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ABSTRACT
We introduce the BlueTides simulation and report initial results for the luminosity functions
of the �rst galaxies and active galactic nuclei (AGN), and their contribution to reionization.
BlueTides was run on the BlueWaters cluster at National Center for Super-computing Appli-
cations fromz = 99 to 8.0 and includes 2× 70403 particles in a 400hŠ1 Mpc per side box,
making it the largest hydrodynamic simulation ever performed at high redshift. BlueTides
includes a pressure–entropy formulation of smoothed particle hydrodynamics, gas cooling,
star formation (including molecular hydrogen), black hole growth and models for stellar and
AGN feedback processes, and a �uctuating ultraviolet background from a patchy reionization
model. The predicted star formation rate density is a good match to current observational data
atz � 8–10. We �nd good agreement between observations and the predicted galaxy luminos-
ity function in the currently observable rangeŠ18 � MUV � Š 22.5 with some dust extinction
required to match the abundance of brighter objects. The predicted number counts for galaxies
fainter than current observational limits are consistent with extrapolating the faint-end slope
of the luminosity function with a power-law index� � Š 1.8 atz � 8 and redshift dependence
of � � (1 + z)Š0.4. The AGN population has a luminosity function well �t by a power law
with a slope� � Š 2.4 that compares favourably with the deepest CANDELS GOODS �elds.
We investigate how these luminosity functions affect the progress of reionization, and �nd
that a high Lyman� escape fraction (fesc � 0.5) is required if galaxies dominate the ionizing
photon budget during reionization. Smaller galaxy escape fractions imply a large contribution
from faint AGN (down toMUV = Š 12) which results in a rapid reionization, disfavoured by
current observations.

Key words: Galaxy: formation – dark ages, reionization, �rst stars.

1 INTRODUCTION

Recent deep observations using theHubble Space Telescopehave
detected a plethora of objects at ever higher redshift (Bouwens
et al. 2015a; McLeod et al.2015; Oesch et al.2015) and mea-
sured the galaxy ultraviolet (UV) luminosity function atz � 10.
At these redshifts, microwave background measurements suggest
that a substantial fraction of the Universe is still neutral (Hinshaw
et al.2013), and these observations may therefore probe the epoch
of reionization. In the near future, next-generation space missions
such asJWST(Gardner et al.2006) and WFIRST(Spergel et al.
2013) will increase the number of available samples by several

� E-mail: yfeng1@berkeley.edu

orders of magnitude. These are expected to detect the sources which
produce the ionizing photons that drive reionization.

The formation of these objects is driven by non-linear gravi-
tational collapse and so understanding them requires cosmological
hydrodynamic simulations. The presence of an ionizing background
may affect galaxy formation (Madau, Pozzetti & Dickinson1998).
To model the processes governing reionization it is desirable to
simultaneously include scales of a few hundred Mpc, the charac-
teristic size of ionization bubbles, and, to resolve the formation of
galactic haloes, scales of a few kpc.

We present results from BlueTides, the largest cosmological hy-
drodynamic simulation yet performed, enclosing a box 400hŠ1Mpc
on a side, with a smoothing length of 1.5hŠ1Kpc, and including 2×
70403 particles – a total of 0.7 trillion particles. Our high resolution
allows us to study the formation of disc galaxies (Feng et al.2015a),
while the large volume allows study of the progress of reionization.

C� 2015 The Authors
Published by Oxford University Press on behalf of the Royal Astronomical Society
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BlueTides: Þrst galaxies and reionization2779

We include a number of physically relevant processes, includ-
ing star formation incorporating the effects of molecular hydrogen
formation (Krumholz & Gnedin2011), energetic feedback from su-
pernovae (Okamoto et al.2010), and feedback from supermassive
black holes (Di Matteo, Springel & Hernquist2005). We include
for the �rst time in a simulation of this size a model for patchy
reionization which varies the optical depth based on local density
(Battaglia et al.2013).

Several large volume simulations have recently been performed.
In particular, MassiveBlack I was the largest volume hydrodynamic
simulation Di Matteo et al. (2012) to study reionization atz > 4.75.
MassiveBlack II simulated a 100hŠ1Mpc volume at substantially
improved resolution toz = 0 (Khandai et al.2015). Illustris in-
cluded a volume and resolution comparable to MassiveBlack II,
but with improved prescriptions for the effect of energy injection
from supernovae (Okamoto et al.2010). The Eagle simulation is
similar in size to MassiveBlack II and Illustris, but with a different
approach to sub-grid modelling which allows improved agreement
with observations by weakening requirements for numerical con-
vergence with resolution (Schaye et al.2015). Concurrently, dark
matter-only simulations have continued to increase in size, reaching
loads of trillions of particles (Habib et al.2016).

BlueTides is based on the simulation code used in MassiveBlack
I and II, P-GADGET3 (Springel2005; Di Matteo et al.2012; Khandai
et al.2015). The simulation encloses a volume comparable to Mas-
siveBlack I, has a resolution comparable to MassiveBlack II, and
includes a stellar feedback model similar to that of Illustris. Our
particle load is 10 times larger than that of MassiveBlack I, which
was previously the largest hydrodynamic simulation.

In Section 2 we present our methods, explaining brie�y the com-
putational techniques necessary to perform a simulation of this
magnitude. In Sections 3 and 4 we examine the basic statistics of
objects within the simulation. We show the galaxy and active galac-
tic nuclei (AGN) UV luminosity functions and star formation rates
(SFRs), and we present �ts to these functions for easy comparison
with future observations. In Section 5 we compute the sources of
ionizing photons within our model and use them to examine features
of reionization. Finally we conclude in Section 6.

2 BLUETIDES: SOFTWARE AND SUB-GRID
PHYSICS

The BlueTides simulation was performed on the BlueWaters cluster
at the National Center for Super-computing Applications (NCSA).
We operated the production run on a total of 648 000 Cray XE
compute core of BlueWaters. This is the largest cosmological hy-
drodynamic simulation to date, containing a simulation volume
roughly 300 times larger than the largest observational survey at
redshift 8–10 (Trenti et al.2011). This extraordinary size allows us
to easily compare our results to current and future observations, and
obtain a representative sample of the �rst galaxies which may have
driven reionization. A visual overview of the simulation is shown in
Fig. 1.

Haloes in BlueTides are identi�ed using a Friends-of-Friends
(FoF) algorithm with a linking length of 0.2 times the mean particle
separation (Davis et al.1985). We have not performed sub-halo or
spherical overdensity �nder algorithms on BlueTides due to limits
on the scalability of current implementations. We will however
investigate the mass function with spherical overdensity �nders in
a follow-up work.

2.1 Computing: improved performance at peta-scale

At the particle numbers reached by our simulation, any unnecessary
communication overhead can easily become a signi�cant scalability
bottleneck. In order to allow the simulation to fully utilize the avail-
able computational power, we implemented several improvements
to the speed and scalability of the code. Here we brie�y list the sub-
stance of the most important changes, deferring a fuller description
to Feng (2015, in preparation).

First, we substantially improved the scalability of the threaded
tree implementation, which computes short-range particle interac-
tions. This includes the gravitational force on small scales, hydro-
dynamic force, and the various feedback processes. Our improved
routine scales to>30 threads and at 8 threads is twice as fast as the
previous implementation inP-GADGET3. Scalability improvements
were achieved by eliminating OpenMP critical sections in favour of
per-particlePOSIX spin-locks, essentially making the thread execu-
tion wait-free at high probability.

Secondly, we replaced the default particle mesh gravity solver
(used to compute long-range gravitational forces) based on FFTW
with a gravity solver based on a 2D tile FFT library,PFFT (Pippig
2013). This allows a more ef�cient decomposition of particles to
different processors, signi�cantly improving the load and commu-
nication balance. To further simplify the book keeping and reduce
memory overhead, we switched to using Fourier-space �nite dif-
ferencing of gravity forces, as used by theN-body gravity solver
HACC (Habib et al.2016). We also reduced the communication
load by applying a sparse matrix compression of the local particle
mesh. In concert these changes removed the Particle Mesh (PM)
step as a scalability bottleneck.

Thirdly, at the high redshift covered by BlueTides, only a small
fraction of the particles are in collapsed haloes. Thus, to ease anal-
ysis, we produce two digest data sets on the �y in addition to the
full simulation snapshots: (1) Particles-In-Group (PIG) �les, which
contain the attributes of all particles in the overdense regions de-
tected by the FoF groups; (2) Sub-sample �les, containing a fair
sub-sample of 1/1024 of the dark matter and gas particles, and a
full set of star and black hole particles.

Fourthly, we implemented a histogram-based sorting routine to
replace the merge sort routine originally present inP-GADGET3.
Histogram-based sorting routines have been shown to perform sub-
stantially better at scale (Solomonik & Kale2010), a result con-
�rmed by our experience in BlueTides (Feng et al.2015b). Particles
must be sorted when constructing the FoF group catalogues, and
our new sort routine sped up FoF catalogue generation times by
a factor of 10. The source code of this sorting routine,MP-SORT, is
available fromhttp://github.com/rainwoodman/MP-sortto facilitate
independent reuse.

Finally, we implemented a new snapshot format (BIGFILE) that
supports transparent �le-level striping and substantially eases post-
production data analysis compared to multiple plain Hierarchical
Data Format Version 5 (HDF5) �les. Until recently, �le-level strip-
ing [bypassing Message Passing Interface – Input/Output (MPI-IO)]
has been the only way to achieve the full IO capability of Lustre �le
system for problems at our scale. We release the library for accessing
the BlueTides simulation athttp://github.com/rainwoodman/big�le,
together withPYTHON language bindings for post-simulation data
analysis.

2.2 Physics: hydrodynamics and sub-grid modelling

BlueTides uses the hydrodynamics implementation described in
Feng et al. (2014). We adopt the pressure-entropy SPH (pSPH) to

MNRAS 455,2778–2791 (2016)
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2780 Y. Feng et al.

Figure 1. Overview of the BlueTides simulation. Left inset: a �eld of view from the BlueTides simulation atz = 8 with the same total area as the BoRG
survey (Trenti et al.2011). Right inset: the �eld of view of the entire BlueTides simulation atz = 8. Background: galaxies in BlueTides. Even rows: top, front,
and side views of the gas component of FoF haloes. Odd rows: top, front, and side views of the SFR surface density of FoF haloes.

solve the Euler equations (Read, Hay�eld & Agertz2010; Hopkins
2013). The density estimator uses a quintic density kernel to reduce
noise in SPH density and gradient estimation (Price2012).

Table1 lists the basic parameters of the simulation. Initial condi-
tions are generated atz = 99 using an initial power spectrum from
CAMB (Lewis & Bridle 2002). Star formation is implemented based
on the multiphase star formation model in Springel & Hernquist
(2003), and incorporating several effects following Vogelsberger
et al. (2013). Gas is allowed to cool both radiatively following Katz,
Weinberg & Hernquist (1996) and via metal cooling. We approxi-
mate the metal cooling rate by scaling a solar metallicity template
according to the metallicity of gas particles, following Vogelsberger
et al. (2014). We model the formation of molecular hydrogen, and
its effect on star formation at low metallicities, according to the
prescription by Krumholz & Gnedin (2011). We self-consistently
estimate the fraction of molecular hydrogen gas from the baryon
column density, which in turn couples the density gradient into the
SFR.

An SNII wind feedback model (Okamoto et al.2010) is in-
cluded, which assumes wind speeds proportional to the local one-
dimensional dark matter velocity dispersion� DM:

vw = � w� DM , (1)

wherevw is the wind speed.� w is a dimensionless parameter, which
we take to be 3.7 following Vogelsberger et al. (2013).

We model feedback from AGN in the same way as in the Mas-
siveBlack I and II simulations, using the supermassive black hole
model developed in Di Matteo et al. (2005). Supermassive black
holes are seeded with an initial mass of 5× 105 hŠ1M� in haloes
more massive than 5× 1010 hŠ1M� , while their feedback energy
is deposited in a sphere of twice the radius of the SPH smooth-
ing kernel of the black hole. Black hole seeding masses from 100
to 106 M� have been suggested depending on the formation sce-
nario (Volonteri2010). Our choice of seeding mass is closer to
that expected from direct collapse scenarios (e.g. Latif et al.2013;
Schleicher et al.2013; Ferrara et al.2014). We note however that our
seeding scheme makes no direct assumption of the black hole forma-
tion mechanism. The seeding scheme effectively assumes that AGN
feedback are neglected in haloes less massive than 5× 10 M� hŠ1.

The large volume of BlueTides allowed us to include some of
the effects of ‘patchy‘ reionization, where the amplitude of the UV
background is spatially variable. We model patchy reionization us-
ing a semi-analytic method based on hydrodynamic simulations
performed with radiative transfer (for more details see Battaglia
et al.2013). This method uses an evolved density �eld calculated
from the initial conditions using second-order Lagrangian pertur-
bation theory to predict the redshift at which a given spatial region
will reionize. In our �ducial reionization model, we set the mean
reionization redshift atz � 10 based on the measurement of the
optical depth,� , from the WMAP 9 year data release (Hinshaw
et al. 2013). In regions that have been reionized, we assume the

MNRAS 455,2778–2791 (2016)
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BlueTides: Þrst galaxies and reionization2781

Table 1. Parameters of the BlueTides simulation.

Name Value Notes

� � 0.7186
� Matter 0.2814 Baryons+ Dark matter.
� Baryon 0.0464
h 0.697 Hubble parameter in units of 100 km sŠ1 MpcŠ1.
� 8 0.820
ns 0.971
LBox 400hŠ1Mpc Length of one side of the simulation box.
NParticle 2 × 70403 Total number of gas and dark matter particles in the initial conditions.
MDM 1.2× 107 hŠ1M� Mass of a dark matter particle.
MGAS 2.36× 106 hŠ1M� Mass of a gas particle in the initial conditions.
	 h 1.0 SPH smoothing length in units of the local particle separationa.

 grav 1.5hŠ1Kpc Gravitational softening length.
NGeneration 4 Mass of a star particle as a fraction of the initial mass of a gas particle.
egyw/egy0 1.0 Fraction of supernova energy deposited as feedback.
� w 3.7 Wind speed as a factor of the local dark matter velocity dispersion.
ESNII, 51 1.0 Supernova energy in units of 1051 erg sŠ1.
M (0)

BH 5 × 105 hŠ1M� Seed mass of black holes.
M (0)

HALO 5 × 1012 hŠ1M� Minimum halo mass considered in black hole seeding.
	 BH 0.05 Black hole feedback ef�ciency.

Note.aA value of 1.0 translates to 113 neighbour particles with the quintic kernel used in BlueTides.

Figure 2. Global neutral hydrogen fraction as a function of redshift in
BlueTides.

UV background estimated by Faucher-Giguère et al. (2009). The
global neutral fraction in BlueTides evolves smoothly as a function
of redshift, as seen in Fig.2.

3 STAR FORMATION RATE

Fig. 3 shows the global SFR in BlueTides, together with obser-
vational constraints and several other simulations. We show the
total star formation density in the whole volume (dotted lines) and
the total SFR for haloes with SFR> 0.7 M� yrŠ1 (solid line).
The latter is directly comparable with current observations and
corresponds to the current observational limit ofMUV = Š 18.
The SFR density in BlueTides smoothly increases with decreasing
redshift.

SeveralHubble Ultra Deep Fieldsurveys have given estimates
on the star formation rate density (SFRD) due to haloes with

MUV < Š18. BlueTides haloes at the observational limit typically
contain a few thousand particles, and are thus well resolved. The
BlueTides predictions for the SFR are in good agreement with
current observations, with the caveat that at these high redshifts
observational uncertainty remains high.

Fig. 3 also compares the SFR density in BlueTides to that
from two other recent (albeit smaller volume) simulations: Illus-
tris (Genel et al.2014; Vogelsberger et al.2015), and MassiveBlack
II (Khandai et al.2015). Illustris uses similar prescriptions for sub-
grid feedback, but a different solver for the Euler equations, while
MassiveBlack II uses substantially different sub-grid modelling,
which is less effective at suppressing star formation in faint ob-
jects. Neither of the other simulations includes patchy reionization.
The SFRs for BlueTides and Illustris agree very well, while that
for MassiveBlack II is a factor of a few larger. This suggests that
the sub-grid feedback model dominates in controlling the SFR over
both the choice of hydrodynamic method and the effect of reion-
ization. It is however promising to see, given the differences in the
simulations, that the differences are within at most a factor of a few
in SFR density.

Fig. 3 also shows the evolution of the global black hole accre-
tion rate density. The black hole accretion rate grows more rapidly
than the global SFRD. This is likely due to an increase in the
number density of black hole hosting haloes; in contrast, the black
hole mass–stellar mass relation remains constant over time (MBH =
10Š3Mstar).

In Fig.4, we show the cumulative SFRD from galaxies of different
halo mass. For comparison, we also calculated the cumulative SFR
density of Illustris at three corresponding redshifts (z = 8, 9, 10).
We see that the mass threshold for 50 per cent of star formation
increases from�5 × 109 hŠ1 M� at z = 13 to�4 × 1010 hŠ1 M�
atz= 8. Thus the contribution of small haloes to the ionizing photon
budget becomes increasingly important at higher redshift. The larger
volume in BlueTides means that it includes haloes 10 times more
massive than the most massive haloes in Illustris. These objects
contribute less than 10 per cent of the total star formation density at
z = 8, 9, and 10.

MNRAS 455,2778–2791 (2016)
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2782 Y. Feng et al.

Figure 3. The star formation rate density (SFRD) in the BlueTides simulation. Solid blue: SFRD of haloes with SFR greater than 0.7 M� yrŠ1 from BlueTides.
Dashed black: SFRD of equivalent haloes from Illustris (Genel et al.2014; Vogelsberger et al.2014). Solid black: SFRD of equivalent haloes from MassiveBlack
II (Khandai et al.2015). Dotted blue: SFRD of all haloes from BlueTides. Dotted black: SFRD of all haloes from MassvieBlack II. Squares: estimates from
HUDF (Oesch et al.2014), and HFF A2744 (Oesch et al.2015). Diamonds: observational estimates from CLASH (Zheng et al.2012; Coe et al.2013; Bouwens
et al.2014a). Illustris, CLASH, and HUDF lines are reproduced from Oesch et al. (2015). Wide grey: global black hole accretion rate density in BlueTides,
scaled by 103 (see text).

Figure 4. Cumulative SFRD in haloes. Coloured solid: cumulative SFRD
in BlueTides. Gray dashed: cumulative SFRD in Illustris atz= 8, 9, 10, from
the Illustris public data release (Nelson et al.2015). Thick black: contour of
50 per cent cumulative SFRD. Thin black: contour of 10 per cent cumulative
SFRD.

4 STELLAR AND AGN UV LUMINOSITY
FUNCTIONS

In this section, we report the stellar AGN luminosity functions
in BlueTides. We �rst describe our source detection method, us-
ing Source Extractor to validate the results of an FoF halo �nder
at these high redshifts (Section 4.1). We then describe the stellar
UV luminosity function (Section 4.2.1), the dust attenuation model
(Section 4.2.2), and the faint-end slope of the luminosity func-
tion (Section 4.2.3). We assemble the stellar luminosity function

from BlueTides and compare to observations and other simula-
tions (Section 4.2.4). Finally we report the AGN luminosity func-
tion(Section 4.3).

4.1 The identiÞcation of Galaxies in BlueTides: Source
Extractor versus FoF

The FoF algorithm considers only the spatial positions of particles
and can sometimes arti�cially group dynamically distinct objects
into one halo. In this section we compare the luminosity function
estimated from FoF catalogues to that which would be estimated
by performing standard observational techniques and show that the
difference is small.

Simulations and observations have long been de�ning objects in
different ways. Even the sub-haloes in simulations do not directly
translate to any imaging survey catalogues. In imaging surveys,
objects are identi�ed by selecting peaks in a two-dimensional image,
and the total luminosity depends on an aperture radius. (we refer the
readers to Stevens et al.2014, and references therein) The canonical
implementation of such an algorithm is Source Extractor (Bertin &
Arnouts1996). We use SEP, a reimplementation of Source Extractor
into PYTHON (Barbary & contributors2014).

We produce a mock 2D survey image by projecting the BlueTides
simulation box along one axis. The SFRs of particles are distributed
into pixels using a Gaussian kernel scaled by their SPH smoothing
lengths withGAEPSI(Feng et al.2011). We do not attempt to model
instrumental noise in the mock image. The �nal star formation
surface density image has (2× 105)2 pixels, with a spatial resolution
of 2hŠ1Kpc per pixel (�0.06 arcsec). This image is then divided
into 100 non-overlapping equal-sized sub-volumesx–yplane. Each
sub-volume has a volume of 40× 40× 400(hŠ1Mpc)3. This allows
us to estimate the cosmic variance in e.g. the luminosity functions
in �elds comparable to those observed. We note that 400hŠ1Mpc
roughly corresponds to a redshift width of�z � 1 atz = 8.0, and

MNRAS 455,2778–2791 (2016)

 at U
niversity of S

ussex on S
eptem

ber 14, 2016
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 



BlueTides: Þrst galaxies and reionization2783

Figure 5. Detecting objects from the mock star formation intensity image. Background: the star formation intensity image of the full projection of BlueTides
(400hŠ1Mpc per side). We note that the image is strikingly uniform because of the thickness of the projection. Top left: the star formation intensity image of a
single chunk, 40hŠ1Mpc per side. Top right: all objects identi�ed in a �eld of view with a 10 times zoom, 4hŠ1Mpc per side. SEP objects are marked in red.
Bottom right: a further zoomed-in view of the top-right panel, to show the identi�ed objects more clearly.

hence each image chunk roughly corresponds to the full volume of
the BoRG survey.

We run SEP on each of the image chunks, afterwards com-
bining them to assemble the full catalogue. Edge effects can be
safely neglected because the area of the images are much larger
than the area of the edges. We use a near-zero threshold (1×
10Š6 hŠ1M� hŠ1Kpc2) to include all pixels that have non-zero star
formation surface density. The integrated SFR of the objects is mea-
sured with an aperture size of 8.7 pixels (0.5 arcsec), which roughly
corresponds to the aperture used by the BoRG survey (Trenti et al.

2011). Fig.5 shows visually the process of identifying galaxies us-
ing Source Extractor. We compute UV magnitudes from the SFR
of the SEP catalogue and the FoF catalogue using Stringer et al.
(2011):

MUV = Š 2.5 log10(� ) Š 18.45. (2)

We exclude faint objects withMUV > Š14, corresponding to unre-
solved haloes typically containing less than 50 dark matter particles,
and for the moment neglect dust extinction, which we will discuss
in Section 4.2.2.

MNRAS 455,2778–2791 (2016)
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2784 Y. Feng et al.

Figure 6. UV luminosity function of galaxies found with Source Extractor
compared to that of FoF haloes atz = 8. Green: SEP catalogue. Blue: FoF
catalogue. Solid grey: the ratio between SEP and FoF (axis on right).

As shown in Fig.6, we �nd that the luminosity functions con-
structed from the FoF halo catalogue and the SEP imaging catalogue
differ by less than 20 per cent. The main differences are that the SEP
luminosity function includes fewer bright objects than the FoF lu-
minosity function and more faint objects. Quantitatively, SEP is
�80 per cent of FoF atMUV > Š22 and �120 per cent of FoF at
MUV < Š18. These differences can be understood by noting that
bright (massive) FoF haloes are often a cluster of smaller objects
which SEP tends to identify as separate galaxies. The �xed aperture
in SEP however tends to enhance the UV of smaller objects. These
effects are smaller at these high redshifts, where large groups have
not yet formed. Because these differences are small, we will use the
FoF catalogue for the rest of this work.

4.2 Stellar luminosity functions

4.2.1 Intrinsic stellar luminosity functions

Fig. 7 shows the intrinsic galaxy UV luminosity function evolving
from z = 13 to 8. The luminosity function is computed from all
galaxies within the simulation. Shaded areas represent 1� uncer-
tainty of the mass function estimated from 100 sub-volumes. The
luminosity function’s evolution in redshift is largely described by an
increase in amplitude, with minor evolution of the faint-end slope.
Fig. 7 also shows a �t of the intrinsic UV luminosity function to a
modi�ed Schechter model, which captures the simulated luminosity
function well at all redshifts. The modi�ed Schechter model is

ln 
 (M ) = ln 
 � + ln A

+ A(M � Š M )(1 Š � L)

Š 100.1(M � ŠM ), (3)

This model differs from the usual Schechter model (see equation
5 below) only in that the coef�cient that determines the rate of
extinction of bright-end galaxies is changed from 0.4 to 0.1. The

best-�tting values are shown in Table2. The modi�ed model agrees
with the luminosity function at the 5 per cent level for the whole
luminosity range of the simulation. Note that the change in the
bright-end coef�cient means that one should not directly compare
these �t parameters with those obtained from a Schechter model.
We also do not use this model to extrapolate the luminosity function
(although with a minor 10 per cent difference in the photon budget,
using it would not change our conclusions).

4.2.2 Dust extinction

There is evidence that the highest luminosity early galaxies are sig-
ni�cantly dust obscured (Wilkins et al.2013; Cen & Kimm 2014).
To produce luminosity functions more comparable to observations,
we adopt the screening model from Joung, Cen & Bryan (2009).
This attenuates the UV luminosity from a pixel in the face-on image
of a galaxy by a fraction,fUV, proportional to the metal-mass density
in that pixel. The value offUV determines the extinction coef�cient
AUV. We apply this dust model to the bright individual galaxies at
z = 8, and �nd that the dust extinction in UV band is �tted by

M d
UV Š M i

UV = exp
�
Š

M i
UV + 22.61

1.72

�
, (4)

whereM i
UV is the intrinsic UV luminosity andM d

UV is the UV lumi-
nosity with a dust correction. Equation (4) produces dust extinction
of AUV � 1 for MUV = Š 21 galaxies, which agrees with the up-
per limit inferred from the UV slope of high-redshift galaxies by
Wilkins et al. (2013) atz = 8.0.

Fig. 8 shows the galaxy UV luminosity function with dust ex-
tinction at 1500 Å, fromz = 13 down toz = 8. We also show the
results of a Schechter �t (Schechter1976) to the observed luminos-
ity functions. The Schechter model is widely used to parametrize
luminosity functions. We use the form provided by Jaacks et al.
(2012).

ln 
 (M ) = ln 
 � + ln A

+ A(M � Š M )(1 Š � L)

Š 100.4(M � ŠM ), (5)

where A = 0.4 ln 10. Parameters are estimated using� 2 �tting
over ln
 , assuming uncorrelated errors (estimated from the sub-
volumes). The best-�tting parameters are reported in Table3. Note
that the Schechter model does not describe the BlueTides luminosity
functions at high redshift (z >10), and systematically under�ts the
bright-end luminosity function, even after including dust extinction.

4.2.3 Faint-end slope

We show the redshift evolution of the faint-end slope of the dust-
extincted galaxy UV luminosity function in BlueTides in Fig.9.
The best-�tting model for the evolution is

� Galaxy(z) = Š 0.756(1+ z)0.41. (6)

The slope of the faint end of the UV luminosity is consistent
with that inferred by Bouwens et al. (2015a) and its evolution
with redshift implies moderate steepening, again consistent with
an extrapolation of the observed slope evolution up toz = 12,
which includes an evolution ofM/L ratio �(1 + z)Š1.5 due to the
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BlueTides: Þrst galaxies and reionization2785

Figure 7. Evolution of the intrinsic UV luminosity function with redshift
from z = 8 to 13 (colours online). Shaded regions show the 1� sample
variance of the mass functions. Dashed lines: best-�tting modi�ed Schechter
model. The vertical dashed line corresponds to the current observation limit
of MUV � Š 18.

Table 2. Best-�tting parameters of the modi�ed Schechter model for the
galaxy UV luminosity functions atz = 8–13. Parameters are �t using
equation (3).

z � L log 
 � M �
UV

8 Š1.54 ± 0.01 Š4.04 ± 0.07 Š15.99± 0.09
9 Š1.59 ± 0.02 Š4.17 ± 0.14 Š15.44± 0.19
10 Š1.55 ± 0.04 Š3.66 ± 0.18 Š14.09± 0.28
11 Š1.51 ± 0.07 Š3.42 ± 0.21 Š13.03± 0.40
12 Š1.40 ± 0.07 Š3.42 ± 0.10 Š11.78± 0.37
13 Š1.32 ± 0.10 Š3.82 ± 0.08 Š10.98± 0.44

Figure 8. Evolution of the UV luminosity function with dust extinction
with redshiftz = 8, 9, 10, 11, 12, 13. (colours online) Shaded regions show
the 1� uncertainty of the mass functions. Dashed lines: best-�tting modi�ed
Schechter model (see equation 5). The vertical dashed line corresponds to
the current observational detection limit ofMUV � Š 18.

Table 3. Best-�tting Schechter model parameters atz = 8–13 for galaxy
stellar UV luminosity functions including dust extinction. Parameters are as
described in equation (5).

z � L log 
 � M �
UV

8 Š1.84 ± 0.03 Š8.90 ± 0.21 Š20.95± 0.15
9 Š1.94 ± 0.03 Š9.74 ± 0.24 Š20.77± 0.17
10 Š2.01 ± 0.04 Š10.27± 0.33 Š20.39± 0.22
11 Š2.07 ± 0.05 Š10.77± 0.42 Š20.00± 0.27
12 Š2.12 ± 0.06 Š11.40± 0.50 Š19.65± 0.31
13 Š2.13 ± 0.06 Š11.71± 0.49 Š19.11± 0.30

Figure 9. Evolution of the faint-end slope of the galaxy UV luminosity
function. The purple diamonds are the observed slope fromHubblelegacy
surveys (Bouwens et al.2015a). Blue circles show the slope from BlueTides.

evolution of the Halo Mass Function.1 The faint end (MUV > Š20)
of the UV luminosity function in BlueTides is barely affected by
the dust extinction model; thus the redshift-slope relation we give
here is suitable for inputs of reionization calculations.

4.2.4 Comparison with observations and other models

Bouwens et al. (2015a) assembled and reanalyzed the UV lumi-
nosity function evolution fromz = 10 to 4 based on all currently
available legacyHubblesurveys. The total cumulative area is close
to 1000 arcmin2, spread over a wide redshift range (see also Trenti
et al.2010; Ellis et al.2013; Finkelstein et al.2015). The most re-
cent measurements atz = 10 were published in Oesch et al. (2014).
Fig.10compares a compilation of these observational data to stellar
UV luminosity functions from BlueTides. We show the BlueTides
luminosity functions extracted from sub-�elds with size roughly the
area of the BoRG survey (Bouwens et al.2015a), the legacy �eld
with the currently largest area. As this is a smaller volume than the
full simulation, we can use the differences between sub-volumes
to estimate sample variance from current observations, which is
shown by the shaded areas in Fig.10. The intrinsic luminosity pro-
duces more bright galaxies than are observed, a discrepancy which

1 In Fig. 9 we ignored thez = 10 estimate from Bouwens et al. (2015a), as
the authors manually set the faint-end slope atz = 10.
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2786 Y. Feng et al.

Figure 10. Comparing UV luminosity functions with observations. Solid blue: intrinsic UV luminosity function in BlueTides. The coloured bands shows the
cosmic variance in a survey volume of the size of the BoRG survey (Bouwens et al.2015a). Solid red: dust-reddened UV luminosity function in BlueTides.
Dotted black: luminosity functions from the simulations of Jaacks et al. (2012). Note that they do not provide a simulated luminosity function atz = 10; also
the largest volume atz = 9 was a 34hŠ1Mpc box. Green wedges: intrinsic UV luminosity function from the Illustris public data release (Nelson et al.2015).
Black dashed line: intrinsic UV luminosity function from the MassiveBlack II public data (Khandai et al.2015). Black squares: observed luminosity functions
at z = 8 and 10 from Bouwens et al. (2015a). Black diamonds: observed luminosity function atz = 9 from McLure et al. (2013) and McLeod et al. (2015).
Black circles: observed luminosity function from four bright galaxies atz � 10 from Oesch et al. (2014).

is marginally signi�cant compared to cosmic variance. After apply-
ing a dust extinction correction, this slight tension with observations
largely disappears, suggesting that dust corrections are indeed sig-
ni�cant for the brightest galaxies, even at these high redshifts. As
we shall discuss in Section 4.3, another possibility is that the bright-
est sources host a signi�cant AGN which may make their detection
in the galaxy samples harder.

We show comparisons with two other recent high-redshift simu-
lations with a maximal volume of 100hŠ1Mpc. Jaacks et al. (2012)
performed several simulations at different resolutions to investigate
the shape and slope of high-redshift galaxy UV luminosity func-
tion. The luminosity functions of Jaacks et al. (2012) have faint-end
slopes which are steep compared to observations, producing sub-
stantially too many stars in small objects. This is likely due to
their stellar feedback (Choi & Nagamine2011) being insuf�ciently
effective at suppressing star formation. We also show the corre-
sponding UV luminosity function atz = 8, 9, 10 from the public
data of Illustris (Nelson et al.2015). Due to the larger volume in
BlueTides, Illustris produces fewer bright objects and cannot be
compared to BlueTides at the most massive end. However, at the
faint end of the luminosity function (MUV < Š20), BlueTides and
Illustris agree at the 10 per cent level. This suggests that a stellar
feedback model which very ef�ciently suppresses star formation in
small haloes is the most important ingredient when matching the
luminosity function at high redshift, just as at low redshift.

4.3 AGN luminosity function

As described in Section 2, the BlueTides simulation models AGN
via a self-regulated supermassive black hole model following Di

Matteo et al. (2005). Given a mass accretion ratedMBH
dt , the bolo-

metric luminosity of AGN is

L = 	
dMBHc2

dt
, (7)

where	 = 0.1 is the mass-to-light conversion ef�ciency in an ac-
cretion disc.

We convert the bolometric luminosity of AGN in the simulation
to a UV magnitude using (Fontanot, Cristiani & Vanzella2012)

MUV = Š 2.5 log10
L BOL

f B� B
+ 34.1+ � B,UV , (8)

whereLBOL is the bolometric luminosity of an AGN,fB = 10.2
(Elvis et al.1994), and� B,UV = Š 0.48.

Fig. 11shows the UV luminosity function of AGN in BlueTides.
The luminosity function is cut atMUV = Š 18.6, a limit dictated
by the imposed seed mass of our black holes (Mseed= 5× 105 M� ).
The black hole luminosity function is only meaningful for objects
that have at least doubled their mass since the black hole was
seeded, thereby erasing the arti�cially imposed seed mass. For
smaller black holes the AGN luminosity function is signi�cantly
suppressed due to the arti�cial absence of black holes in our nu-
merical scheme. Most of these galaxies have a stellar mass of a few
times 107 hŠ1M� , �100 times of the seed mass.

The AGN luminosity function rises steadily at later times, mir-
roring the evolution in the stellar luminosity function. Byz � 13 our
box contains a negligible number of AGN and it is thus impossible
to reliably estimate the luminosity function.

Unlike the stellar luminosity function, however, the shape of the
AGN luminosity function is well described by a power law. We thus
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BlueTides: Þrst galaxies and reionization2787

Figure 11. AGN UV luminosity function from BlueTides. The coloured
bands show the 1�sample variance estimated from 100 sub-volumes (see
Section 2). We cut the luminosity function at the faint end atMUV = Š 18.6,
corresponding to the seed mass of the black holes in BlueTides. Dashed
lines: the best-�tting power-law model. Symbols: measurements atz = 5.75
by Giallongo et al. (2015) and Kashikawa et al. (2015).

Table 4. Best-�tting power-law parameters atz = 8–12 of the AGN UV
luminosity function. The �tting model is described by equation (9).

z � L log
 �

8 Š 2.45 ± 0.02 Š 9.33 ± 0.04
9 Š 2.36 ± 0.07 Š 10.44 ± 0.09
10 Š 2.35 ± 0.04 Š 11.91 ± 0.07
11 Š 2.02 ± 0.24 Š 13.79 ± 0.33
12 Š 2.43 ± 0.22 Š 15.30 ± 0.28

�t the AGN luminosity function with a power-law model as

ln 
 (M ) = ln 
 � + ln A

+ A(M � Š M )(1 Š � L), (9)

where we set a reference magnitude atM� = Š 18 without loss
of generality. Boyle, Shanks & Peterson (1988) and Hopkins,
Richards & Hernquist (2007) �t the AGN luminosity function at
low redshifts with a double power law, which allows a better �t
to the steeper bright-end slope. This is not necessary for us as the
objects which require such a steeper slope are brighter than any
AGN in BlueTides atz = 8.0. The best-�tting parameters of the
power-law �t are reported in Table4.

5 IMPLICATIONS FOR REIONIZATION

There are currently few constraints on the process of hydrogen
reionization. Measurements of the total optical depth to the cosmic
microwave background (CMB) suggest that the redshift of half-
reionization iszhalf � 10 (Hinshaw et al.2013). Small-scale CMB
experiments have also constrained the duration of reionization to be
�z < 4.4 (Zahn et al.2012). However, the sources of the UV photons
which reionized the universe are subject to extensive debate, with
the two main candidates being faint galaxies and AGN. Constraints
on the contribution from different sources can be calculated using
the measured luminosity functions (See, e.g., Meiksin2005; Bolton
& Haehnelt2007; Faucher-Gigùere et al.2008; Pawlik, Schaye &

van Scherpenzeel2009; Bunker et al.2010; Fontanot, Cristiani &
Vanzella2012; Haardt & Madau2012; Robertson et al.2013).

Quasars have yet to be observed at these high redshifts, making
the expected impact of AGN on reionization uncertain (see, e.g.,
Meiksin & Madau1993; Fan et al.2006; Mitra, Choudhury & Fer-
rara2012). The possibility of a signi�cant contribution from AGN
to reionization was �rst pointed out by Shankar & Mathur (2007).
The most recent constraints on the quasar luminosity function from
CANDELS GOODS �elds atz � 4–6 suggest that AGN may make
a signi�cant contribution to reionization (Giallongo et al.2015). In
general, reionization driven by rare bright sources such as quasars
and large galaxies would progress rapidly, while one driven by faint
sources would progress more slowly.

The photon budget can be modelled from �rst principles using
the simulated luminosity functions of ionizing sources. As ioniz-
ing photons may themselves affect the formation of small haloes
(Madau & Pozzetti2000), direct predictions require simulations
which couple radiative transfer and hydrodynamics. Furthermore,
predicting the UV photon escape fraction from galaxies requires
exquisite resolution (see, e.g., Trac & Gnedin2011). A simpler
approach, which we take here, is to use the simulated luminosity
functions from a cosmological hydrodynamic simulation to estimate
the photon sources, leaving the escape fraction as a free parameter.

Our modelling of the photoionization rate is based on Fontanot
et al. (2012), and we refer the reader to this paper for further details
of the model (see also Haardt & Madau2012). Here we brie�y
review the relevant pieces. The radiation density� � (z) of a source
species with an evolving luminosity function
 (MUV, z) and speci�c
luminosityL� (MUV, � ) is

� � (z) =
�

Mcut


 (MUV, z)L � (MUV, � )dMUV. (10)

For galaxies, the ionizing photon production,� GAL, is based on the
SFR

� GAL(z) = �f esc
� GAL

UV (z)M� yrŠ1MpcŠ3

1.05× 1021 W MpcŠ3 , (11)

where � = 1053.1sŠ1 MŠ1
� yr is the mean opacity andfesc is the

UV escape fraction. High-resolution simulations coupling radiative
transfer to hydrodynamics in individual galaxies have suggested
a wide range of possible values forfesc. For example, Gnedin,
Kravtsov & Chen (2008) reported that high-redshift galaxies are
very inef�cient in releasing their photons thusfesc < 5 per cent;
Kimm & Cen (2014) suggestfesc � 0.14. On the other hand,
Cen (2005) favours high escape fractions, while Yajima, Choi
& Nagamine (2011) suggest that small haloes with halo mass
<109 hŠ1M� havefesc � 0.4. In order to bracket possibilities for
the reionization contribution from our galaxies we consider two ex-
treme scenarios: a low escape fraction model withfesc = 0.05, and
a high escape fraction model withfesc= 1.0.

The AGN contribution,� AGN(z), to the ionizing photon budget
depends on the AGN luminosity function and associated Spectral
energy distribution (SED):

� AGN(z) =
� � He

� H

� AGN� (z)
hp�

d�, (12)

where� H = 3.2× 1015 Hz and� He = 12.8× 1015 Hz are the ionizing
frequency of hydorgen and helium,hp is the Planck constant, and
� AGN is the radiation density of AGN photons.

L � = L UV

�
�

� UV

� � UV

, (13)
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2788 Y. Feng et al.

Figure 12. Photon budgets to reionize the universe atz = 8, as a function
of the ratio between clumping factorC and escaping fractionfesc. Shaded
region: UV emissivity from the observed luminosity function, extrapolated
to MUV = Š 10. Black dashed: UV emissivity required for a complete
reionization atz= 8. Blue solid: UV emissivity from BlueTides, extrapolated
to MUV = Š 10.

where� UV = 2 × 1015 Hz is the frequency at 1500 Å. We will adopt
� UV = Š 1.76 (see, e.g., Hopkins et al.2007).

The formulae above provide the photon budget. The photoion-
ization rate required to reionize the universe can be estimated theo-
retically from the recombination rate and the clumping factorC(z)
as

� REION(z) = 0.027�
C
30

�
1 + z

7

� 3 �
� bh2

70

0.465

� 2

. (14)

The clumping factorC(z) describes density variations below the
resolution of hydrodynamic simulations and can be estimated us-
ing higher resolution simulations of the intergalactic medium at the
reionization epoch (McQuinn, Oh & Faucher-Giguère2011; Finla-
tor et al.2012). We use the smallest evolving clumping factor from
Pawlik et al. (2009):

C(z) = 1 + 43zŠ1.71. (15)

Note that a higher clumping factor requires more photons to reionize
the universe.

We extrapolate the luminosity functions measured from our sim-
ulations (see Fig.11) to include the contributions from galaxies
and AGN smaller than the resolution limit of the simulation. We
integrate the galaxy luminosity function for all UV magnitudes
brighter thanMUV = Š 10, the lower limit of galaxies that generate
ionizing photons (Kuhlen & Faucher-Giguère2012). We consider
extrapolating the AGN UV luminosity toMUV = Š 12 fromMUV =
Š18, the faintest AGN in the BlueTides simulation. However, fur-
ther decreasing the AGN threshold does not increase the number of
ionizing photons signi�cantly.

In Fig. 12, we show the luminosity density in BlueTides atz = 8
and the photon budget to reionize the universe atz = 8 as a function
of C

f esc
, the ratio between the clumping factor and escaping fraction.

The UV luminosity density in BlueTides, like the luminosity func-
tion, is consistent with observations. We also see that if galaxies
alone reionize the universe byz = 8, BlueTides implies a ratio of

C
f esc

= 4. Assuming a clumping factor ofC(z= 8) = 2, reionization
at z = 8 requires a high escape fraction offesc � 60 per cent. With
less UV photon production, it would be dif�cult for the galaxies in
BlueTides alone to reionize byz = 8.

Recent observations (especiallyPlanck) favour reionization at
z < 8. Bouwens et al. (2015b) analysed the constraints on the ion-
ization history, incorporating recentPlanckresults with constraints
from quasar absorption and Lyman� emission line measurements.
Fig. 13 shows a comparison between the ionization rate in Blue-
Tides and the observational constraints under various scenarios for
the AGN luminosity and galaxy escape fraction.

As mentioned above, providedfesc= 0.5, galaxies alone can pro-
duce an ionization history which completes byz = 8.0, consistent
with current observational constraints. With a smaller UV escape
fraction, the contribution from faint AGN instead drives most of
reionization, dominating over the UV photons from galaxies. As
seen in the upper panels of Fig.13, AGN tend to produce an ion-
ization rate which increases faster than that from galaxies. This is
because, �rst, the global black hole accretion rate increases more
quickly with time than the global SFR and, secondly, the faint-end
galaxy luminosity function �attens over time, while the faint-end
slope of the AGN luminosity function remains constant.

It is also interesting to note that the AGN scenario implies that
faint AGN exist with luminosities down toMUV = Š 12, corre-
sponding to a black hole mass of 103 M� (assuming Eddington
accretion), and much smaller than is currently observed. Overall,
it is dif�cult to produce reionization completing byz = 8 with-
out either invoking a high UV escape fraction from galaxies or a
signi�cant contribution from a faint AGN population.

One potential source of ionizing photons which we have not con-
sidered is Population III stars, which are expected to form with a
top-heavy Initial Mass Function (IMF) due to the high Jeans mass
of metal-free gas (Bromm, Coppi & Larson1999; Abel, Bryan
& Norman 2000). Such stars have harder, more ionizing spectra
than stars forming from enriched material (e.g. Tumlinson & Shull
2000). The haloes that host this �rst generation of stars are likely
to have masses�10 6 M� (Tegmark et al.1997), which are below
the mass resolution of BlueTides. In order to gauge the likely effect
of Population III stars on reionization we therefore turn to other
published work. The transition from Population III to Population
II star formation is expected to commence in galaxies once they
are either suf�ciently massive to enable rapid gas cooling by atomic
hydrogen lines, or enriched enough to enable ef�cient metal cooling
(e.g. Ostriker & Gnedin1996). Muratov et al. (2013) follows this
transition using high-resolution simulations of 1hŠ1Mpc volumes
that Population III star formation can continue until at leastz = 10
in the most initially underdense regions. Averaged over the entire
universe, however, they �nd that Population III stars can produce
only a small fraction, of order 10 per cent, of the total number of
ionizing photons atz � 13, a fraction which then declines rapidly
towards lower redshifts. Based on this work and other theoretical
studies (e.g. the semi-analytic modelling of Kulkarni et al.2014)
the current expectation is that Population III star formation is likely
to affect only the earliest stages of reionization. Including Popula-
tion III stars would not relax the constraints on the escape fraction
and AGN contribution which we have derived from BlueTides. An-
other constraint on the Population III contribution can be derived by
comparing chemical abundance patterns in observed high-redshift
damped Lyman� systems to the Population III expectations. Kulka-
rni et al. (2014) �nd that the observed [O/Si] ratios of absorbers rule
out Population III stars being a major contributor to reionization.
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BlueTides: Þrst galaxies and reionization2789

Figure 13. Photon budget atz > 8. We consider three models of the escape fraction:fesc= 1.0 (left-hand panels),fesc= 0.5 (middle panels), andfesc= 0.05
(right-hand panels). There are two lower limits for the extrapolated AGN luminosity:MUV = Š 12 (upper panels), andMUV = Š 18 (lower panels). Solid black
lines show the theoretical expectation for photons needed to fully ionize the universe. Solid blue: photoionization rate of AGN and galaxies combined. Dashed
red: photoionization rate of galaxies. Dash–dotted green: photoionization rate of AGN. Shaded region: observational constraints combining the optical depth
to the CMB, quasar absorption and Lyman� emission, by Bouwens et al. (2015b). The extrapolation limit of the galaxy luminosity function is �xed atMUV =
Š10 (see text).

6 CONCLUSIONS

We have performed BlueTides, a high-resolution, 4003 hŠ1Mpc3

uniform volume hydrodynamical simulation. BlueTides includes a
pressure–entropy formulation of SPH, gas cooling, star formation
(including molecular hydrogen), black hole growth, and models for
stellar and AGN feedback processes. BlueTides is the �rst cosmo-
logical large volume hydro simulation to incorporate a ‘patchy‘
reionization model producing an extended hydrogen reionization
history. We have reported the high-redshift (z > 8) UV luminos-
ity functions of galaxies and AGN in BlueTides, and examined the
implications for reionization.

We �nd good agreement between the expected SFRD in Blue-
Tides and current observations at 8� z � 10. By using the SFR in
our galaxies we make predictions for the intrinsic galaxy luminosity
functions and show that they compare favourably to observations
from Hubble Space Telescope(HST) legacy �elds. The brightest
galaxies are yet to be observed and we predict that upcoming larger
area surveys should start detecting them. Atz = 8 some dust may be
required to reproduce the currently observed bright end in theHST
surveys. The effect of dust extinction can be studied via radiative
transfer post-processing (Kimm & Cen2013; Yajima et al.2015),
and we plan to apply a similar method to the BlueTides galaxy
sample in a follow-up work.

Our simulation predicts a faint-end slope of the luminosity func-
tion consistent with observations. When �t to a Schechter luminosity
function, the slope varies between� � Š 1.8 atz = 8 to � � Š 2.1
atz = 10 with an evolution in the slope�(1 + z)Š0.41. The AGN lu-
minosity functions from BlueTides can be �t by a power law with a
slope consistent with the most recent observations from CANDELS
GOODS �elds (Giallongo et al.2015). The faint-end slope of the
AGN luminosity function is close to� = Š 2.4, with little redshift
evolution. This result compares favourably with the measurement
by Shankar & Mathur (2007) at z= 6.

The AGN population evolves quickly at these redshifts (while
the black hole mass–stellar mass relation remains constant over
time) with the brightest quasars reachingMUV � Š 25 at z � 8,
which is at least an order of magnitude fainter than SDSS quasars at
z � 6. We demonstrate that AGNs would lead to a relatively quick
reionization which could soon be testable observationally.

We �nd that a high (�50 per cent) escape fraction is still re-
quired for galaxies alone to produce enough photons to reionize
the Universe by z= 8. Our high escape fraction model supports
the conditions proposed by Kuhlen & Faucher-Giguère (2012): a
reionization model that includes mostly galaxies requires both an
extrapolation to very faint-endMUV = Š 10 and a sharp increase of
the escape fraction (up to 50 per cent) at high redshift, in agreement
with Bouwens et al. (2015b). For lower escape fractions (closer to
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10–20 per cent), a possible source of the extra photons are faint AGN
with black hole masses as faint asM � 103 M� (Madau et al.2004).
Wise et al. (2014) were able to produce a cosmic reionization his-
tory with a high-resolution radiative transfer simulations of faintest
galaxies (M > Š12); they have reported an evolving escape fraction
that decreases to 5 per cent atM = Š 12 with increasing halo mass,
which differ from our preferredfesc= 50 per cent. The major reason
for this difference is because the simulation by Wise et al. (2014)
tends to have more faintest galaxies, with about 1hŠ1MpcŠ3 magŠ1

at MUV > Š12, while our extrapolation is an order of magnitude
smaller. The recent simulations of O’Shea et al. (2015) produced a
�at UV luminosity function at the very faint end, which the authors
claim to be due to a strong decline in star formation ef�ciency in
the least massive haloes (M< �10 8 hŠ1M� ). This could further
reduce the galaxy contribution to the reionization budget.

Alternatively, reionization may not complete untilz < 8, as sug-
gested by Finkelstein et al. (2015) and consistent with the recent op-
tical depth measurements fromPlanck(Planck Collaboration2015).
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