η1:η2-P-pyrazolylphosphaalkene complexes of Ruthenium(0)

Article (Published Version)

This version is available from Sussex Research Online: http://sro.sussex.ac.uk/id/eprint/63764/

This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher's version. Please see the URL above for details on accessing the published version.

Copyright and reuse:
Sussex Research Online is a digital repository of the research output of the University.

Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available.

Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

http://sro.sussex.ac.uk
Article

\[\eta^1: \eta^2-P\text{-Pyrazolylphosphaalkene Complexes of Ruthenium(0)} \]

Victoria K. Greenacre and Ian R. Crossley *

Department of Chemistry, University of Sussex, Brighton BN1 9QJ, UK
* Correspondence: i.crossley@sussex.ac.uk; Tel.: +44-127-387-7302

Academic Editor: Lee J. Higham
Received: 9 September 2016; Accepted: 27 September 2016; Published: 30 September 2016

Abstract: An extended range of novel ruthenium phosphaalkene complexes of the type [Ru{\eta^1-N: \eta^2-P, C-P(pz')=CH(SiMe_2R)}(CO)(PPh_3)_2] (R = Tol, C_6H_4CF_3-p; pz' = pzMe_2, pzCF_3, pzMe,CF_3; R = Me, C_6H_4CF_3-p; pz' = pzPh) have been prepared from the respective ruthenaphosphaalkenyls [Ru[P=CH(SiMe_2R)]Cl(CO)(PPh_3)_2] upon treatment with Lipz'. Where R = C_6H_4CF_3-p and pz' = pzMe_2 the complex is characterized by single crystal X-ray diffraction, only the second example of such species being structurally characterized. This indicates enhanced pyramidalisation of the alkenic carbon center when compared with precedent data (R = Me, pz' = pz) implying an enhanced Ru→π*PC contribution, which can be correlated with the greater donor power of pzMe_2. This is similarly reflected in spectroscopic data that reveal significant influence of the pyrazolyl substituents upon the phosphaalkene, stronger donors imparting significantly enhanced shielding to phosphorus; in contrast, a much lesser influence if noted for the silyl substituents.

Keywords: phosphorus; phosphaalkene; phosphaalkenyl; pi-complex; pyrazolate

1. Introduction

After almost half a century of study, the chemistry of low-coordinate phosphorus continues to fascinate both organic and inorganic chemists alike [1–8]. Dominated by the isolobal and isoelectronic relationship between phosphorus and the “CH” fragment, the chemistry of phosphacarbons is often familiar from their carbo-centric and nitrogenous counterparts, yet they simultaneously embody appreciable dichotomy in terms of their underlying electronic and chemical nature. Nowhere is this more apparent than in the chemistry of phosphaalkenes (RP=CR'CR") and phosphaalkynes (RC≡P), which rank among the most heavily studied classes of phosphacarbon. Reactivity is in each case dominated by the high-energy \(\pi \)-systems, though in the case of phosphaalkenes this is often competitive with the lone-pair, which lies close—albeit marginally lower—in energy. In contrast, the phosphaalkyne lone-pair is appreciably stabilized, but can be engaged chemically under appropriately directing conditions.

The study of these compounds is, however, often complicated by an intrinsic lack of stability, which restricts the range of available substrates and necessitates some synthetic ingenuity. Such difficulties are often addressed by the imposition of steric bulk, as a means of imparting kinetic stability, which has proven particularly effective in precluding homo-oligomerisation of phosphaalkenes. The same approach has typically been cited in the development of kinetically stabilized phosphaalkynes (e.g., tBuC≡P, AdC≡P), however, in these cases the bulk is often sufficiently remote from the reactive \(\pi \)-system as to preclude it being the sole stabilizing influence. Moreover, even bulky phosphaalkynes, e.g., R_3SiC≡P (R = Ph [9], Me [10,11]) often exhibit only limited stability, in some instances comparable to that of unencumbered systems (e.g., MeC≡P [12]). Significantly, the formally related phosphaethynyloate ion “O–C≡P” is isolable as a sodium salt [13,14], which exhibits appreciable stability despite the lack of any steric “protection”; this fact is attributed to electronic influences, with
the preferential adoption of an O=C≡P− structure. Taken alongside computational studies of the isolated cyphide ion ("C≡P−"), which indicate an intrinsically unstable hypovalent "[C≡P]−" structure [15], this would imply that cyclization serves an equally important role in imparting stability to low-coordinate phosphacarbons. Indeed, in the context of phosphaalkenes—which remain the longest and most heavily studied of the phosphacarbons—the incorporation of π-donor substituents (e.g., NR2, OR) and/or conjugate π-systems has long been employed as an alternative means of stabilization [16].

In seeking to further stabilize, and chemically exploit phosphaalkenes, the incorporation of transition metal fragments has proven to be a particularly valuable tool. Prominently, the coordination of phosphaalkenes [17] in an η1-fashion allows for selective reactivity of the π-system to be developed, by sequestering the lone-pair and precluding its competitive reaction [18]. Somewhat less extensively studied, η2-coordination—common among carbo-centric analogues—has also been employed with phosphaalkenes [19,20], discrimination between η1 and η2 being achieved through judicious selection of the metal fragment, though bridging-η1:η2 complexes have also been described [21]. Moreover, both transition metal and, to a lesser extent, main-group fragments can be incorporated as discrete substituents on the phosphaalkenic core to afford a range of metallaphosphaalkenyl complexes (Figure 1) [22,23]. First described in 1985 [24], such systems remain relatively rare, though—with the exception of type E—all possible motifs have been realized, with P-metalla- (type A) and C-metalla- (type B) systems the most heavily studied.

![Figure 1. Metallaphosphaalkenyl motifs.](image)

Recently, as part of an extended program investigating transition metal compounds featuring low-coordinate phosphacarbons with potential for conjugation [25–28], we have prepared and studied a range of ruthenaphosphaalkenyl complexes of the type [Ru{P=CH(SiMe2R)}Cl(CO)(PPh3)2] (R = Me 1a, Ph 1b, Tol 1c) [29,30]. These are prepared by hydoruthenation of phosphaalkynes R5Si=C=P, following from methodology developed initially by Hill and Jones for 1BuC≡P and related systems [31–33], and superficially related to Nixon’s independent reduction of [(PPh3)2P(t)2-P=C≡C(Ph)] with Schwartz’s reagent [34]. Notably, we have described the first structural data for ruthenaphosphaalkenyls, which demonstrate the phosphaalkenyl moieties to behave as classical 1-electron donors, within a square-based pyramidal metal coordination sphere. Significantly, this precludes, in the ground state at least, any augmenting P→Ru donation from the lone-pair (i.e., phosphavinylidene character), which is consistent with precedent reactivity studies that demonstrate a nucleophile-phosphorus center [35–39]; indeed, in common with these precedent reports, we have found 1a–b to engage in reaction with electrophilic fragments at phosphorus [30,40].

Notwithstanding, we have additionally observed an unusual reaction to proceed when 1a or 1b is exposed the lithium pyrazolates Li[pz'] (pz' = pz, pzMe2, pzCF3, pzMe2CF3), giving rise to the unprecedented phosphaalkene complexes [Ru{η1-η2-C-P(pz')=CH(SiMe2R)}(CO)(PPh3)2] (Scheme 1) [29,30], which feature an apparent 3-member (Ru–P–C) metallacyclic core, bridged by a pyrazolyl moiety. Also replicated using Hill’s [Ru{P=CH(1Bu)}Cl(CO)(PPh3)2], this chemistry would perhaps imply ambiphilicity for the ruthenaphosphaalkenyl motif, if not directly of the alkényl phosphorus center. On the basis of available data, we reasoned the resulting complexes to be best formulated as involving an η2-π-phosphaalkene moiety, in line with the Dewar–Chatt–Duncanson model, with a dominant contribution from δπ→π*(P=PC) retro-donation to metal-ligand binding. The precise extent of the latter might reasonably be influenced by the nature of the phosphaalkene substituents, or
Indeed those of the pyrazolyl moiety, resulting variations in the atom-specific parameters (e.g., NMR
shielding effects) offering a potential means of quantification. In seeking to assess the influence of
such factors, and thus potentially to elaborate means of control over reactivity, we report herein the
synthesis and characterization of an extended range of these novel pyrazolylphosphalkene complex.

\[
\text{Scheme 1. Synthesis of } [\text{Ru[η}^1\text{-N_{η}^2-P,C-P(pz)}=\text{CH(SiMe}_{2}\text{R})(\text{CO})(\text{PPh}_{3})]\text{]} \text{ (2-5) [29,30] (L = PPh}_{3}\text{).}
\]

Reagents and conditions: (i) Lip′ (pz′ = pz, pzMe2, pzCF3, pzMe,CF3), THF.

2. Results and Discussion

2.1. Synthesis and Characterization of η^{2}-Pyrazolylphosphalkene Complexes

As we have previously described [29,40], the ruthenaphosphalkenyls 1c–d were prepared via
hydroruthenation of the respective phosphalkynes RMe_{2}SiC≡P with [RuHCl(CO)(PPh}_{3}\text{)}\text{] (Scheme 2).
Each system is readily identified on the basis of characteristic spectroscopic signatures, viz. (i) the
heavily deshielded 31P[\text{^1H}]-NMR resonance for the phosphalkenyli moiety; (ii) consistently integrating
resonances for two equivalent PPh\text{\text{3}} ligands; (iii) HMBC correlations (\text{\text{\text{1H}}–29Si; 1H–31P})
confirming the presence of the silyl group and alkenic proton; (iv) infrared band for the retained carbonyl
(\nu_{CO} 1930–1950 cm^{-1}), characteristic of a ruthenium(II) carbonyl complex.

\[
\text{Scheme 2. Synthesis of } [\text{Ru\{P=\text{CH(SiMe}_{2}\text{R)}\}Cl(CO)(PPh\text{\text{3}})}\text{]} (R = \text{Tol}\text{, C}_{6}\text{H}_{4}\text{CF}_{3}–p 1d) \text{ and their conversion to } [\text{Ru[η}^1\text{-N_{η}^2-P,C-P(pz')=CH(SiMe}_{2}\text{R)}(\text{CO})(\text{PPh}_{3})]\text{]} \text{ (2-5) (L = PPh}_{3}\text{).}
\]

Reagents and conditions: (i) [RuHCl(CO)(PPh\text{\text{3}})]\text{], CH}_{2}\text{Cl}_{2}, 1 h.; (ii) Lippz′ (pz′ = pz\text{Me}^2, pz\text{CF}^3, pz\text{Me,CF}^3), THF, 1 h.

The reactions of 1c–d with Li[pz\text{Me}^2] each afford a single complex (3c–d respectively), which
is spectroscopically comparable to those obtained similarly from 1a and 1b [29,30]. Thus, the
characteristic resonances for the phosphalkenyli and PPh\text{\text{3}} ligands are lost, being replaced by three new,
mutually coupling, resonances (1:1:1 ratio) in the region 50–30 ppm, which is commonly associated
with saturated (\text{\lambda}^2\text{\sigma}^2) phosphorus centers. In each case, the lower frequency resonance is identified
as that associated with the phosphacarbon, on the basis of a \text{\text{1H–31P}}-HMBC correlation to the, now
appreciably shielded, “CH(SiMe_{2}R)" moiety (identified from \text{\text{\text{1H–29Si}}-HMBC spectra and a significant
\text{\text{1PC}} coupling (70 Hz)). The latter is observed at \delta_{\text{H}} ~ -1.7 and \delta_{\text{C}} ~ -42, which, though appreciably
lower frequency than for a classical alkenyl “CH", remains somewhat deshielded for a fully saturated
“alkyl" moiety. Indeed, as was previously noted for 2a–b and 3a–b, the magnitude of the \text{\text{1PC}} coupling
(-130–140 Hz) is intermediate between those of C_{2}H_{4} (156 Hz) and CH_{4} (125 Hz) [41], while \text{\text{1PC}}
are essentially unperturbed from those of the parent phosphalkenyli, consistent with the case of a
π-bound phosphalkene. This scenario is further supported by a significant reduction in \nu_{CO} for
the retained carbonyl (1900–1910 cm$^{-1}$), indicative of increased density at metal and, on the basis of calculated force constants, consistent with reduction of the metal to Ru(0) [42–46].

Though augmented by computational data, the direct structural characterization of η^2-pyrazolylphosphaalkene complexes has been limited previously to the single crystal X-ray structure of pyrazole derivative 2a and a low-quality structure of 3a that served to confirm connectivity [30]. However upon prolonged standing at ambient temperature, a concentrated CDCl$_3$ solution of 3d yielded X-ray quality single crystals of the chloroform solvate (Figure 2).

![Figure 2](image-url)

Figure 2. Molecular structure of [Ru(η^1-η^2-η^3)-C-P(pzMe$_2$)=CH(SiMe$_2$C$_6$H$_4$CF$_3$-p)](CO)(PPh$_3$)$_2$ (3d) in crystals of the chloroform solvate, with thermal ellipsoids at the 50% probability level. Ancillary phenyl rings are reduced, and hydrogen atoms omitted for clarity. Selected bond distance (Å) and angles (°): Ru–P1 2.381(1), Ru–P2 2.359(1), Ru–P3 2.369(1), Ru–C1 2.211(4), Ru–C2 1.831(5), Ru–N1 2.229(3), P1–C1 1.782(5), P1–N2 1.778(4), C1–Si 1.860(4), C2–O 1.155(6); Ru–C1–Si 128.2(2), Ru–C1–P1 72.3(2), Ru–P1–C1 62.2(1), Ru–P1–N2 82.5(1), Ru–C1–H1 112.1(4), P1–C1–Si 113.4(2), P1–C1–H1 112.1(4), C1–P1–N2 96.1(2), P1–Ru–P2 93.6(1), P2–Ru–P3 114.0(1), P3–Ru–C1 107.1(1), P1–Ru–C1 43.5(1), P2–Ru–C2 91.1(1), P3–Ru–C2 89.1(2), C2–Ru–N1 170.2(2).

In common with the precedent structure of 2a, compound 3d exhibits distorted trigonal-bipyramidal geometry about ruthenium, with PPh$_3$ ligands and the η^2-phosphaalkene lying in the equatorial plane. The carbonyl adopts an axial position, along with the metal-pyrazolyl bond, the latter being marginally distorted from linearity ($\angle\text{C}=\text{O}–\text{Ru}–\text{N}$ 170.2(2)$^\circ$) due to the strain of bridging the Ru–phosphacarbon linkage. Internal angles for the phosphacarbon moiety indicate partial pyramidalization of the carbon center, while the unusually tight angles about phosphorus can be attributed to the constraint of the bridging pyrazolyl group. Taken together with the P–C linkage 1.782(5) Å, which is intermediate between a single and double bond [47,48], these data are wholly consistent with our previous conclusion of η^2-binding, rather than a discrete metallacyclic species. The C≡O linkage is marginally elongated relative to the structurally characterized ruthenium(II) phosphaalkenyls [30], consistent with a more electron rich metal center, and is comparable to those of other established Ru(0) carbonyls, including that previously reported for 2a. Indeed, within the bounds of uncertainty, the molecular geometry of 3d is fully comparable to that of 2a, with the exception of a marginally contracted P–N linkage (1.788(4) Å, cf. 1.809(5) Å 2a), which might reasonably be attributed to the increased donor strength of pzMe$_2$ relative to pz, as is reflected in the spectroscopic features (vide infra). Moreover, marginally greater pyramidalization about carbon is apparent in 3d ($\angle\text{Si}–\text{C}–\text{P}$ 113.4(2)$^\circ$ cf. 116.7(3)$^\circ$ 2a), which might similarly reflect the enhanced donor strength of pzMe$_2$ leading to an increase in retro-donation from the metal.

In analogous fashion to the synthesis of 3, treatment of phosphaalkenyls with Li[pz$'$] (pz$'$ = pzCF_3, pzMe$_2$CF$_3$, pzPh) led to formation of the respective η^2-phosphaalkene complexes 4c–d, 5c–d (Scheme 2),
6a and 6d (Scheme 3); the SiMe₃ (a) and SiMe₂Ph (b) derivatives of 4 and 5 have been previously described [29]. In contrast to 2 and 3, the asymmetrically substituted pyrazolates offer potential for positional isomerism; however, only a single isomer is observed in each case. Though non-trivial in lieu of crystallographic data, assignment of the specific isomer obtained can be achieved with recourse to spectroscopic data. Thus, for each of 4 and 5 a notable coupling (J_FP ~20 Hz) is apparent between the CF₃ substituent and the phosphacarbon only; this would imply proximity of the two moieties, strongly suggesting that the bulkier CF₃ substituent (cf. H or Me) is more favorably positioned away from the sterically encumbered metal center. This is supported by significant deshielding of the phosphacarbon center, consistent with proximity to an electron withdrawing substituent. Indeed, we find the resonant frequency of the phosphacarbon center to be very sensitive to the pyrazolyl substituents (vide infra), most significantly so for that at the proximal site.

![Scheme 3](image)

Scheme 3. Synthesis of [Ru{η¹-Nη²-P,C-P(pzPh)=CH(SiMe₂R)}(CO)(PPPh₃)] (R = Me 6a, C₆H₄CF₃-p 6d) (L = PPPh₃). Reagents and conditions: (i) LipzPh, THF.

Assignment of the isomeric preference in 6a and 6d is a more complex undertaking, given the lack of any direct spectroscopic handle, though the same steric arguments can reasonably be applied. A more electron-withdrawing character is apparent, relative to pyrazole itself (δ_p 64.4 6a, cf. 58.7 2a), which conforms to expectation and is again consistent with the precedent systems, though the modest level of deshielding is inadequate to unequivocally confirm substituent proximity to the phosphacarbon. Nonetheless, we believe this to be the most likely scenario.

2.2. Spectroscopic Features and Trends

The key NMR spectroscopic data for all compounds 2, 3, 4 and 5, along with 6a and 6d are summarized in Table 1. As one would anticipate, the pz^Me₂ derivatives impart significant shielding to the phosphacarbon “P” center, which resonates around 25 ppm to lower frequency than for the pz systems; conversely, the presence of an electron-withdrawing CF₃ substituent leads to appreciable deshielding of this site (Δδ_p ~20), though this is moderated in the pz^Me₃CF₃ derivatives by competitive induction from the methyl. All complexes featuring a methyl substituent proximal to the metal also exhibit additional shielding of one PPh₃ ligand (Δδ_p ~3) compared to their non-alkylated analogues; significantly, the extent of this effect is quantitatively comparable whether the second substituent is methyl or trifluoromethyl, which would imply a localized effect, and also offers further support for the isomeric assignment. The presence of a methyl proximal to the metal also leads to an appreciable decrease in the magnitude of the alkenic C–H coupling constant. This implies reduced s-character in this linkage, consistent with an increased contribution from d_π→π^*(CP) retrodonation (the result of increased electron density at the metal) and thus greater pyramidalization; indeed, this concurs with structural data for 3d (vide supra).

Influence of the pyrazole upon the alkenic carbon center is also apparent, but exhibits a less defined trend; in contrast, the nature of the silyl substituent clearly holds significance, the SiMe₃ derivatives being notably more deshielded than their SiMe₂Ar analogues, distinctions between the latter being ill defined. This is consistent with ¹³C-NMR studies of vinyl- [49] and aryl-silanes [50], for which enhanced deshielding of the α-carbon follows from increasing methyl substitution at silicon, presumably reflecting the relative “inductive effect”, given the greater electronegativity of carbon relative to silicon. While carboxenocentric systems show the reverse shielding trend for the β-center, in the case of 2–6 enhanced deshielding of phosphorus is again noted for the SiMe₃ derivatives. Though the
relatively lower electronegativity of phosphorus (cf. carbon) might reasonably be invoked in accounting for this disparity, indirect effects via the synergic metal-ligand binding mode (such complexes have not been considered for the carboxenometric silanes) cannot be discounted. Indeed, it is noted that analogues of 2 and 3 featuring a tert-butyl [29], rather than silyl, substituent exert a significant shielding effect upon the phosphorus center (δ_P 38.8 (pz); 14.2 (pz$^\text{Me}$)), yet deshield the α-carbon nucleus (δ_C 81.6 (pz), 79.8 (pz$^\text{Me}$)) even more effectively than does SiMe$_3$, which would appear counter-intuitive on the basis of purely electronegativity arguments. The relative contributions of ligand→metal σ donation, and $d_\pi \rightarrow \pi^\text{*}(CP)$ retrodonation for each center must thus be considered contributory, though inadequate data are currently available to quantify this.

Table 1. NMR Spectroscopic data for [Ruη^1-Nη^2-P=C(pz$'$)=CH(SiMe$_2$R)Cl(CO)(PPh$_3$)$_2$].

<table>
<thead>
<tr>
<th>Compound</th>
<th>R</th>
<th>P=C</th>
<th>P=Cl</th>
<th>P=CH ($^1J_{CH}$/Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2a</td>
<td>Me</td>
<td>58.7</td>
<td>46.6, 42.0</td>
<td>45.1</td>
</tr>
<tr>
<td>(pz$'$ = pz)</td>
<td>2b</td>
<td>Ph</td>
<td>57.0</td>
<td>47.0, 41.7</td>
</tr>
<tr>
<td>3a</td>
<td>Me4</td>
<td>32.9</td>
<td>46.6, 39.2</td>
<td>44.9</td>
</tr>
<tr>
<td>(pz$'$ = pz$^\text{Me}$)</td>
<td>3b</td>
<td>Ph4</td>
<td>32.3</td>
<td>47.0, 38.9</td>
</tr>
<tr>
<td>4a</td>
<td>Me</td>
<td>76.6</td>
<td>47.7, 41.5</td>
<td>47.1</td>
</tr>
<tr>
<td>(pz$'$ = pz$^\text{CF}_3$)</td>
<td>4b</td>
<td>Ph</td>
<td>74.9</td>
<td>48.0, 41.3</td>
</tr>
<tr>
<td>5a</td>
<td>Me</td>
<td>64.6</td>
<td>46.9, 38.4</td>
<td>45.2</td>
</tr>
<tr>
<td>(pz$'$ = pz$^\text{Me,CF}_3$)</td>
<td>5b</td>
<td>Ph</td>
<td>62.7</td>
<td>47.2, 38.3</td>
</tr>
<tr>
<td>6a</td>
<td>Me</td>
<td>64.4</td>
<td>47.4, 41.8</td>
<td>47.5</td>
</tr>
<tr>
<td>(pz$'$ = pz$^\text{Ph}$)</td>
<td>6b</td>
<td>C$_6$H$_4$CF$_3$</td>
<td>60.5</td>
<td>47.7, 41.3</td>
</tr>
</tbody>
</table>

1 Measured from coupled 1H→13C HSQC spectra; 2 Recorded as solutions in CD$_2$Cl$_2$; 3 Recorded as solutions in CDCl$_3$.

3. Materials and Methods

3.1. General Methods

All manipulations were performed under anaerobic conditions using standard Schlenk line and glovebox (MBraun, Germany) techniques, working under an atmosphere of dry argon or dinitrogen respectively. Solvents were distilled from appropriate drying agents and stored over either molecular sieves (4 Å, for DCM and THF) or potassium mirrors. General reagents were obtained from Sigma-Aldrich (Gillingham, UK) or Fisher Scientific (Loughborough, UK) and purified by appropriate methods before use, precious metal salts were obtained from STREM (Cambridge, UK). [RuHCl(CO)(PPh$_3$)$_2$] [51], RMe$_2$SiCH$_2$PCL$_2$ (R = Me, Ph [52], Tol [29], C$_6$H$_5$CF$_3$ [39]), RMe$_2$SiC$=P$ [29,30,40] and [Ru(P=CH(SiMe$_2$R))Cl(CO)(PPh$_3$)$_2$] (R = Me [29,30], Ph [29], Tol, C$_6$H$_5$CF$_3$·p [40]) were prepared as previously described. Unless otherwise stated, NMR spectra were recorded at 303 K on a Varian VNMRS 400 (1H 399.50 MHz, 13C 100.46 MHz, 19F 375.87, 31P 161.71 MHz, 29Si 79.37 MHz) spectrometer (Varian, Yarnton, UK). All spectra are referenced to external Me$_4$Si, 85% H$_3$PO$_4$ or CFCl$_3$ as appropriate. Carbon-13 spectra were assigned by recourse to the 2D (HSQC, HMBC) spectra; phosphaalkenic proton and silicon shifts were determined indirectly by 1H→31P and 1H→29Si correlation (HMBC). Elemental analyses were obtained by Mr. S. Boyer of the London Metropolitan University Elemental Analysis Service.
3.2. X-Ray Crystallography

Single crystal X-ray diffraction data were recorded on an Agilent Xcalibur Eos Gemini Ultra diffractometer (Agilent Technologies, Yarnton, UK) with CCD plate detector using Cu-Kα1 (λ = 1.54184) radiation. Structure solution and refinement were performed using SHELX [53] and SHELXL [53] respectively, running under Olex2 [54].

3.3. Syntheses and Characterisation

[Ru(η1-Nη2-P(η2-C-P)(pzMe2)=CH(SiMe2 Tol))(CO)(PPh3)2] (3c): In a representative procedure, following literature precedent for compounds 3a and 3b [29,30], HzpzMe2 (12.7 mg, 0.13 mmol) as solution in THF was treated, at ambient temperature, with a single equivalence of 8BuLi (0.06 cm³, 2.5 M in hexanes) and the mixture stirred for 5 min. The resulting solution was added directly to a solution of [Ru(P=CH(SiMe2 Tol))Cl(CO)(PPh3)2] (1c, 67 mg, 0.08 mmol) at ambient temperature and the mixture stirred for 1 h. Volatiles were removed under reduced pressure, then the residue extracted with CH2Cl2 and the resulting solution filtered; the solvent was removed under reduced pressure and the resulting solid dried in vacuo, before being redissolved in CDCl3 for spectroscopic analysis.

1H NMR (CDCl3): δH 0.06 (s, 3H, SiMe2), 0.15 (s, 3H, SiMe2), 0.42 (s, 3H, Pz*–Me), 1.75 (m, 1H, CHSi (J/C–H = 135.31 Hz), 1.95 (s, 3H, Pz*–Me), 2.34 (s, 3H, CH3), 5.04 (s, 1H, Pz*–H4), 7.08–7.42 (m, 35H, Ar–H), 13C[1H] NMR (CDCl3): δC −0.9 (d, JC–P = 7.6 Hz, SiCH3), 0.16 (d, J3C–P = 8.5 Hz, SiCH3), 9.6 (d, J3C–P = 5.3 Hz, Pz–CH3), 11.9 (s, Pz–CH3), 21.6 (s, CH3), 41.8 (ddd, JC–P = 4.5, 31.3, 78.6 Hz, CHSi (J/C–H = 136.3 Hz)), 105.0 (d, JC–P = 2.7 Hz, Pz*–C4), 127.6 (d, JC–P = 8.87 Hz, Ar–C), 127.8 (d, JC–P = 8.87 Hz, ArC), 128.2 (s, ArC), 128.6 (m, ArC), 128.9 (d, JC–P = 6.7 Hz, ArC), 130.4 (d, JC–P = 13.0 Hz, ArC), 133.8 (m, ArC), 133.6–134.4 (m, ArC), 137.4 (s, ArC), 138.2 (d, JC–P = 30.7 Hz, ArC), 138.4 (d, JC–P = 31.8 Hz, ArC), 145.2 (s, Pz*–C5), 152.4 (s, Pz*–C3), 209.5 (br, CO). 31P[1H] NMR (CDCl3): δp 46.7 (d, JP–P = 16.9 Hz), 39.1 (dd, JP–P = 50.1, 16.7 Hz), 32.6 (d, JP–P = 50.4 Hz, P=O). 31Si[1H] NMR (CDCl3): δSi −5.3.

[Ru(η1-Nη2-P(η2-C-P)(pzMe2)=CH(SiMe2C6H4CF3-p))(CO)(PPh3)2] (3d): In comparable fashion to 3c, from the respective phosphoalkenyl (1d). 1H NMR (CDCl3): δH −0.02 (s, 3H, SiCH3), 0.18 (s, 3H, SiCH3), 0.42 (s, 3H, Pz*–Me), 1.66 (m, 1H, CHSi (J/C–H = 135.3 Hz), 1.95 (s, 3H, Pz*–Me), 5.07 (s, 1H, Pz*–H4), 7.09–7.34 (m, 35H, Ar–H), 7.45–7.56 (m, 4H, C6H4CF3). 19F NMR (CDCl3): δF −63.06 (s). 13C[1H] NMR (CDCl3): δC −1.3 (d, J3C–P = 8 Hz, SiCH3), 0.3 (d, J3C–P = 8 Hz, SiCH3), 9.6 (d, J3C–P = 5.3 Hz, Pz–CH3), 11.9 (s, Pz–CH3), 39.8 (br, J/C–H = 135.3 Hz) CHSi), 105.2 (d, JC–P = 2.9 Hz, Pz*P4), 123.8 (q, J/C–P = 3.9 Hz, CCF3), 130.9 (q, J/C–P = 240.0 Hz, CF3), 127.6–129.1, 134.1–135.5, 137.2–138.1 (3 × m, PPh3, C6H4), 145.3 (d, J3C–P = 1.5 Hz, Pz*–C5), 152.7 (s, Pz*–C3), 209.7 (br, CO). 31P[1H] NMR (CDCl3): δp 46.6 (d, JP–P = 16.2 Hz, PPh3), 38.6 (dd, JP–P = 54.4, 16.2 Hz, PPh3), 32.1 (d, JP–P = 51.4 Hz, P=C). 31Si[1H] NMR (CDCl3): δSi −4.5. νCO = 1913 cm⁻¹. Anal. Found: C, 62.90; H, 5.01; N, 2.90; Calcd for C52H48F3N2O3P3RuSi: C, 62.71; H, 4.86; N, 2.81. Crystal data for 3d: C53H48F3N2O3P3RuSi-CHCl3, Mw = 11154.32, triclinic, P-1 (No. 2), a = 10.5494(5), b = 11.5375(6), c = 21.871(1) Å, α = 76.877(4), β = 82.084(4), γ = 85.941(4), V = 2565.46(2) Å³, Z = 2, Dc = 1.444 Mg m⁻³, µ(Cu-Kα) = 5.439 mm⁻¹, T = 173(2) K, 9464 independent reflections, full-matrix F² refinement R₁ = 0.0567, wR₂ = 0.1894 on 8126 independent absorption corrected reflections [l > 2σ(l); 20max = 143.4°]. 607 parameters. The empirical absorption correction was conducted using spherical harmonics, as implemented in the SCALE3 ABSPACK scaling algorithm (CryAlisPro Version 1.171.38.41, CCDC 1502285.

[Ru(η1-Nη2-P(η2-C-P)(pzCF3)=CH(SiMe2 Tol))(CO)(PPh3)2] (4c): In comparable fashion to 3, but commencing from HpZ1F3. 1H NMR (CDCl3) δH −0.1 (s, 3H, SiCH3), 0.1 (s, 3H, SiCH3), 1.90 (m, 1H, CHSi), 2.35 (br, 3H, CH3), 5.30 (s, 1H, Pz–H3), 5.57 (t, H, Pz–H4), 7.04–7.48 (m, 35H, C6H4). 13C[1H] NMR (CDCl3) δC −0.25 (d, J3C–P = 5 Hz, SiCH3), 21.9 (s, CH3), 45.4 (ddd, JC–P = 80.5, 31.0, 4.8 Hz, J/C–H = 134 Hz), SiCH3), 105.2 (s, Pz–C4), 119.1 (q, J/C–P = 269 Hz, CF3), 128.2–128.6, 128.7–129.2, 133.7–134.4, 137.6–138.0 (4 × m, CH), 140.9 (s, Pz–C3), 210.5 (t, J/C–P = 13 Hz, C=O). 31P[1H] NMR (CDCl3) δp 75.0 (dq, Jp–P = 44.5 Hz,
4. Conclusions

We have described the synthesis of an extended range of pyrazolyl-bridged \(\eta^2 \)-phosphaalkene complexes of ruthenium(0), obtained by the reaction of pyrazolates with ruthenaphosphaalkenyl complexes. Spectroscopic and structural data suggest the nature of the pyrazolyl substituents in the 3/5 positions has a significant influence on the nature of the phosphaalkene fragment, which is a balance of direct shielding/deshielding of the phosphorus center, and an indirect influence resulting from donation to the metal, mediated through the extent of metal-ligand retro-donation. In contrast, the nature of the silyl substituents exerts a much smaller, albeit still noticeable, influence. Presently, the available data pool is inadequate to formulate an unequivocally quantitative description of these effects, which are the subject of on-going investigations.

Supplementary Materials: The following are available online at http://www.mdpi.com/2304-6740/4/4/30/s1, crystal data for compound 3d in cif format (CCDC 1502285); supplementary file containing illustrative \(^{13}\)C and \(^{31}\)P NMR spectra for compounds 3c (Figures S1 and S2), 4c (Figures S3 and S4), 5d (Figures S5 and S6), 6a (Figures S7 and S8).

Acknowledgments: We thank the Royal Society and University of Sussex (studentship to Victoria K. Greenacre) for financial support. Ian R. Crossley gratefully acknowledges the award of a Royal Society University Research Fellowship. We thank Dr. L. Higham (guest editor) for the invitation to contribute to this issue.

Author Contributions: Victoria K. Greenacre identified the specific targets and conducted all experimental work and crystallographic determinations. Ian R. Crossley conceived and led the over-arching research project, contributed to interpretation and wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

39. Hill, A.F.; Jones, C.; White, A.J.P.; Williams, D.J.; Wilton-Ely, J.D.E.T. Mercuriophosphaalkene-P complexes: Crystal structure of $[\text{Ru}([\kappa^2-P(=\text{CHBu}^t)\text{HgC}_5\text{H}_4\text{Fe(\eta-C}_5\text{H}_5)])\text{Cl}_2(\text{CO})(\text{PPh}_3)_2]$. J. Chem. Soc. Dalton Trans. 1998, 1419–1420. [CrossRef]
51. Averre, C.E.; Coles, M.P.; Crossley, I.R.; Day, I.J. The open-chain triphosphanes $\text{RMe}_2\text{SiCH}_2\text{P(Pr')}_2$ ($\text{R} = \text{Me}$, $\text{Pr'} = \text{SiMe}_3$, Cy, Ph). Dalton Trans. 2012, 41, 278–284. [CrossRef] [PubMed]