Search for the lepton flavor violating decay $Z \rightarrow e\mu$ in pp collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector

Article (Published Version)

This version is available from Sussex Research Online: http://sro.sussex.ac.uk/id/eprint/66760/

This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher's version. Please see the URL above for details on accessing the published version.

Copyright and reuse:
Sussex Research Online is a digital repository of the research output of the University.

Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available.

Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

Search for the lepton flavor violating decay $Z \to e\mu$ in pp collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector

G. Aad et al.*
(ATLAS Collaboration)
(Received 26 August 2014; published 23 October 2014)

The ATLAS detector at the Large Hadron Collider is used to search for the lepton flavor violating process $Z \to e\mu$ in pp collisions using 20.3 fb$^{-1}$ of data collected at $\sqrt{s} = 8$ TeV. An enhancement in the $e\mu$ invariant mass spectrum is searched for at the Z-boson mass. The number of Z bosons produced in the data sample is estimated using events of similar topology, $Z \to ee$ and $\mu\mu$, significantly reducing the systematic uncertainty in the measurement. There is no evidence of an enhancement at the Z-boson mass, resulting in an upper limit on the branching fraction, $B(Z \to e\mu) < 7.5 \times 10^{-7}$ at the 95% confidence level.

DOI: 10.1103/PhysRevD.90.072010
PACS numbers: 12.60.-i

I. INTRODUCTION

Lepton flavor conservation in the charged lepton sector is a fundamental assumption of the Standard Model (SM) but there is no associated symmetry. Thus, searches for lepton flavor violation (LFV) processes are good candidates for probing new physics. The observation of neutrino oscillations is a clear indication of LFV in the neutral lepton sector; however, such an oscillation mechanism cannot induce observable LFV in the charged lepton sector. All searches in the charged lepton sector have produced null results so far [1]. Lepton flavor violation in the charged lepton sector may have a different origin than LFV induced by neutrino oscillations and the search for this effect provides constraints on theories beyond the SM (see for example Refs. [2–4]).

In this paper, a search for the lepton flavor violating decay $Z \to e\mu$ is presented. There are stringent experimental limits on other charged lepton flavor violating processes, which can be used to derive an upper limit on the branching fraction for $Z \to e\mu$ with some theoretical assumptions. For example, the upper limit on $\mu \to 3e$ yields $B(Z \to e\mu) < 10^{-12}$ [5] and on $\mu \to e\gamma$ yields $B(Z \to e\mu) < 10^{-10}$ [6]. The experiments at the Large Electron-Positron Collider (LEP) searched directly for the decay $Z \to e\mu$ [7–10]. The most stringent upper limit is $B(Z \to e\mu) < 1.7 \times 10^{-6}$ at the 95% confidence level (C.L.) using a data sample of 5.0×10^6 Z bosons produced in e^+e^- collisions at $\sqrt{s} = 88$–94 GeV [7]. The Large Hadron Collider (LHC) has already produced many more Z bosons in pp collisions, but with substantially more background. In this paper, the 20.3 ± 0.6 fb$^{-1}$ [11] of data collected at $\sqrt{s} = 8$ TeV by the ATLAS experiment corresponds to 7.8×10^8 Z bosons produced. Despite the larger background at the LHC, a more restrictive direct limit on the $Z \to e\mu$ decay is reported in this paper.

II. ATLAS DETECTOR

The ATLAS detector [12] consists of an inner detector (ID) surrounded by a solenoid that produces a 2 T magnetic field, electromagnetic and hadronic calorimeters, and a muon spectrometer (MS) immersed in a magnetic field produced by a system of toroids. The ID measures the trajectories of charged particles over the full azimuthal angle and in a pseudorapidity [13] range of $|\eta| < 2.5$ using silicon pixel, silicon microstrip, and straw-tube transition-radiation tracker (TRT) detectors. Liquid-argon (LAr) electromagnetic (EM) sampling calorimeters cover the range $|\eta| < 3.2$ and a scintillator-tile calorimeter provides hadronic calorimetry for $|\eta| < 1.7$. In the end caps ($|\eta| > 1.5$), LAr is also used for the hadronic calorimeters, matching the outer $|\eta|$ limit of end-cap electromagnetic calorimeters. The LAr forward calorimeters extend the coverage to $|\eta| < 4.9$ and provide both the electromagnetic and hadronic energy measurements. The MS measures the deflection of muons within $|\eta| < 2.7$ using three stations of precision drift tubes (with cathode strip chambers in the innermost station for $|\eta| > 2.0$) and provides separate trigger measurements from dedicated chambers in the region $|\eta| < 2.4$.

A three-level trigger system is used to select interesting events to be recorded for subsequent offline analysis [14]. For this analysis, the candidate events of interest are required to satisfy either a single electron or a single muon trigger that have transverse momentum (p_T) thresholds of 24 GeV.

III. ANALYSIS STRATEGY

The event selection requires two high-p_T isolated, oppositely charged leptons of different flavor: $e^\pm \mu^\mp$. Events are required to contain little jet energy (i.e. small
Monte Carlo simulated samples normalized to the data integrated luminosity are used to determine the major backgrounds pertinent to this analysis as well as to determine the optimal E_{T}^miss and $p_{\text{T}}^{\text{jet}}$ requirements. All MC samples are produced using the ATLAS detector simulation [15] based on GENFAST [16]. Signal $Z \rightarrow e\mu$ MC events are produced with POWHEG-BOX r1556 [17] using the CT10 parton distribution function (PDF) [18] and the AU2 set of tunable parameters (tune) [19] along with PYTHIA 8.175 [20] for parton showering, hadronization and underlying event simulation. To ensure proper normalization of the upper limit to the number of $Z \rightarrow e\mu$ and $Z \rightarrow \mu\mu$ events, these events are simulated using the same generator as for the signal simulation. In practice, the $Z \rightarrow e\mu$ sample is created from a $Z \rightarrow ee$ sample by replacing one of the electrons by a muon at the generator level. The $Z \rightarrow \tau\tau$ and W events are simulated with ALPGEN 2.13 [21] interfaced to HERWIG 6.520.2 and PYTHIA 6.426 [22], respectively, using the CTEQ6L1 PDF [23] with the AUET2 tune [24]. The three diboson backgrounds, $gg \rightarrow WW$, $gg \rightarrow WW$, and WZ, are simulated with the CT10 PDF using MC@NLO 4.0 [25] with the AUET2 tune, $GGWW$ [26] with the AUET2 tune, and POWHEG-BOX interfaced to PYTHIA 8.165 with the AU2 tune, respectively. The top-quark backgrounds, $t\bar{t}$ and single top-quark production, are simulated with MC@NLO 4.0 and AcerMC 3.8 [27] interfaced to HERWIG 6.520.2 and PYTHIA 6.426, respectively, for parton showering and fragmentation. An average of 20 additional pp collisions per event in the same bunch crossing, known as pileup, are included in each event to match the data.
from the primary vertex, divided by the scalar sum of p_T of all tracks associated with the jet, must be greater than 50% for jets with $|y| < 2.4$ and $p_T < 50$ GeV to remove jets originating from pileup in the central region. The rapidity [33] of jets must satisfy $|y| < 4.4$. Finally, only jets with $p_T > 20$ GeV are considered in the event selection.

The E_T^{miss} is defined as the p_T imbalance in the detector. It is formed from the vector sum of the p_T of reconstructed high-p_T objects—electrons, photons, jets, τ leptons, and muons—as well as energy deposits not associated with any reconstructed objects [34].

VI. EVENT SELECTION

A Z candidate is constructed from two opposite-sign, different-flavor leptons (e or μ). Electron candidates are vetoed if they are within $\Delta R = 0.1$ of a candidate muon. Jets are removed if they are within $\Delta R = 0.3$ of a candidate lepton. Events with more than two candidate leptons are vetoed, as are events with an additional electron or muon that passed the lepton requirements but is not isolated.

As stated above, the selection criteria for E_T^{miss} and $p_T^{\text{jet max}}$ are chosen to maximize the reconstruction efficiency divided by the square root of the estimated number of background events. The efficiency for selecting $e\mu$ candidates is calculated using MC signal events in the Z signal region, $85 < m_{e\mu} < 95$ GeV. The background is determined by fitting the $m_{e\mu}$ spectrum in data in the mass range $70 < m_{e\mu} < 110$ GeV, excluding the Z signal region, and then interpolating the fitted curve into the Z signal region to estimate the number of background events. The fitting range is chosen so that the $m_{e\mu}$ spectrum can be parametrized with a polynomial. In particular, the lower $m_{e\mu}$ limit is chosen to be above the peak in the $Z \rightarrow \tau \tau \rightarrow e\mu$ mass distribution. The optimum selection criteria are found to be $E_T^{\text{miss}} < 17$ GeV and $p_T^{\text{jet max}} < 30$ GeV.

Several background functions with a small number of free parameters in the fit were investigated before analyzing (“unblinding”) the events in the Z mass region. This includes Chebychev polynomials of second to fourth orders, a Landau function, and an exponential function plus a linear term. The second-order polynomial has an unacceptable χ^2 per degree of freedom, χ^2/d.o.f. = 3.3. All other functions have χ^2/d.o.f. ~ 1. The third-order polynomial is chosen as the default background function for simplicity. The systematic error due to the choice of fitting functions is discussed below.

The E_T^{miss} and $p_T^{\text{jet max}}$ distributions in the data are compared with the expectation for a MC simulation of the background and signal in Fig. 1. Each plot has all kinematic cuts applied with the exception of the cut on the kinematic variable being shown—as indicated by the vertical lines and arrows. The signal MC is scaled to the 95% C.L. upper limit presented in Sec. VII. The multijet background in these distributions refers to events where at least two jets are misidentified as leptons. The shape and normalization of this background can be estimated from like-sign $e\mu$ candidates in the data. The contributions to the same-sign distribution from top-quark and W/Z events are estimated using simulation (Sec. IV) and subtracted from the same-sign data.

The E_T^{miss} distribution of $e\mu$ candidate events is shown in Fig. 1(a). The E_T^{miss} requirement removes most of the
diboson background while retaining the majority of the simulated signal events. The distribution of the $p_{T}^{\text{jet}_{\text{max}}}$ of the candidate events is shown in Fig. 1(b). The entries in the first bin correspond to events that have no jets passing the jet-selection requirements described in Sec. V. The jet veto eliminates most of the $t\bar{t}$ background while maintaining a high reconstruction efficiency for $Z \rightarrow e\mu$. The remaining major backgrounds in the Z signal region are diboson, multijet, $Z \rightarrow \tau\tau$, and $Z \rightarrow \mu\mu$. For the $Z \rightarrow \mu\mu$ background, one of the muons can interact with the detector material leading to the muon being misidentified as an electron due to its overlap with a bremsstrahlung photon. The E_{T}^{miss} and the $p_{T}^{\text{jet}_{\text{max}}}$ distributions of the background are well reproduced by the MC simulation. However, in extracting the upper limit on the branching fraction for $Z \rightarrow e\mu$, the background is estimated from the data instead of using MC simulation.

VII. RESULT

The $m_{e\mu}$ distribution with the background expectations superimposed is shown in Fig. 2. The mass spectrum is consistent with the MC background expectation with no evidence of an enhancement at the Z mass. The mass spectrum is fit as a sum of signal and background contributions as shown in Fig. 3. The signal shape is a binned histogram obtained from the signal MC sample and the absolute normalization is a free parameter in the fit. The background is a third-order Chebychev polynomial function. The fit yields a signal of 4 ± 35 events.

FIG. 2 (color online). The $e\mu$ invariant mass distribution in data with the background expectations from various processes after all cuts are applied. The hatched bands show the total statistical uncertainty of backgrounds. The expected distribution of $Z \rightarrow e\mu$ signal events, normalized to 13 times the upper limit on the branching fraction [$13 \times B(Z \rightarrow e\mu) = 1.0 \times 10^{-5}$], is indicated by a black line.

The upper limit on $B(Z \rightarrow e\mu)$ is given by

$$B(Z \rightarrow e\mu) < \frac{N_{95\%}}{\epsilon_{e\mu}N_{Z}}, \quad (1)$$

where $N_{95\%}$ is the upper limit on the number of $Z \rightarrow e\mu$ candidate events at 95% C.L., $\epsilon_{e\mu}$ is the reconstruction efficiency for a $Z \rightarrow e\mu$ event, and N_{Z} is an estimate of the total number of Z bosons produced in the data sample. This estimate is obtained from the weighted average of two measurements. One is the number of Z bosons produced as calculated from the number of $Z \rightarrow ee$ events detected in the data, after correcting for the reconstruction efficiency and branching fraction [35]. The other is calculated with the same procedure using the $Z \rightarrow \mu\mu$ channel. The numbers of ee and $\mu\mu$ events are estimated by counting the candidates with dilepton invariant mass in the region $70 < m_{ee} < 110$ GeV. The reconstruction efficiencies are estimated using MC simulation, calibrated with Z candidates using the tag-and-probe method [28,30]. The result is summarized in Table I. The weight of each measurement is given by the total uncertainty, which is the quadratic sum of the statistical and systematic uncertainties. The systematic uncertainties include the uncertainties in the electron and muon reconstruction and trigger efficiencies and the absolute scale and resolution of the electron energy and muon p_{T} [30,36]. These systematic uncertainties are uncorrelated between ee and $\mu\mu$ events. Other systematic uncertainties such as those due to imperfect simulation of the E_{T}^{miss} and $p_{T}^{\text{jet}_{\text{max}}}$ distributions are correlated for the $e\mu$, $\mu\mu$, and $\tau\tau$ channels.

FIG. 3 (color online). The $e\mu$ invariant mass distribution fitted with a signal shape obtained from MC simulation and a third-order Chebychev polynomial to describe the background (solid). The observed 95% C.L. upper limit (dashed) is indicated [$B(Z \rightarrow e\mu) = 7.5 \times 10^{-7}$]. The lower plot shows the data with the background component of the fit subtracted.

χ^{2}/d.o.f. = 0.75
TABLE I. The reconstruction efficiencies for $Z \rightarrow ee$, ee, and $\mu\mu$ events are shown. Also shown are the number of Z bosons produced, N_Z, as estimated from the number of $Z \rightarrow ee$ and $Z \rightarrow \mu\mu$ events, after correcting for the corresponding reconstruction efficiencies and branching fractions, as well as the weighted average. The total uncertainties are given.

<table>
<thead>
<tr>
<th>Z decay</th>
<th>Efficiency (%)</th>
<th>$N_Z (10^6)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ee</td>
<td>10.8 ± 0.3</td>
<td>7.85 ± 0.24</td>
</tr>
<tr>
<td>$\mu\mu$</td>
<td>17.8 ± 0.4</td>
<td>7.79 ± 0.17</td>
</tr>
<tr>
<td>$\langle ee, \mu\mu \rangle$</td>
<td>14.2 ± 0.4</td>
<td>7.80 ± 0.15</td>
</tr>
</tbody>
</table>

ee, and $\mu\mu$ channels and cancel in the ratio [Eq. (1)], although they are major contributors to the systematic uncertainties shown in Table I before the cancellation. With the cancellation, the systematic uncertainty on $B(Z \rightarrow ee)$ is 1.2%, which is small compared to the overall fitting systematic uncertainty, and is neglected in the final result.

A one-sided profile likelihood [37] is used as a test statistic to calculate an upper limit on the number of signal events using the CL_s procedure [38]. The procedure yields an observed 95% C.L. upper limit of 72 events. This is consistent with the expected upper limit of 69 events obtained by generating pseudoexperiments from the observed background spectrum. For the pseudoexperiments, the observed data distribution in the sideband is fitted with a third-order Chebychev polynomial and the fitted function is then interpolated into the signal region to predict the central value for the number of background events in each bin. The central value of the background events in the background region or interpolated data for the signal region is then fluctuated.

There is a systematic uncertainty due to the choice of fitting function used to estimate the background and the associated fitting region (Sec. VI). The upper and lower limits of the fit region are varied in the ranges 100–120 GeV and 70–80 GeV in 5 GeV increments. The background parameterization that yields the largest upper limit on the number of signal events (83 events) is used to set an upper limit on the branching fraction at the 95% confidence level,

$$B(Z \rightarrow ee) < 7.5 \times 10^{-7}. \quad (2)$$

ACKNOWLEDGMENTS

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; IFI, MINERVA, GIF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW and NCN, Poland; GRICES and FCT, Portugal; MNE/IFA, Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, USA. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

polar angle

the pseudorapidity is defined in terms of the

in the transverse plane,

being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle \(\eta \) as

\[\eta = -\ln \tan(\theta/2). \]

Transverse momentum and energy are defined relative to the beamline as

\[p_T = p \sin \theta \]

and

\[E_T = E \sin \theta. \]

The rapidity is defined in terms of the energy, \(E \), and the \(z \) component of the momentum along the beam axis, \(p_z \), as

\[y = \frac{1}{2} \ln \left(\frac{E + p_z}{E - p_z} \right). \]

The rapidity is defined in terms of the energy, \(E \), and the \(z \) component of the momentum along the beam axis, \(p_z \), as

\[y = \frac{1}{2} \ln \left(\frac{E + p_z}{E - p_z} \right). \]
17 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
18 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
19a Department of Physics, Bogazici University, Istanbul, Turkey
19b Department of Physics, Dogus University, Istanbul, Turkey
19c Department of Physics Engineering, Gaziantep University, Gaziantep, Turkey
20a INFN Sezione di Bologna, Italy
20b Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna, Italy
21 Physikalisches Institut, University of Bonn, Bonn, Germany
22 Department of Physics, Boston University, Boston, Massachusetts, USA
23 Department of Physics, Brandeis University, Waltham, Massachusetts, USA
24a Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro, Brazil
24b Federal University of Juiz de Fora (UFJF), Juiz de Fora, Brazil
24c Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei, Brazil
24d Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil
25 Physics Department, Brookhaven National Laboratory, Upton, New York, USA
26a National Institute of Physics and Nuclear Engineering, Bucharest, Romania
26b National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj Napoca, Romania
26c University Politehnica Bucharest, Bucharest, Romania
26d West University in Timisoara, Timisoara, Romania
27 Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
28 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
29 Department of Physics, Carleton University, Ottawa ON, Canada
30 CERN, Geneva, Switzerland
31 Enrico Fermi Institute, University of Chicago, Chicago, Illinois, USA
32a Departamento de Física, Pontificia Universidad Católica de Chile, Santiago, Chile
32b Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
32c Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
33a Department of Modern Physics, University of Science and Technology of China, Anhui, China
33b Department of Physics, Nanjing University, Jiangsu, China
33c School of Physics, Shandong University, Shandong, China
33d Physics Department, Shanghai Jiao Tong University, Shanghai, China
33e Physics Department, Tsinghua University, Beijing 100084, China
34 Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS-IN2P3, Clermont-Ferrand, France
35 Nevis Laboratory, Columbia University, Irvington, New York, USA
36a Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark
36b INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati, Italy
36c Dipartimento di Fisica, Università della Calabria, Rende, Italy
37a AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland
37b Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland
38a The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
38b Physics Department, Southern Methodist University, Dallas, Texas, USA
39 Physics Department, University of Texas at Dallas, Richardson, Texas, USA
40 DESY, Hamburg and Zeuthen, Germany
41 Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
42 Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany
43 Department of Physics, Duke University, Durham, North Carolina, USA
44 SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
44a INFN Laboratori Nazionali di Frascati, Frascati, Italy
45 Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany
46 Section de Physique, Université de Genève, Geneva, Switzerland
47 INFN Sezione di Genova, Italy
48 Dipartimento di Fisica, Università di Genova, Genova, Italy
49 E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi, Georgia
50 High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
51 Il Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
52 SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
SEARCH FOR THE LEPTON FLAVOR VIOLATING DECAY …

PHYSICAL REVIEW D 90, 072010 (2014)

Also at Tomsk State University, Tomsk, Russia.
Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France.
Also at Università di Napoli Parthenope, Napoli, Italy.
Also at Institute of Particle Physics (IPP), Canada.
Also at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg, Russia.
Also at Department of Financial and Management Engineering, University of the Aegean, Chios, Greece.
Also at Louisiana Tech University, Ruston LA, USA.
Also at Institucio Catalana de Recerca i Estudis Avancats, ICREA, Barcelona, Spain.
Also at Department of Physics, The University of Texas at Austin, Austin TX, USA.
Also at Institute of Theoretical Physics, Ilia State University, Tbilisi, Georgia.
Also at CERN, Geneva, Switzerland.
Also at Ochadai Academic Production, Ochanomizu University, Tokyo, Japan.
Also at Manhattan College, New York NY, USA.
Also at Institute of Physics, Academia Sinica, Taipei, Taiwan.
Also at LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France.
Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan.
Also at Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France.
Also at School of Physical Sciences, National Institute of Science Education and Research, Bhubaneswar, India.
Also at Dipartimento di Fisica, Sapienza Università di Roma, Roma, Italy.
Also at Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia.
Also at Section de Physique, Université de Genève, Geneva, Switzerland.
Also at International School for Advanced Studies (SISSA), Trieste, Italy.
Also at Department of Physics and Astronomy, University of South Carolina, Columbia SC, USA.
Also at School of Physics and Engineering, Sun Yat-sen University, Guangzhou, China.
Also at Faculty of Physics, M.V.Lomonosov Moscow State University, Moscow, Russia.
Also at Moscow Engineering and Physics Institute (MEPhI), Moscow, Russia.
Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary.
Also at Department of Physics, Oxford University, Oxford, United Kingdom.
Also at Department of Physics, Nanjing University, Jiangsu, China.
Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany.
Also at Department of Physics, The University of Michigan, Ann Arbor MI, USA.
Also at Discipline of Physics, University of KwaZulu-Natal, Durban, South Africa.
Also at University of Malaya, Department of Physics, Kuala Lumpur, Malaysia.