Synthesis of functionalized hydrazines: facile homogeneous (n-heterocyclic carbene)-palladium(0)-catalyzed diboration and silaboration of azobenzenes

This version is available from Sussex Research Online: http://sro.sussex.ac.uk/id/eprint/65415/

This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher's version. Please see the URL above for details on accessing the published version.

Copyright and reuse:
Sussex Research Online is a digital repository of the research output of the University.

Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available.

Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

http://sro.sussex.ac.uk
Synthesis of Functionalized Hydrazines: Facile Homogeneous (N-Heterocyclic Carbene)-Palladium(0)-Catalyzed Diboration and Silaboration of Azobenzenes

Melvyn B. Ansell, a George E. Kostakis, a Holger Braunschweig, b,c,* Oscar Navarro, a,d,* and John Spencer a,*

a Department of Chemistry, University of Sussex, Brighton, BN1 9QJ, U.K.
E-mail: j.spencer@sussex.ac.uk
b Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
c Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97070 Würzburg, Germany
E-mail: h.braunschweig@uni-wuerzburg.de
d Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, 2730 SW Moody Ave., Portland, Oregon 97239, USA
E-mail: navarrof@ohsu.edu
Received: October 8, 2016; Revised: October 13, 2016; Published online: 11, 0000
Supporting information for this article can be found under: http://dx.doi.org/10.1002/adsc.201601106.

Supporting information for this article can be found under: http://dx.doi.org/10.1002/adsc.201601106.

©2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Abstract: The bis(N-heterocyclic carbene)(diphenylacetylene)palladium complex [Pd(1,3,4,5-tetramethylimidazol-2-ylidene)] (ITMe = 1,3,4,5-tetramethylimidazol-2-ylidine) acts as a highly active pre-catalyst in the diboration and silaboration of azobenzenes to synthesize a series of novel functionalized hydrazines. The reactions proceed using commercially available diboranes and silaboranes under mild reaction conditions.

Keywords: azobenzenes; diboration; N-heterocyclic carbenes; palladium; silaboration

The transition metal-catalyzed diboration (B-B) and silaboration (Si-B) reactions of carbon-based unsaturated species such as alkynes,[1] alkenes,[2] and 1,3-dienes,[3] represent some of the most valuable and widely studied organic transformations in the literature. Nevertheless, the translation of this chemistry to other element-based unsaturated bonds remains a considerable challenge. In particular, the diboration and silaboration of N=N (azo) bonds harnesses the potential for the synthesis of highly functionalized hydrazines as precursors to, for instance, polymeric materials,[4] DNA modifiers,[5] and glycosidase inhibitors.[6]

Despite this potential, such element-element additions to azo moieties are extremely rare. There are only three reported isolated examples of azo diboration to yield the corresponding 1,2-bis(boryl)hydrazines. These require the use of either an extremely reactive B–B bond in the form of azadiboriridenes,[7] dichlorodiboranes,[8] or a highly strained B–B bond as in [2]borametallarenophanes (Scheme 1).[9] Recently, however, a combined computational and experimental article from Li and co-workers showed that the diboration of N=N bonds using a commercially available and air-stable tetraalkoxydiboron reagent such as bis(pinacolato)diboron is feasible.[10] To the best of our knowledge there are no examples in the literature of N=N silaborations.

We have described the synthesis of the complex [Pd(ITMe)2(PhC≡CPh)] (1)[11] which showed high catalytic reactivity in the regio- and stereoselective diboration[12] and silaboration of alkynes.[13] We pondered whether 1 could catalyze these element-element additions across N=N bonds. Herein, we report the use of 1 as a very active pre-catalyst in the diboration and silaboration of azobenzenes. The products represent the first isolated examples of 1,2-bis(boryl)hydrazines and 1-silyl-2-borylhydrazines, starting from commercially available diboranes and silaboranes, respectively.

These are not the final page numbers!
The viability of the diboration of azobenzenes was assessed by combining, under an inert atmosphere and at room temperature, azobenzene (PhN=NPh), bis(pinacolato)diboron (B₂pin₂) and catalytic quantities of 1 in C₆D₆ in order to monitor the reaction progress by ¹H NMR spectroscopy. The optimization of the reaction parameters resulted in 100% conversion to 1,2-diphenyl-1,2-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hydrazine (2) after 2 h, using as little as 0.5 mol% of 1 (Table 1).

The reaction also proceeded in toluene under the same conditions on a larger scale. After several recrystallizations from hexanes, 2 was isolated as an air- and moisture-sensitive white powder in 63% yield. Single crystals of 2 were isolated from a saturated hexane solution at −30 °C and the resulting X-ray analysis is depicted in Figure 1. The crystalline structure of 2 was solved in the P2₁2₁2₁ space group with one of the Bpin functionalities displaying a degree of dynamic disorder. A notable feature of this molecular structure is the length of the N–N bond [1.419(4) Å].

Table 1. Diboration of azobenzenes.[a]

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Products</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2 (63%)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3 (72%)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4 (75%)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5 (79%)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6 (72%)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>7 (77%)</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>8 (66%)</td>
<td></td>
</tr>
</tbody>
</table>

[a] B₂R₄: 1–1.5 equiv. (see the Supporting Information for details).
[b] Yields from scaled-up reactions in toluene.
which is, as expected, comparable to the N–N bond in diphenylhydrazines [1.394(7) Å][14] and much longer than the N=N bond of azobenzene (1.25 Å).[15] Each N atom exhibits a distorted trigonal planar geometry [115.2(2)–128.4(6)°; N1, N2: 180°]. The B–N bond lengths [1.410(14) Å and 1.433(4) Å] are in agreement with those of other aminoboranes of the form R₂BNR₂',[9,15,16] and imply partial double bond character.[17] The distorted trigonal planar geometry surrounding each B atom is indicative of sp² hybridization [133.0(9)–127.6(9)°; B1, B12: 180°].

The versatility of this catalytic diboration using B₂pin₂ was assessed and this protocol was extended to a series of azobenzenes with a range of functionalities including alkyl, methoxy and amido moieties in the ortho, meta and para positions (Table 1). As with 2, the syntheses of the novel compounds 3–5 only required 0.5 mol% of 1, proceeded at room temperature and were completed in 2.5–4 h (Table 1) (see the Supporting Information for details). The synthesis of 6 required an increase of temperature (80 °C) and reaction time (22 h) to reach completion. This was attributed to the limited solubility of the azobenzene in C₆D₆ and in toluene. It was also possible to exchange the diboron reagent for other commercially available B–B analogues such as bis(neopentylglycolato)diboron and bis(catecolato)diboron. This resulted in the formation of 7 and 8, respectively, albeit employing higher catalyst loadings, higher temperatures and longer reaction times than those for their B₂pin₂ counterpart.

We next turned our attention to the catalytic silaboration of azobenzenes. The silaborane of choice was the readily available (dimethylphenyl)silylboronic acid pinacol ester (PhMe₂SiBpin). The reaction parameters were optimized using PhMe₂SiBpin and azobenzene as the model substrates. To our delight, [dimethyl(phenyl)ethyl]-2,4-diphenyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hydrazine (9) was synthesized with 100% conversion using 0.5 mol% of 1 at room temperature in 2 h in C₆D₆ or toluene. Interestingly, compound 9 is air- and moisture-stable which simplified purification. On stirring the crude reaction mixture in deionized H₂O overnight, 9 was recovered as a white powder in 87% yield (Table 2). Single crystals of 9 were isolated from slow evaporation of a saturated acetone solution at room temperature. The molecular structure of 9 obtained from X-ray analysis is shown in Figure 2. There are some noteworthy features in this molecular structure, the first was that it was solved in the P₂₁ space group. The N–N bond length [1.417(4) Å] is comparable to that of 2 [1.419(4) Å] and shorter than that of other silyl-substituted hydrazines (e.g., Ph₂Si{NHNH}SiPh₂ and Ph₂Si{NHNHMe}₂) reported in the literature [1.421(5)–1.480(2) Å].[18] The bonding around each N atom, as with 2, showed a distorted trigonal planar ge-

<table>
<thead>
<tr>
<th>Table 2. Silaboration of azobenzenes[a]</th>
</tr>
</thead>
<tbody>
<tr>
<td>N=N Ar’ + PhMe₂Si₂-O-B-O C₆D₆, r.t.</td>
</tr>
<tr>
<td>0.5 mol% 1</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>PhMe₂Si₂-O-B-O</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>2 h, 87%[b]</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>PhMe₂Si₂-O-B-O</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>2.5 h, 98%</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>PhMe₂Si₂-O-B-O</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>1.5 h, 84%</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>PhMe₂Si₂-O-B-O</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>8 h, 91%</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

[a] PhMe₂SiBpin: 1.13–1.36 equiv. (see the Supporting Information for details).
[b] Isolated yield from scaled-up reactions in toluene. Reaction of 4-methoxyazobenzene with PhMe₂SiBpin gives a mixture of regioisomers (see the Supporting Information).
ometry [115.3(2)–127.9(2)°]. The B–N bond length [1.438(5) Å] is in agreement with those of other aminoboranes including 2. The geometry surrounding the B-atom is distorted trigonal planar [114.6(4)–123.8(3)°; Bp: Σ = 360°]. The Si–N bond length is longer [1.773(2) Å] than that of other silylamines of the form R3SiNR2.[18,19]

We then investigated the potential of 1 in the silaboration of other azobenzenes. This protocol was expanded to ortho-, meta- and para-substituted symmetrical azobenzenes with alkyl and fluoro groups. The novel compounds 10–12 were synthesized using 0.5 mol% of 1 at room temperature, reaching completion in 1.5 to 8 h (Table 2). Compounds 10–12 were also stable to air and moisture (see the Supporting Information for X-ray analysis of 11). As expected, the application of this silaboration protocol to unsymmetrical azobenzenes resulted in a mixture of regioisomers (see the Supporting Information).

During our investigations, we found that 2 can undergo hydrolysis upon stirring in degassed deionized H2O overnight, affording the corresponding 1,2-diphenylhydrazine (13, Scheme 2, a). This result, albeit accessed through palladium catalysis, supports the proposed mechanism by Li and co-workers, whereby 2 was computationally calculated as an intermediate in the organocatalytic formation of hydrazines from their corresponding azobenzenes.[10] Interestingly, their reaction conditions proved to be ineffective for the hydrolysis of 9. Instead, the cleavage of both the Si–N and B–N bonds was achieved using KO-t-Bu in a 2-propanol/toluene mixture (Scheme 2, b). The cross-coupling potential of the N–B bond in 9 was assessed, but, initial investigations, using standard reaction conditions, proved unsuccessful.[20]

We have shown that 1 acts as a highly active pre-catalyst in the diboration and silaboration of azobenzenes using commercially available diboranes and silarobanes, respectively. Novel 1,2-bis(boryl)hydrazines and 1-silyl-2-borylhydrazines were synthesized using low catalyst loadings, mild temperatures and short reaction times.[21] Investigations into the reactivity potential of this novel set of compounds are ongoing in our laboratories.

Experimental Section

General Procedure for the Diboration of Azobenzenes

A mixture of 1 (0.5–2 mol%), azobenzene (1 equiv.) and diborane reagent (1.03–1.33 equiv.) was dissolved in deuterated benzene or toluene and stirred at room temperature or 80°C under an N2 atmosphere. Upon reaching completion, the reaction mixtures were cooled, filtered by cannula and the volatiles were removed under vacuum. The crude materials were purified by multiple recrystallizations in minimum volumes of hexane or hexane/toluene (3:1 or 3:2) at room temperature or 30°C.

General Procedure for the Silaboration of Azobenzenes

A mixture of 1 (0.5 mol%), azobenzene (1 equiv.) and (dimethylphenyl)silyl boronic acid pinacol ester (1.03–1.33 equiv.) was dissolved in deuterated benzene or toluene and stirred at room temperature or 80°C under an N2 atmosphere. Upon reaching completion, the reaction mixtures were cooled, filtered by cannula and the volatiles were removed under vacuum. The crude materials were purified by multiple recrystallizations in minimum volumes of hexane or hexane/toluene (3:1 or 3:2) at room temperature or 30°C.
Hydrolysis of 2
Degassed deionized water (10.0 mL) was added to 2 (32 pmol). The resulting mixture was stirred at room temperature under an argon atmosphere for 48 h. 1,2-Diphenylhydrazine was isolated after filtration.

Base-Driven Alcoholysis of 9
Hydrazine 9 (0.06 mmol) and KO-t-Bu (0.12 mmol) were dissolved in 2-PrOH/toluene (1:1, 2.0 mL) and stirred for 22 h at room temperature under an N₂ atmosphere. The volatiles were removed under vacuum and 1,2-diphenylhydrazine was extracted with hexane. Clean 1,2-diphenylhydrazine was obtained by recrystallization in hexane at −30°C.

Acknowledgements
The authors wish to thank Dr Iain Day (University of Sussex) for helpful discussions. M. B. A. would like to thank the Royal Society of Chemistry (RSC) for a Research Mobility Grant to visit the Braunschweig laboratory at Julius-Maximilians Universität Würzburg, Germany. M. B. A. is funded by an EPSRC Standard Research Student (DTG) under grant no. EP/L05109/1.

References

[21] CCDC 1501645 (3), CCDC 1501646 (4), CCDC 1501647 (9) and CCDC 1501648 (11) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
Synthesis of Functionalized Hydrazines: Facile Homogeneous (N-Heterocyclic Carbene)-Palladium(0)-Catalyzed Diboration and Silaboration of Azobenzenes

Melvyn B. Ansell, George E. Kostakis, Holger Braunschweig,* Oscar Navarro,* John Spencer*