown that the aetiologies in the laboratory model and the disorder are identical.</td>
</tr>
<tr>
<td>Convergent Validity</td>
<td>The degree to which outcomes from the laboratory model correlate with measures/outcomes from other models of the same disorder/construct</td>
</tr>
<tr>
<td>Discriminant Validity</td>
<td>A model differs from other models of the same disorder to the extent that its outcomes are different to those predicted by other models</td>
</tr>
<tr>
<td>Diagnostic Validity</td>
<td>Demonstrating that the laboratory model taps into processes that are unique to the clinical population exhibiting the disorder</td>
</tr>
</tbody>
</table>

Table 2: A putative three-stage research pathway for experimental psychopathology (see text for further elaboration).

<table>
<thead>
<tr>
<th>Stages/Validity Criteria</th>
<th>Stage 1</th>
<th>Stage 2</th>
<th>Stage 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Validity Questions</td>
<td>Proof of Concept</td>
<td>Clinical Validity</td>
<td>Diagnostic Validity</td>
</tr>
<tr>
<td>"Does your model produce measurable behavioral/physiological/cognitive outcomes that resemble the clinical phenomenon?"</td>
<td>"Does your model predict what happens in the clinical phenomenon?"</td>
<td>Does your model explain why the relevant clinical population is differentially vulnerable to the clinical disorder?"</td>
<td></td>
</tr>
<tr>
<td>"Can you show that the processes in your model closely resemble the processes in the clinical phenomenon?"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Purpose</td>
<td>To establish models of psychopathology with formalistic similarity to their corresponding disorder</td>
<td>To establish that your laboratory model predicts behaviour in the disorder</td>
<td>To demonstrate that your laboratory model taps into processes that are unique to the relevant clinical population</td>
</tr>
<tr>
<td>• Proof of Concept Studies</td>
<td>• To apply a well-developed pre-existing theoretical model to a disorder to expand an understanding of the disorder</td>
<td>• To establish why the relevant clinical population is vulnerable to the processes in your model (and which give rise to the disorder)</td>
<td></td>
</tr>
<tr>
<td>• Developing laboratory models of psychopathology symptoms (e.g. for testing intervention efficacy)</td>
<td>• Adapting core psychological knowledge to mimic psychopathology processes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Adaptations of core psychological knowledge to mimic psychopathology processes</td>
<td>• Experiments that provide evidence of causal relations between events that allow theory building</td>
<td>• Experimental studies demonstrating that novel predictions from the model/theory apply to the disorder</td>
<td></td>
</tr>
<tr>
<td>Methodology</td>
<td>• Inferential experimental studies used to develop laboratory models</td>
<td>• Case histories – demonstrating that processes specified in the model can be identified in the etiology of clinical cases</td>
<td>• Literature & systematic reviews</td>
</tr>
<tr>
<td>• Experiments that provide evidence of causal relations between events that allow theory building</td>
<td>• Experimental studies generating characteristics typical of the clinical population in healthy participants (to test the relevance of these characteristics to symptom generation)</td>
<td>• Meta-analyses of studies exploring processes relevant to your model</td>
<td></td>
</tr>
<tr>
<td>• Inferential experimental studies used to develop laboratory models</td>
<td>• Case histories – demonstrating that processes specified in the model can be identified in the etiology of clinical cases</td>
<td>• Experimental studies generating characteristics typical of the clinical population in healthy participants (to test the relevance of these characteristics to symptom generation)</td>
<td></td>
</tr>
<tr>
<td>Participant Type</td>
<td>Mainly healthy participants</td>
<td>Healthy participants or clinical populations</td>
<td>Clinical populations or healthy participants</td>
</tr>
</tbody>
</table>