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Abstract

Biases in standard variance swap rates can induce substantial deviations below market rates.
De�ning realised variance as the sum of squared price (not log-price) changes yields an ‘arith-
metic’ variance swap with no such biases. Its fair value has advantages over the standard
variance swap rate: no discrete-monitoring or jump biases; and the same value applies for
any monitoring frequency, even irregular monitoring and to any underlying, including those
taking zero or negative values. We derive the fair-value for the arithmetic variance swap and
compare with the standard variance swap rate by: analysing errors introduced by interpo-
lation and integration techniques; numerical experiments for approximation accuracy; and
using 23 years of FTSE 100 options data to explore the empirical properties of arithmetic
variance (and higher-moment) swaps. The FTSE 100 variance risk has a strong negative
correlation with the implied third moment, which can be captured using a higher-moment
arithmetic swap.

JEL Code: G01, G12, G15
Keywords: Fourth Moment Swap, Hermite Spline, Kurtosis, Model-Free, Realised Vari-
ance, Skewness, Third Moment Swap, Volatility Index, VIX, VFTSE.



1 Introduction

A standard variance swap on a traded asset initiated at time t and expiring at T > t

is a forward contract which pays a �xed strike �K, called the variance swap rate (VSR),

and receives the realised variance RVt;T from time t to time T . The buyer of notional N

on a vanilla variance swap has pay-o� N
�
RVt;T � �K

�
and the fair-value of the VSR �K at

initiation, Kt;T , is the risk-neutral expectation of RVt;T . While the two parties may enter

the swap at any market rate �K which they can agree, each should enter the agreement

having some idea of its fair value, Kt;T . A formula for this fair value is derived by assuming

certain properties for the underlying price process and is implemented using integration

over vanilla option prices. If they use di�erent price process assumptions, and/or employ

di�erent numerical methods for implementation, the two parties will not exactly agree on

the fair-value rate.

Since the mid 1990’s variance swaps have been actively traded over the counter (OTC) for

volatility speculation, equity diversi�cation, dispersion trading and both vega and correlation

hedging; see Clark [2010] for more details. Normally it pays to write variance swaps because

the variance risk premium is typically small and negative, but during volatile periods it can

be very large and positive, so potential losses on short variance swap positions can be large.

Figure 1 depicts the pay-o� to the long realised variance party in a 30-day S&P 500 variance

swap, on the right-hand scale, in $000 per $1 notional. For instance, by October 2008 the

realised legs had diverged substantially above the swap rates that were struck before the

Lehman Brother’s collapse. At this time, a bank that issued $10m notional on an S&P

variance swap would be obliged to pay out $10bn to their counter-party.

Using market quotes instead of the synthesised rates employed in previous research,

Konstantinidi and Skiadopoulos [2016] show that a dealer’s funding liquidity has a substan-

tial e�ect on the variance risk premium. Their trading-activity model predicts the market

variance risk premium much better than a variety of alternative predictive models and the

premium becomes signi�cantly more negative when funding illiquidity increases, i.e. when
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Figure 1: Pay-O� to S&P 500 Variance Swaps: Long Realised Variance
January 2006 { December 2015: The VIX index is shown in blue and realised variance in red, on the
left-hand axis; The pay-o� in $000 to $1 notional long realised variance is in black and measured on the
right-hand scale.

trading conditions deteriorate. Indeed, in extreme circumstances dealers may even cease to

quote prices.1

Despite this liquidity risk, variance swaps remain actively traded OTC today and some

innovative products are emerging. For instance: in April 2006 JP Morgan introduced corridor

variance swaps, which limit the downside risk to both counter-parties by paying realised

variance only when it is within a pre-de�ned range; in March 2009 Societ�e General launched

the American variance swap; and since the banking crisis it has become standard to cap

realised variance at 2.5 times the swap rate. In addition to conditional swaps and swaps

with other features that limit the issuer’s risk, there has been growing interest in variance

swaps on oil, gold and other commodities, currencies and bonds.

The realised variance is speci�ed in the terms and conditions of the contract { see JP-

Morgan [2006] for an example. Typically, it is an average of squared daily log returns on
1For instance, some of the biggest dealers stopped providing single stock variance swaps as it became

impossible to hedge them during the banking crisis. At this time equity option prices was soaring as demand
for the insurance o�ered by OTM puts became impossible to supply. Consequently the VIX index, which
represents the fair value of a variance swap on the S&P 500, spiked at a level exceeding 80% in October
2008, its highest value on record.
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the underlying over the life of the swap. At the time of writing the Chicago Board Options

Exchange (CBOE) quotes more than 30 volatility indices based on this de�nition of realised

variance as the basis for listing volatility futures.2 The underlyings range from index and

single stock futures to iShares, commodity futures and interest rate futures. Most other ma-

jor derivatives exchanges quote volatility indices based on the same, now standard, de�nition

of realised variance as the CBOE.

Motivated by growing demand for trading and investing in volatility, this paper proposes

an alternative variance swap as a new OTC contract for dealers to consider. In an ‘arithmetic’

variance swap the 
oating leg is an average of squared changes in the underlying price itself,

rather than changes in the log price. An arithmetic variance swap accesses essentially the

same risk premium as a standard variance swap. To see this, Figure 2 depicts the correlation

between the standard and the arithmetic variance risk premia for the FTSE 100 index from

the beginning of 1997 to the end of 2015. The average correlation is 0.9799 over the entire

19-year period, and it ranges from a minimum of 0.8658 to a maximum of 0.9985.

The innovative work of Neuberger [2012] and Bondarenko [2014] provide a further moti-

vation for our research. These authors introduce a class of swaps for which an ‘aggregation

property’ holds, and consequently the same fair-value swap rate formula applies whether the

realised variance is monitored daily, weekly or even irregularly.3 Arithmetic variance swaps

satisfy this aggregation property, but standard variance swaps do not. Thus, arithmetic

swaps have a trading advantage over standard variance swaps because their theoretical val-

ues should be closer to market rates { they are not in
uenced by the jump and discretisation

biases that are problematic for standard variance swaps. By the same token, they are appli-

cable to a wider variety of products, such as those that are monitored in transaction time.4

2Further details on the evolution of the exchange-traded market for volatility products over the last few
years are given in Alexander et al. [2015].

3Note that Alexander and Rauch [2016] prove that the aggregation properties of Neuberger [2012] and
Bondarenko [2014] are equivalent when Neuberger’s de�nition is restricted to a bivariate process fF; ln Fg
with F being a martingale.

4This would increase the homoscedasticity of realised variance and hence lower the risk of purchasing
e�ective volatility diversi�cation for equity investors.
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Figure 2: EWMA Correlation between AVRP and GVRP on FTSE 100
This graph shows the correlation between the daily percentage changes in the standard and the arithmetic
variance risk premia for the FTSE 100 index, from January 1997 to December 2015. The correlation at each
point in time is computed using an exponentially weighted moving average with smoothing constant 0:95.

Furthermore, the arithmetic de�nition allows these variance swaps to be traded on underly-

ings that could become negative, such as spreads, energy prices or (nowadays) interest rates.

Obviously, a standard variance swap must be con�ned to an underlying that must always

take a positive value.

Because the realised arithmetic variance satis�es the aggregation property, the only as-

sumption required to derive an exact fair value for an arithmetic swap is that the underlying

forward price follows a martingale, i.e. that the market for the underlying is free from ar-

bitrage.5 By contrast the fair value for the standard realised variance has jump errors and

discrete-monitoring biases, both of which are large and negative during volatile periods, see

Carr and Lee [2009] and Rompolis and Tzavalis [2013].6 The combination of the two bi-
5The arithmetic variance swap is related to the ‘simple’ variance swap introduced by Martin [2013] where

realised variance is an average sum of squared percentage price changes. However, the simple variance swap
only applies to underlyings with positive prices, and it has the added disadvantage that it does not satisfy
the aggregation property, so the discrete-monitoring error is not zero. However, in common with with our
arithmetic variance swap, the replicating portfolio for a simple variance swap is equally weighted.

6However, Mueller et al. [2013], Du and Kapadia [2012] and others show that market variance swap rates
can still be synthesised in the presence of jumps, provided a continuum of option strikes are traded, and
that their pay-o�s are proxied and/or that a speci�c trading strategy is followed.
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ases can be very signi�cant, in fact, market variance swap rates were sometimes more than

5% above the fair-value variance swap rate during the banking crisis, see Ait-Sahalia et al.

[2014]. By contrast, because of its exact model-free fair value, there should be much less

de-coupling of market quotes from fair values when arithmetic variance swaps are traded.

Moreover the forward price does not need to be always positive, so arithmetic swaps have

wider practical applications than standard variance swaps, including underlyings that may

have zero or negative prices (e.g. a spread, a power price, or an interest rate).

The common fair-value formula for a standard variance swap is based on the �rst moment

of the quadratic variation of the log return, and the replication portfolio weights option

prices by the inverse of the square of the strike. Hence this portfolio places a relatively high

weight on the low-strike put options which become highly illiquid during a market crisis.7

By contrast, the arithmetic fair-value formula weights all options equally and, as such, its

replication is less prone to distortion by stale prices of OTM put options.

We also derive fair-value formulae for higher-moment arithmetic swaps, showing that

the replication portfolios for third- and fourth-moment arithmetic swaps are also equally-

weighted OTM option portfolios. Compared with the higher moments of log returns, which

can only be replicated by further increasing the weight on OTM put options (e.g. for the

third-moment geometric swap the weight on an OTM option of strike K would be K�3)

higher-moment arithmetic swaps would certainly be less prone to liquidity risk.

The paper proceeds as follows: Section 2 describes the pricing of standard variance swaps

and sets our work in the context of the recent literature; Section 3 derives the fair value for

an arithmetic variance swap and the error when it is adapted to approximate the price

of a standard variance swap; Section 4 discusses numerical interpolation and integration

techniques; Section 5 presents a numerical study to compare the size of the errors when
7Another formula, introduced by Bakshi et al. [2003] and which also weights option prices by the inverse

of the square of the strike, computes the fair value swap rate as the second moment of the log return
distribution. Empirical results comparing these two swap rates are not presented in Section 6, for brevity,
because when similar numerical interpolation and integration techniques are applied the two formulae yield
almost identical results
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we adjust each fair-value formula to approximate the other variance swap rate; Section 6

analyses the empirical characteristics of arithmetic variance and higher-moment swap rates

with synthetic constant maturities from 30 to 270 days, using 23 years of historical data on

FTSE 100 futures and options and market rate data from BNP-Paribas; Section 7 concludes.

Detailed derivations, including fair-value expressions for arithmetic higher-moment swaps,

are given in the Appendix.

2 Fair Values for Standard Variance Swaps

Assume a geometric di�usion process for the underlying price St:

dSt
St

= rdt+ �t dBt; (1)

where r is the risk-free rate, assumed constant, and Bt is a Brownian motion. Writing the

continuously-monitored realised variance from time t to time T as

RVt;T = (T � t)�1�t;T ; where �t;T =
Z T

u=t
�2
u du; (2)

and denoting the expectation at time t under the risk-neutral measure by Et[�], the fair-value

VSR is de�ned as

Kt;T = (T � t)�1Et [�t;T ] : (3)

Under the risk-neutral measure the fundamental theorem of asset pricing states that the value

of a �xed-payer variance swap at inception time t should equal to 0, i.e. Et [�t;T �Kt;T ] = 0.

Neuberger [1994] shows that �t;T is the expected pay-o� to a short position on a log

contract, i.e. the contract with pay-o� log (ST =St) at time T . The market is complete,

under assumption (1), so the log contract pay-o� and therefore also the realised variance

can be replicated using vanilla options. In fact, there are two representations of Kt;T in

terms of call and put prices which are commonly employed. We label these Kt;T , ~Kt;T . To

state these formulae in a form that is used by practitioners we use the following notation:

6



Ft;T = er(T�t)St is the T -maturity forward price, and Qt(k; T ) is a fair-value vanilla put or

call price of strike k and maturity T . Speci�cally, for k < S�t;T it is the price of a vanilla

put maturing at time T and for k > S�t;T it is the corresponding call price. We use the

same notation throughout for the separation strike S�t;T , i.e. the boundary separating the

out-of-the-money call and put options. Typically this is the highest strike at or below Ft;T .

Demeter� et al. [1999] derived the following time t option replication portfolio for the

fair-value of a standard variance swap of maturity T :

Kt;T = 2(T � t)�1

(

er(T�t)
Z 1

0

Qt(k; T )
k2 dk �

Ft;T � S�t;T
S�t;T

� ln
�S�t;T
St

�)

: (4)

An alternative variance swap rate formula computes the second moment of the log return

rather than the �rst moment of the quadratic variation of the log return. With this approach,

�rst used by Bakshi et al. [2003], there is no need to assume a speci�c dynamic process for the

underlying asset price except that it is a positive semi-martingale. Applying the replication

theorem of Carr and Madan [2002] to a contract with pay-o� ln (ST =St)
2 yields a formula

which shares many similarities with (4), as discussed in the appendix.

The geometric di�usion assumption (1) of Demeter� et al. [1999] can be generalised:

Carr and Lee [2003] and Jiang and Tian [2005] show that (4) still holds under any type of

di�usion for the stochastic volatility process �t including a coupled process with non-zero

price-volatility correlation. Friz and Gatheral [2005] used Carr and Lee’s results to derive an

expression for the expectation of the square root of the quadratic variation of the returns,

which is useful for pricing volatility derivatives. Gatheral [2006] also arrives at (4) using a

model-free decomposition of the pay-o� to a power option, by computing the �rst moment

of the quadratic variation of the returns process assuming zero price-volatility correlation.

Broadie and Jain [2008] quantify the jump bias in (4) under various stochastic volatility

models. Rompolis and Tzavalis [2013] derive bounds for the jump bias and demonstrate, via

simulations and an empirical study, that price jumps induce a systematic negative bias that

is particularly apparent during excessively volatile periods, when (4) signi�cantly underesti-

7



mates the fair-value swap rate.

This negative jump bias is compounded by another theoretical bias which arises because

the standard contract speci�es realised variance as a discretely monitored average of squared

log returns. In practice the realised variance is not continuously monitored and typically:

RVt;T = T�1
d �d

t;T = T�1
d

T�1X

i=t

(logSi+1 � logSi)2 ; (5)

where Td is the number of trading days between t and T . As shown by Carr and Lee [2009]

the discrete-monitoring bias in (4) is typically negative and, like the jump bias, is most

pronounced during volatile periods.8 They prove that the discrete-monitoring error Et[�t;T ]�

Et[�d
t;T ] is proportional to

T�1P

i=t

h
Si+1�Si

Si

i3
so it tends to be negative, and is especially large

during volatile periods when (4) tends to underestimate fair-value swap rates considerably,

due to jump and discrete-monitoring biases.

3 An Arithmetic Variance Swap Fair-Value Formula

Here, instead of the realised variance de�nition (5) we de�ne the realised variance as

RV�t;T = T�1
d

T�1X

i=t

(Si+1 � Si)2 : (6)

As explained in the introduction this approach has several advantages over the standard re-

alised variance de�nition (5). The characteristic (6) does not su�er from discrete monitoring

bias,9 nor jump bias because satis�es the aggregation property of Neuberger [2012]. Hence it

requires minimal, truly model-free assumptions. The only requirement is that the market is

arbitrage-free, so that forward prices follow a martingale (which could be zero or negative).

Moreover, being based on a distribution for the price level rather than the log return, it is
8There has been considerable recent research on this discrete-monitoring bias. For instance, Jarrow et al.

[2013] derive discrete-monitoring error bounds that get tighter as the monitoring frequency increases and
Bernard et al. [2014] generalise these results and provide conditions for signing the discrete-monitoring bias.

9Indeed monitoring could even be irregular, such as in trading time rather than calendar time.
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more broadly applicable. One can always consider a density for ST but it only makes sense

to consider the density of log (ST =St) when St is always positive. Otherwise the log return

return does not exist so one cannot price a swap on standard realised variance.

In the following we present only the main result on the fair-value of an arithmetic variance

swap under the risk-neutral measure for ST as seen from time t. Full details of the derivations,

including those for arithmetic higher-moment swaps, are given in the Appendix. Using the

well-known result of Breeden and Litzenberger [1978], the risk-neutral moment generating

function for ST , denoted Mt;T (�) = Et [exp(�ST )] may be expressed as

Mt;T (�) =
Z 1

k=0
e�k

@2 ~C (k; T )
@k2 dk;

where for brevity we write ~C (K;T ) = er(T�t)C(k; T ) and similarly for ~P (k; T ). Integrating

by parts twice and using the following properties of call option prices:

lim
k!0

~C (k) = ST ; lim
k!+1

~C (k) = 0; lim
k!0

@ ~C (k)
@k

= �1 and lim
k!+1

@ ~C (k)
@k

= 0;

we obtain :

Mt;T (�) = 1 + �Ft;T + �2

1Z

k=0

e�k ~C (k; T ) dk: (7)

The nth moment of the distribution of ST is obtained by taking the nth derivative of (7) with

respect to � and setting � = 0. Thus, for n = 1; 2; : : :

Et
�
Sn

T

�
= 1fn=1gFt;T + n(n� 1)

1Z

k=0

kn�2 ~C(k; T ) dk: (8)

Using the put-call parity relationship ~C (k; T )� ~P (k; T ) = Ft;T�k we transform (8) to include

only OTM put and call options, with separation strike S�t;T . After some straightforward

9



calculations we have:

Et
�
S2

T

�
= 2

�
Ft;T � S�t;T

�
S�t;T + (S�t;T )2 + 2er(T�t)

1Z

k=0

Qt (k; T ) dk:

Since Et [ST ] = Ft;T , the second central moment of the risk-neutral density for ST is:

Vt [ST ] = 2er(T�t)
1Z

k=0

Qt (k; T ) dk �
�
Ft;T � S�t;T

�2 : (9)

The formula (9), when divided by (T � t), is the fair value of a continuously-monitored

arithmetic variance swap, applicable when the terms and conditions of the variance swap

de�ne realised variance as (6). Compared with the integral in (4) for the fair-value of the

variance of log returns, (9) does not require that we weight option prices by the inverse of

the square of the strike. With equal weighting of options in the replicating portfolio (9)

issuers are less exposed to liquidity shortages in low strike put options during market crises.

Now we consider the special case that the underlying follows the geometric di�usion

(1) with deterministic volatility in order to approximate the percentage return with the log

return and thereby translate (9) into an approximate formula for the fair-value of variance

of the log return. From ST = St exp
�
r(T � t)� 1

2�t;T +
TR

t
�sdBs

�
; we have

Et
�
S2

T

�
= S2

t exp (2r(T � t)� �t;T ) Et

2

4exp

0

@2
TZ

t

�s dBs

1

A

3

5

= S2
t exp (2r(T � t)� �t;T ) exp

0

@2
TZ

t

�2
s ds

1

A ;

= S2
t exp (2r(T � t) + �t;T ) = F 2

t;T exp (�t;T ) :

Thus Vt [ST ] = Et
�
S2

T

�
�F 2

t;T = F 2
t;T [exp (�t;T )� 1] ; and so Vt [ln (ST =St)] � Vt [(ST =St)� 1] =

10



S�2
t Vt [ST ] = exp (2r(T � t)) [exp (�t;T )� 1] : So dividing (9) by F 2

t;T , we set

K�t;T = (T � t)�1

0

@2S�2
t er(T�t)

1Z

k=0

Qt (k; T ) dk �
�Ft;T � S�t;T

Ft;T

�2
1

A : (10)

K�t;T is an approximate VSR for a standard variance swap that is based on a fair-value

expression for exp [�t;T ] � 1, rather than a risk-neutral expectation of �t;T itself. They are

only the same to �rst order approximation. Indeed, K�t;T has a systematic upward bias which

increases with �t;T .10 There is no discrete-monitoring bias in the fair-value arithmetic swap

rate (9), but when adapted to an approximation K�t;T to the fair value for a standard variance

swap the negative discrete-monitoring bias in GVSR is likely to a�ect its approximation.

In the following, when represented as annualised percentage volatilities: the standard

variance swap rate Kt;T is labelled GVSRt;T ; we call Vt [ST ] the arithmetic variance swap

rate (AVSR); its approximation K�t;T to the standard variance swap rate, is termed AVSR�;

and, �nally, we adapt the GVSR to approximate the fair-value for an arithmetic variance

swap on multiplying GVSRt;T by the forward price Ft;T .

4 Integration and Interpolation Techniques

In this section we describe the numerical techniques used for our empirical studies later

in the paper. In the �rst sub-section we discuss the alternative maturity interpolation and

extrapolation methods for computing synthetic, constant-maturity option prices. The second

sub-section takes these prices and computes the integrals in (4) and (9), but each requires

an in�nite number of OTM put and call options on a continuum of strikes. We only have

prices for the n discrete strikes of traded options available, so we discuss the biases that are

introduced when di�erent numerical integration procedures are employed.
10Since exp (�)� 1 > �.
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4.1 Maturity-Interpolation Error

Vanilla options have �xed maturity dates so interpolation between (and possibly extrapola-

tion to) di�erent maturities is required to compute synthetic rates with �xed terms. This

is frequently performed by interpolating/extrapolating implied variances, rather than the

volatilities, or the option prices themselves. Linear interpolation over variance (but not over

volatility) precludes calender arbitrage. Also, the time-series properties of implied volatilities

are considered to be smoother than those of market option prices.11

Exchanges use a variant of the implied variance interpolation/extrapolation approach,

computing VSRs using the following procedure: (a) OTM put and call options are allocated

to maturity baskets according to their time to expiration; (b) VSR sub-indices for each

available expiration date are calculated, using formula (11); (c) the desired maturities for

the term structure of VSRs are obtained by linearly interpolating and extrapolating the

variance term structure implied by these indices;12 (d) the square root of the interpolated

variance is used to quote the index in percentage points.

The linear interpolation across implied variances in step (c) ensures no calendar arbi-

trage, but empirically, implied variance does not grow linearly with term except at long

maturities. So instead each segment is interpolated using a cubic Hermite polynomial of the

form �ex2=2 d3

dx3 e�x
2=2: For more information on Hermite cubic spline and other spline inter-

polation techniques, see Fritsch and Carlson [1980] or De Boor [2001]. We choose Hermite

splines because their ‘shape preserving’ feature prevents the interpolant from shooting up or

down in response to small pricing errors in vanilla options. As such, they are more suitable

than cubic splines for extrapolation.

To illustrate this Figure 3 compares standard, cubic and Hermite cubic spline �ts to

FTSE 100 implied variances, depicting their implied volatilities. Clearly, cubic splines are
11For instance, see Panigirtzoglou and Skiadopoulos [2004], Bliss and Panigirtzoglou [2004], Kostakis et al.

[2011] and Neumann and Skiadopoulos [2012].
12CBOE has recently included SPX weekly options in the calculation of VIX. This means that there is

extrapolation in maturity required in the calculation of VIX any more. However, this is not possible for
other volatility indices as weekly options are not available for the corresponding equity indices.
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Figure 3: Spline vs Hermite Fitted Implied Volatility Term Structures
Illustration of cubic and Hermite cubic spline �ts to FTSE 100 implied variances, reported as annual
volatilities, on 30 March 2007.

too 
exible; moreover, the choice of spline matters, as quite di�erent volatility term struc-

ture shapes can result especially at the extreme long and short ends of the term structure.

Hermite cubic spline interpolation and extrapolation results must, of course, be checked for

no calendar arbitrage.13

4.2 Strike-Discretisation Errors

The CBOE and other exchanges typically employ the following Riemann sum approximation

to formula (4) as the basis for quoting volatility indices :

Kt;T �= (T � t)�1

"

2
nX

i=1

k�2
i er(T�t)Qi (ki; T ) �ki �

�
Ft;T
k0
� 1
�2
#

(11)

where Q (ki; T ) is the price of the ith OTM option with strike ki and maturity T , and k0 is

the �rst strike available at or below Ft;T . Here �k = (ki+1 � ki�1)=2 for strikes straddling

the ith OTM option, �k = k2 � k1 for the lowest strike and �k = kn � kn�1 for the

highest strike. The downward bias which results from taking a limited strike range, the

so-called ‘truncation error’ is well understood already { see Jiang and Tian [2005]. It can be

considerable, especially in volatile market conditions.
13In our empirical study we use 23 years of daily data of vanilla options of maturities up to one year, and

we found that this condition was violated less than 0.2% of the time.
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Another numerical integration error, the ‘strike-descretisation error’, stems from having

only a discrete set of strikes available within this range. This may be positive or nega-

tive, depending on the shape of the distribution of current option prices: the integral will

be downward (upward) biased when the function is monotonically increasing (decreasing).

Hence, it is under-estimated on the OTM put section (low strike options) over-estimated on

the OTM call section (high strike options). An upward bias arises when the option price

function is negatively skewed, which is typically the case. For instance, Figure 4 depicts the

distribution of FTSE 100 30-day vanilla option prices by strike on 30 March 2007.
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Figure 4: OTM Option Prices as a Function of Strike
30-day vanilla option prices derived via Hermite spline interpolation on implied variances between the
April 2007 and May 2007 expiry dates on 30 March 2007.

Jiang and Tian [2007] favour alternative integration techniques such as cubic splines.

The computation time is much slower than the Riemann sum, but in exceptionally volatile

market conditions the use of cubic splines increases accuracy considerably relative to the

Riemann sum. We now show that cubic spline integration also allows an analytic solution

for the coe�cients when the integral is over equally-weighted option prices. As such we

can apply this formula to implement fair values for arithmetic moment swaps but numerical

solution for the spline coe�cients is still required to implement the fair value for a standard

variance swap.

Fixing T and dropping the subscript for dependence on T , for brevity, the option price

Q(k) is approximated with a cubic polynomial over the interval [ki; ki+1] in the spline. If

14



there are n available strikes on date t for maturity T , each option price may be used as a

knot point in the spline, so Q(k) is divided into n� 1 third order polynomials of the form:

qi(k) = ai + bi(k � ki) + ci(k � ki)2 + di(k � ki)3;

for i = 1 : : : n� 1, and then

knZ

k=k1

Q (k) dk =
n�1X

i=1

ki+1Z

k=ki

qi (k) dk: (12)

When the option prices are equally weighted in the swap rate, as they are for the arith-

metic variance swap, there is a simple analytic formula for the integral based on cubic splines.

This is because the standard spline continuity conditions for Q(k) are a system of n� 2 re-

currence equations in n � 2 unknowns, which are easily solved for the coe�cients ai; bi; ci

and di. Then some straightforward but tedious calculations yield the following for the total

integral on the left:

n�1X

i=1

1
12

(ki+1 � ki) f12ai + (ki+1 � ki) [6bi + (ki+1 � ki) (4ci + 3di (ki+1 � ki))]g : (13)

Now numerical integration is unnecessary because each integral on the right of (12) can be

solved analytically. Given the liquidity of FTSE 100 options and the plethora of strikes

available we are able to evaluate integrals of option prices almost exactly by applying (13)

to the available strikes at each maturity T .14

Table 1 compares the result of the equally-weighted option price integration based on the

lower Riemann sum (as used by exchanges) with the analytic solution (13) for cubic splines.

The �rst two columns distinguish between the calls and puts, where the Riemann sum has

an upward and downward bias, respectively. We consider FTSE 100 options on 30 March
14Once the spline is �tted the computation time is extremely fast, being a simple analytic computation.

For instance, on an Interl Core i7-3770 @ 3.4 GHz processor, with 16GB of memory 1 million integrations
takes 1.08 microseconds, versus 7.27 microseconds for the Riemann sum.
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2007 and 16 October 2008, these dates were chosen to represent relatively calm and volatile

periods respectively (the FTSE 100 dropped by 5.5% on 16 October 2008). In both cases the

lower Riemann sum overestimates the integral for OTM calls and underestimates the integral

over OTM puts because of the negative skew in the price distribution. On 30 March 2007

the net upward bias on the Riemann sum is approximately 0:27%, but on 16 October 2008

(near the height of the banking crisis) the upward bias is greater, at 4046=409216 = 0:9%.

OTM puts OTM calls Total

30 Mar 2007
Lower Riemann Sum 13,825.0 8,337.5 22,162.5

Cubic Spline 15,681.3 6,420.8 22,102.1

16 Oct 2008
Lower Riemann Sum 224,112.5 189,150.0 413,262.5

Cubic Spline 247,295.4 161,920.8 409,216.2

Table 1: Integral Approximation
Here we evaluate the equally-weighted option price integral using the lower Riemann sum and our analytic
integration based on �tting the function using piecewise cubic splines. The Reimann sum has a net upward
bias, due to the negative skewness in the option price function. The dates of the calculations are the 30th

March 2007 and the 16th October 2008, randomly chosen as representative dates for low and high volatility.

5 Numerical Results

This section reports a numerical analysis on the relative accuracy of the GVSR and AVSR,

comparing the truncation and strike-discretisation integration errors when each rate is used

as an approximation to the other. The errors are measured relative to a ‘true’ VSR which

is computed by assuming the option prices are determined by a price process. We suppose

these are generated using two di�erent geometric di�usions, a constant volatility geometric

Brownian motion (GBM) and a stochastic volatility model with prices following the dynamics

16



in Heston [1993], viz.

dSt = (r)Stdt+
p
VtStdW1t;

dVt = � (� � Vt) dt+ �
p
VtdW2t;

hdW1; dW2i = �dt:

These models yield closed-form option prices and thus allow a quick and easy computation of

the fair-value swap rates without the need for simulation. We then compute the estimation

error as the relative di�erence between the fair-value swap rate and the expected variance

under the assumed price process.15 Under GBM the expected variance is given by the

constant volatility assumed in the model. With the Heston model, following Shreve [2004],

the expected variance is:

T�1E
�
�2
t;T
�

=
1� exp(��T )

�T
(V0 � �) + �:

In order to generate a skew in the option price distribution we assume the current under-

lying price S0 is 80; 100 or 120, but keep �xed the option strike range and inter-strike interval.

We set the interest rate to zero and select a volatility of either 20% or 50%. In the Heston

model we set instantaneous volatility v0 at 20% or 50%, the price-volatility correlation is

�xed at �0:6, the long term variance � is either 0.01 or 0.0625, the volatility of volatility �

is 100% and the mean-reversion speed � is either 1 or 5. These ranges are consistent with

previous empirical studies on FTSE 100 dynamics, such as Kaeck and Alexander [2013]. For

brevity, here we only present results for these parameters at the maturities 30 and 180 days

but further results are available on request.

Table 2 reports the relative errors for the AVSR and its approximation derived from the

standard VSR formula under GBM. By using an extreme strike range and a very �ne strike

grid we isolate the GVSR� errors in columns 5 { 8, demonstrating that they increase with
15Both expressed, as is conventional, as an annual volatility. For instance a ‘true’ model swap rate of 20%

and a fair-value rate of 21% the relative error is 5%.
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both maturity and volatility, as expected, but are una�ected by the skew in the distribution

that is captured by setting the initial price at di�erent levels. Columns 5 and 6 report the

errors relative to the true volatility shown in column 2. These are large and negative for

the GVSR�, indicating a substantial downward bias when the standard variance swap rate

is used to approximate the AVSR.

Columns 9 { 12 report the truncation error by restricting the strike range in a manner

that re
ects the strikes typically available in �nancial markets, and here our discussion

focusses on columns 11 and 12 for the AVSR. The truncation error induces a downward bias

in the fair-value hence all errors are negative. They increase with maturity, as expected, as

the distributions have a great range. It can be very high for very unlikely scenarios. For

instance, the last row records an error of more than 10% for the AVSR, but this is at the

six-month maturity and with a high and skewed implied volatility surface.

The last four columns report the strike discretisation errors. These are considerably

higher for the GVSR� but this may be due to the superior numerical techniques that we

employ for the AVSR. The main conclusion to draw from this table is that the estimation

error that arises when the standard variance swap rate is adapted for pricing arithmetic

variance swaps is considerable.

Table 3 reports the relative errors for the GVSR and its approximation AVSR� derived

from the arithmetic VSR formula, this time under the dynamics (14) for the Heston stochastic

volatility model. The Heston model parameters are set as described above and the GVSR in

columns 4 and 5 are computed using (5). Again using an extreme strike range and a very �ne

strike grid to isolate the AVSR� errors in columns 7 and 8, we �nd that they are signi�cantly

negative. By contrast, the errors are minuscule for the GVSR. The truncation errors in the

AVSR� shown in columns 9 and 10, and the strike discretisation errors in columns 13 and 14

are minimal compared with the initial approximation error. The stochastic volatility model

also produces much larger errors for both swaps rates at the 180-day maturity, compared

with Table 2, especially in the presence of a skew.
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The main conclusion to draw from this section is that the two rates AVSR and GVSR

su�er from similar numerical integration and truncation errors, each having a negative trun-

cation bias which increases as the range of strikes narrows, and a positive skew integration

bias that increases with the inter-strike range. Most importantly, the estimation errors that

arise when one swap rate is used to approximate the other are very substantial.

6 Empirical Study

This section compares the empirical characteristics of the term structures of our two alter-

native fair-value formulae for a standard variance swap, i.e. (4) for the GVSR, implemented

using the standard representation (11) of the swap rate, and (10) for the approximation

adapted from the ASVR. Then we compare the 30-day swap rates with market variance

swaps rates, focussing on the six-month period covering the banking crisis. Finally we de-

pict the evolution of the term-structure of arithmetic skewness and kurtosis swap rates,

discussing their empirical characteristics.

Daily closing prices for all vanilla European options traded on the FTSE 100 index from

2 October 1992 until 22 December 2015 were obtained from Optionmetrics (2002 { 2015) and

Euronext (1992 { 2001). They contain in excess of 6 million data points. Although there are

roughly equal numbers of in-the-money (ITM) and out-of-the-money (OTM) option prices,

the trading volume on OTM options was approximately seven times greater than the volume

traded in ITM options and we use only OTM calls and puts for the analysis. Then we apply

standard �ltering methods to remove particularly illiquid and thus stale option prices, and

those with the minimum price. Finally, we apply the numerical procedures explained above,

i.e. the GVSR is evaluated using the Riemann sum (11) and the AVSR is evaluated using

the formula (13) for cubic spline integration.16 The realised characteristics for the two swap

rates are highly correlated, with their daily changes have a correlation of approximately

0.975 over the entire sample, which varies only slightly for di�erent maturities.
16We omit results for the VSR (22) because they are very close to those for (11). They are available from

the authors on request.
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6.1 Features of the VFTSE Term Structure

Figure 5 depicts the VFTSE curve, represented by the GVSR, at maturities 30; 60; : : : ; 270

calendar days between 2 October 1992 and 22 December 2015.17 Both the Asian property

crash of 1997 and the LTCM crisis of 1998 brought the short-term VFTSE to levels exceed-

ing 50%, and at the onset of the banking crisis the VFTSE exceeded 80% on a few days.

However, during the trending equity markets of the post crisis period the VFTSE has mys-

teriously failed to reach those previous heights, despite the mounting uncertainties in the

global economy.18

Table 4 reports the �rst four moments of the empirical distribution of the GVSR and the

AVSR�, again for maturities 30; 60; : : : ; 270 calendar days. This is for daily data over the

whole sample (top section) and separately for the Banking crisis period between September

2008 to March 2009 (lower section). The highest and most variable rate, on average, is

the GVSR. This is due to the net upward Riemann sum bias, as demonstrated in Section

4. As expected, the bias is smaller on average over the entire sample than it is during the

banking crisis when the option price distribution was extremely skewed. The term structure

is quite 
at over the whole sample, but decreasing during the crisis, again as expected. The

skewness and kurtosis of the two rates are similar, both decreasing with maturity because

the volatility term structure becomes 
atter as we move up the curve. During the banking

crisis the skewness and kurtosis are much lower, being standardised higher moments, because

the VSRs were so variable at that time.

Figure 6 depicts the di�erence between the GVSR and the AVSR� over the entire sample,

in grey. Because of the variability, we also show a smoothed version of the di�erence, in

black.19 It is remarkable that the variability in their di�erence increases noticeably after the
17At this granularity di�erences between the GVSR and the AVSR� are not worthy of comment beyond

the descriptive statistics in Table 4. Here we present the AVSR� for the FTSE 100.
18Indeed the VVIX, the volatility of the VIX has (at the time of writing) reached and all time high of

160%. Further discussion of this topic is, unfortunately, not relevant to the subject of this paper.
19Given the high variability in the di�erence in rates, especially since the banking crisis, we smooth this

di�erence using an exponentially weighted moving average with smoothing constant 0.97.
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Figure 6: GVSR { AVSR�
The grey line shows the di�erence between the GVSR and the AVSR� between October 1992 and
December 2015. The black line shows a smoothed time series based on an exponentially weighted moving
average with smoothing constant 0.97.

banking crisis period. Clearly, the relatively high weights that the GVSR calculation places

on deep OTM put options is in
uencing their index, because it is precisely these options

that become less liquid and have more unreliable prices during periods of high uncertainty.

The essential di�erence between the two formulae lies in their weighting on OTM puts,

which have a higher weighting in the standard VSR used by the CBOE (and other exchanges).

The excessive variability that is evident in the di�erence in rates, since the banking crisis,

coincides with a highly uncertain period in equity markets, when trading on OTM puts

becomes extremely volatile. This would also explain the unusually high volatility in the

VVIX index, which is derived from vanilla options on the VIX index in the same way as the

VIX is derived from vanilla options on the S&P 500 index, i.e. using (11). High levels of the

VVIX indicate higher prices for VIX options due to greater uncertainty in the the VIX. Its

record high at the time of writing was almost 170%, when the S&P 500 index fell 11% on

24 August 2015.
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6.2 Comparison of 30-day VSRs in the Banking Crisis

Figure 7 shows three daily time series plots just during the banking crisis, i.e. the 6 month

period September 2008 to end March 2009.20 The upper one depicts three 30-day FTSE 100

variance swap rates: the GVSR (red), its approximation AVSR� (blue) and the BNP Paribas

30-day swap rate (black). The middle graph depicts the di�erence BNP { GVSR and the

lower one the di�erence GVSR { AVSR�.
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Figure 7: Model and Market VSRs
A comparison of the BNP Paribas 30-day VSR with the GVSR the AVSR�, during the banking crisis
between September 2008 and March 2009. The upper graph depicts the rates themselves, and the
di�erences (BNP { GVSR) and (GVSR { AVSR�) are shown in the two lower graphs.

The rates rose rapidly from 20% to about 140% during October 2008, falling again but

remaining very high and variable until the end of the year. Still, they remained above 40%

until the end of March 2009. The middle graph shows by how much the BNP rate exceeds

the GVSR, exhibiting several spikes of 5% or more, as previously observed by Ait-Sahalia

et al. [2014]. This demonstrates the negative jump and discretisation biases which can be

signi�cant during volatile periods, as argued in the introduction. Market rates occasionally

dipped up to 5% below their fair-values during the initial part of the crises, possibly because

liquidity issues in OTM puts would make replication portfolios more highly priced and

therefore increase the GVSR. By the same token, the GVSR exceeded the AVSR� by about
20 Until the banking crisis the divergence between the market rates and their fair-values rarely exceeded

2%. Most of the time the market rates were above their fair values, with the arithmetic approximate rates
being the lowest, as before.
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3% on average, during the six-month sample period. On a few days in October 2008 the

GVSR quote was around 5% greater than the AVSR�. As demonstrated in Section 4.2, and

previously by Jiang and Tian [2007], the positive Riemann-sum bias can be very signi�cant

indeed during crisis periods. Such a great divergence between the two rates may also be

due to another feature not focussed on until this paper, which is the extra reliance of the

standard swap rate formula on illiquid options for which reliable prices are di�cult to �nd.

6.3 Term Structures for Arithmetic Skewness and Kurtosis Swap Rates

In this section we depict time series of term structures of some fair-value arithmetic higher-

moment swap rates, i.e. higher moments of the implied distribution at a variety of maturities.

These are: the arithmetic third-moment swap rate (A3SR), and fourth-moment rate (A4SR);

and the equivalent swap rates for skewness (ASSR) and (excess) kurtosis (AKSR). These

are implemented via replication portfolios for the centralised moments of the risk neutral

density for ST . Following derivations in the Appendix we compute the option price integrals

In =
R1

0 knQ (k; T ) dk and then set: A3SR = 2
�

3I1�3Ft;TI0 +(Ft;T � k0)3
�
; and A4SR =

3
�

4I2�8Ft;TI1 +4F 2
t;TI0�(Ft;T � k0)4

�
. Standardizing these yields the skewness swap rate

ASSR = AVSR�3=2A3SR; (14)

and

AKSR = AVSR�2A4SR� 3; (15)

the excess kurtosis swap rate.

Table 5 reports descriptive statistics for the FTSE 100 implied higher moments. As before

we exhibit two tables, one for the entire sample and one for the banking crisis between

1 September 2008 and 31 March 2009. These results con�rm that the FTSE 100 equity

index returns are negatively skewed, less so as maturity increases. The heavier left tail in

the short-term FTSE 100 forward implied distribution indicates investor’s fear of a sudden

correction during trending markets. However, during the banking crisis the implied skewness
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decreases, and the implied excess kurtosis is only slightly positive in the short-term, being

negative further up the curve.

Figure 8 depicts the entire ASSR term structure curves for the FTSE 100, daily. Crises

periods when the implied skewness becomes high and positive are notable in 1997 and 1998,

with the Asian property crisis and the enormous losses made by LTCM, respectively. Of

course, this also occurs at the onset of the banking crisis in September 2008. While the

variance term structure in Figure 5 has a persistent contango pattern, most evident in recent

years, the skew term structure in Figure 5 is relatively 
at but extremely variable, especially

since the banking crisis when it 
uctuates even over term in a less correlated manner.

Similarly, Figure 9 depicts the term structure for (excess) implied kurtosis of the FTSE

100. By contrast with the lower-moment swap rates, the implied excess kurtosis is negligible

except at very near-term maturities. The implied density has exceedingly heavy tails during

the banking crisis. But since mid 2012 it has, rather disconcertingly, been even higher on

many days, frequently reaching values in excess of 20. At these times excess kurtosis is also

signi�cant a longer maturities along the term structure.

6.4 Empirical Correlations

Finally, we analyse the correlations between the daily changes in the implied variance of

the price distribution and the corresponding changes in the higher central moments that are

captured by A3SR and A4SR.21 Figure 10 reports the results, based on the entire sample

(left) and separately over the banking crisis period (right). The potential to di�erentiate

variance risk by entering arithmetic higher-moment swaps will be evidenced by low, even

negative, values for these correlations.

Predictably, since they both re
ect the range in the implied density, there is a positive

correlation between the variance swap rate AVSR and the kurtosis swap rate AKSR, at all

maturities. By contrast, the correlations between the skewness rate ASSR and the other
21Correlations between AVSR and the standardized higher-moment rates ASSR and AKSR are less infor-

mative because they are in
uenced by the use of AVSR to standardize these moments. As such, they are
obviously negative and, by the same token, the ASSR and AKSR have a high positive correlation.
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two are typically negative, at least at shorter maturities. During the banking crisis, shown

in the right-hand panel of Figure 10, the AVSR correlations increase: only marginally for

the AVSR-AKSR, but the correlations between the AVSR and ASSR increase on by about

0.5, in absolute terms, on average over the whole term structure. Now they are almost all

positive, and short-term AVSRs have a high positive correlation with AVSRs at the longer

end of the term structure.

Over the entire sample the 30-day AVSR-A3SR correlation is �0:45 and during the crisis

period it is +0:19. Hence, the correlation between the variance and skewness 30-day swap

rates still remains low during the banking crisis. We conclude that skewness swaps represent

quite a di�erent source for return than variance risk.

7 Conclusions

This paper examines the fair value of an arithmetic variance swap for realised variance

de�ned as the sum of the squared price changes rather than the sum of squared changes of

their logarithms. It is model-free in the sense that it only requires the forward price to follow

a martingale, and a derivation using the moment generating function of the risk-neutral price

density yields fair-values for the implied variance and higher moments of the forward price.

As such it is directly applicable to pricing variance swaps on spreads, or interest rates or

electricity prices any other instrument which can become zero or negative.

This approach has some advantages over the fair-value variance swap formula used by

exchanges to price standard variance swaps. The new de�nition for realised variance satis�es

the aggregation property introduced by Bondarenko [2014] and Neuberger [2012]. As such

its fair value does not su�er from discrete-monitoring or jump biases, unlike that for the

standard realised variance. Also, the standard variance swap rate requires weighting of

option prices by the inverse of the square of their strike, making the resulting integration

especially sensitive to liquidity risk on low strike options, and errors from their frequently

stale prices. By contrast, the arithmetic variance swap rate uses an equally-weighted integral
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over option prices.

A numerical study analyses the truncation and strike-discretisation biases introduced by

both formulae, at both 30-day and 180-day swap maturities. We conclude that one should

not use one fair-value to approximate the other because the errors are considerable.

Using 23 years of daily data on FTSE 100 options, we construct constant-maturity in-

vestable empirical data spanning 23 years, free from artefactual distortions such as varying

maturity or autocorrelation. We apply Hermite spline interpolation over variance to obtain

arbitrage-free constant-maturity option prices. We compute the fair value arithmetic swap

rate using an analytic formula for the coe�cients of the cubic splines. We also compute

the standard variance swap rate, following the numerical methods employed by the CBOE,

and then compare this empirically with the approximate rate for a standard variance swap

derived from the arithmetic swap rate.

We observe substantial empirical di�erences between these swap rates during turbulent

market periods when the biases in variance swap rates are particularly pronounced. Never-

theless, the implied legs of the two variance swaps are very highly correlated. The average

correlation across the term structures for the daily changes in standard and arithmetic rates

is 83%, being only slightly higher at short maturities and decreasing as they move up the

curve. The realised legs of the two swaps have also been extremely highly correlated: over

the same sample for the FTSE 100 futures, the daily changes in realised variance have a

correlation which also averaged 83% over the term structure, and again it decreases only

slightly with maturity.22 Thus, variance swap issuers would be capturing very similar pre-

mia by switching from standard to arithmetic variance swaps. The unbiased, more 
exible

and more broadly applicable ‘arithmetic’ de�nition for realised variance has many qualities

superior to the standard de�nition.

Finally, we replicate the term structure for arithmetic third- and fourth-moment swap

rates, observing their features. Correlations between the 30-day implied variance and third
22Correlations between the levels of the two implied/realised legs are, of course, far higher, at 97.5% on

average over our sample.
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moment are low and negative, overall, although they do rise during turbulent periods. Nev-

ertheless, variance and third-moment risks do appear to capture di�erent sources of return.
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8 Appendix
8.1 Arithmetic Higher-Moment Swap Rates

The risk-neutral moment generating function (MGF) for ST is de�ned asMST
(�) = E [exp(�ST )] :

The nth moment of the distribution of ST is obtained by taking the nth derivative of the MGF
with respect to � and setting � = 0. We start with the well-known result of Breeden and
Litzenberger [1978], writing

MST
(�) =

Z 1

k=0
e�k

@2 ~C (k; T )
@k2 dk:

Next we use the following properties of call option prices:

lim
k!0

~C (k) = ST ; lim
k!+1

~C (k) = 0; lim
k!0

@ ~C (k)
@k

= �1 and lim
k!+1

@ ~C (k)
@k

= 0:

Integrating by parts twice yields:

MST
(�) = e� k

@ ~C (k; T )
@k

�����

1

0

� �
1Z

k=0

e�k
@ ~C (k; T )

@k
dk

= e�(+1) @ ~C (k; T )
@k

�����
k=+1

� e��0
@ ~C (k; T )

@k

�����
k=0

� �
+1Z

k=0

e�k
@ ~C (k; T )

@k
dk

= 0� (�1)� �
+1Z

k=0

e�k
@ ~C (k; T )

@k
dk

= 1� �e�k ~C (k; T )
���
1

0
+ �2

1Z

k=0

e�k ~C (k; T ) dk

= 1� �e�(+1) ~C (k; T )
���
k=+1

+ �e��0 ~C (k; T )
���
k=0

+ �2

+1Z

k=0

e�k ~C (k; T ) dk

= 1� 0 + �E [ST ] + �2

+1Z

k=0

e�k ~C (k; T ) dk

= 1 + �Ft;T + �2

1Z

k=0

e�k ~C (k; T ) dk;
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i.e. the MGF is:

MST
(�) = 1 + �Ft;T + �2

1Z

k=0

e�k ~C (k; T ) dk: (16)

Thus

E
�
Sn

T

�
=

dnMST
(�)

d�n

����
�=0

=
Ft;T1fn=1g + n (n� 1)

1R

k=0
e�kkn�2C (k) dk + 2n�

1R

k=0
e�kkn�1C (k) dk+

�2
1R

k=0
e�kknC (k) dk

��������
�=0

For replication in terms of OTM option prices alone we use the put-call parity relationship:

MST
(�) = 1 + �Ft;T + �2

1Z

k=0

e�k ~C (k; T ) dk

= 1 + �Ft;T + �2

k0Z

k=0

e�k
h
Ft;T � k + ~P (k; T )

i
dk +

1Z

k=k0

e�k ~C (k; T ) dk

= 1 + �Ft;T + �Ft;T
�
e�k0 � 1

�
�
�
1 + e�k0 (�k0 � 1)

�
+ �2

k0Z

k=0

e�k ~P (k; T ) dk

+
1Z

k=k0

e�k ~C (k; T ) dk:

Hence, an alternative form of (7) is

MST
(�) = e�k0 (1 + �Ft � �k) + �2

0

@
1Z

k=0

e�k ~Q (k; T ) dk

1

A ; (17)

where
~Q (k; T ) =

(
~P (k; T jSt; t) k < S�t ;
~C (k; T jSt; t) k � S�t :

(18)

Note that one possible discretisation of (16) is

MST
(�) = e�FT + �2er(T�t)

X

i

e�ki ~Q (ki; T ) �ki: (19)
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Based on the above representation we have:

�t;T = E (ST ) =
dMST

(�)
d�

����
�=0

= Ft;T

=
e�k0 (Ft;T � k0) + e�k0k0 (1 + �Ft;T � �k) + 2�

1R

k=0
e�k ~Q (k; T ) dk

+�2
1R

k=0
e�kk ~Q (k; T ) dk

��������
�=0

The second central moment is:

E
�
S2

T

�
=

d2MST
(�)

d�2

�����
�=0

=
2e�k0 (Ft;T � k0) k0 + e�k0k2

0 (1 + � (Ft;T � k0)) + 2
1R

k=0
e�k ~Q (k; T ) dk

+4�
1R

k=0
e�kk ~Q (k; T ) dk + �2

1R

k=0
e�kk2 ~Q (k; T ) dk

��������
�=0

= 2 (Ft;T � k0) k0 + k2
0 + 2

1Z

k=0

~Q (k; T ) dk:

Thus,

�2
t;T = 2 (Ft;T � k0) k0 + k2

0 + 2
1Z

k=0

~Q (k; T ) dk � F 2
t:T

= 2
1Z

k=0

~Q (k; T ) dk � (Ft;T � k0)2 : (20)

The third central moment is:

E
�
S3

T

�
=

@3MST
(�)

@�3

�����
�=0

=
3e�k0k2

0 (Ft;T � k0) + e�kk3
0 (1 + �Ft;T � �k0) + 6

1R

k=0
e�kk ~Q (k; T ) dk+

6�
1R

k=0
e�kk2 ~Q (k; T ) dk + �2

1R

k=0
e�kk3 ~Q (k; T ) dk

��������
�=0

= 3 (Ft;T � k0) k2
0 + k3

0 + 6
1Z

k=0

k ~Q (k; T ) dk:
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This yields the price skewness:

�t;T = 2�1=2

�
(F � k0)3 � 3Ft;T

1R

k=0

~Q (k; T ) dk + 3
1R

k=0
k ~Q (k; T ) dk

�

� 1R

k=0

~Q (k; T ) dk � (Ft;T � k0)2
�3=2 : (21)

Finally, the fourth central moment is:

E
�
S4

T

�
=

@4MST
(�)

@�4

�����
�=0

=
4e�k0k3

0 (Ft;T � k0) + e�kk4
0 (1 + �Ft;T � �k0) + 12

1R

k=0
e�kk2 ~Q (k; T ) dk

+8�
1R

k=0
e�kk3 ~Q (k; T ) dk + �2

1R

k=0
e�kk4 ~Q (k; T ) dk

��������
�=0

= 4 (Ft;T � k0) k3
0 + k4

0 + 12
1Z

k=0

k2 ~Q (k; T ) dk:

Thus the price kurtosis is:

�t;T = �3
(Ft;T � k0)4 � 4Ft;T

1R

k=0

~Q (k; T ) dk + 8Ft;T
1R

k=0
k ~Q (k; T ) dk � 4

1R

k=0
k2 ~Q (k; T ) dk

2
1R

k=0

~Q (k; T ) dk � (Ft;T � k0)2

Summarising, we can set In =
R1

0 knQ (k; T ) dk to derive succinct expressions for the �rst
four moments of ST , viz.:

�2
t;T = 2I0 � (Ft;T � k0)2 ;

�t;T = 2
�

3I1 � 3Ft;TI0 + (Ft;T � k0)3
�
��3
t;T ;

�t;T = 3
�

4I2 � 8Ft;TI1 + 4F 2
t;TI0 � (Ft;T � k0)4

�
��4
t;T :

Only three price integrals are required and, as the order n of the moment increases these
integrals place decreasing relative weight on OTM puts.
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8.2 An Alternative GVSR, Bakshi et al. [2003]

Using a fourth-order Taylor approximation of the moment generating function of the under-
lying price at maturity T , Bakshi et al. [2003] derive the following approximate expression
for the risk-neutral expected value of the contract which pays the squared log return:

Vt;T = 2er(T�t)
Z 1

0

�
1 + ln

�S�t;T
k

��
Qt(k; T )

k2 dk:

This yields a second formula for the fair-value VSR, viz.

~Kt;T = (T � t)�1 �Vt;T � �2
t;T
�
; (22)

where �t;T is the risk-neutral expected value of the log return.
Assuming a jump-free continuous martingale underlying price process, Britten-Jones and

Neuberger [2000] shows how the risk-neutral expectation of the quadratic variation between
two �nite time intervals can be estimated using observable option prices. Both Carr and
Madan [2002] and Gatheral [2006] express this expectation as the �rst moment of the log
return. Carr and Lee [2003] and Jiang and Tian [2005] generalise this to di�erent price
process dynamics, the latter showing that (3) is identical to the unconditional centralised
second moment of the log returns, as derived in (22). In the same vein, Rompolis and
Tzavalis [2013] derive the risk-neutral characteristic function of any random pay-o� de�ned
on a semi-martingale and show that (22) may be derived from this when the pay-o� is the
log return. In the absence of jumps, the two VSRs are approximately equivalent.
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Entire Sample (12/10/92 - 22/12/15)

Maturity 30 60 90 120 150 180 210 240 270

GVSR

Mean 20.02 20.08 20.13 20.44 20.81 20.89 20.84 20.76 20.69
StDev 8.395 7.833 7.256 7.044 6.981 6.789 6.593 6.433 6.288

Skewness 1.875 1.549 1.317 1.223 1.154 1.053 0.969 0.913 0.877
Kurtosis 5.145 3.159 1.959 1.651 1.413 1.004 0.659 0.431 0.315

AVSR �

Mean 19.27 19.18 19.09 19.14 19.30 19.25 19.11 18.97 18.85
StDev 7.969 7.245 6.646 6.361 6.237 6.030 5.829 5.669 5.531

Skewness 1.814 1.531 1.336 1.279 1.242 1.161 1.097 1.051 1.017
Kurtosis 4.869 3.181 2.156 1.967 1.848 1.512 1.228 1.036 0.933

Banking Crisis (01/09/08 - 31/03/09)

Maturity 30 60 90 120 150 180 210 240 270

GVSR

Mean 45.31 42.72 39.72 39.17 39.93 39.19 38.16 37.37 36.9
StDev 11.82 9.655 8.023 8.09 7.671 6.918 6.326 5.933 5.668

Skewness 0.581 0.134 -0.006 -0.073 -0.411 -0.593 -0.736 -0.885 -1.038
Kurtosis 0.254 -0.392 -0.656 -0.552 -0.388 -0.169 -0.032 0.105 0.233

AVSR �

Mean 43.31 40.36 37.59 36.66 37.01 36.29 35.35 34.60 34.09
StDev 10.950 8.818 7.389 7.335 6.988 6.357 5.857 5.544 5.309

Skewness 0.603 0.191 0.010 -0.051 -0.338 -0.512 -0.653 -0.766 -0.880
Kurtosis 0.384 -0.144 -0.414 -0.435 -0.320 -0.127 -0.012 0.076 0.163

Table 4: VFTSE Descriptive Statistics
First four moments of the VSTE term structure distribution over the historical sample, 12 October 1992 to
22 December 2015. The lower part of the table shows the moments during the banking crisis period,
September 2008 to March 2009. Two sets of moments are calculated in each case, the moments of the
GVSR (4) and those of the AVSR�, (??).
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Entire Sample (12/10/92 - 22/12/15)

Maturity 30 60 90 120 150 180 210 240 270

ASSR

Mean -1.06 -0.98 -0.89 -0.89 -0.90 -0.87 -0.82 -0.77 -0.72
StDev 0.485 0.446 0.419 0.396 0.400 0.404 0.398 0.387 0.382

Skewness -1.104 -0.274 0.098 0.224 0.323 0.425 0.527 0.625 0.612
Kurtosis 2.670 0.599 -0.053 -0.128 -0.160 -0.102 0.027 0.236 0.280

AKSR

Mean 3.22 2.24 1.55 1.40 1.48 1.24 0.94 0.67 0.44
StDev 3.133 2.222 1.768 1.643 1.614 1.533 1.407 1.286 1.203

Skewness 2.779 1.952 1.181 1.000 0.749 0.606 0.493 0.404 0.418
Kurtosis 12.030 8.267 2.382 1.637 0.242 -0.226 -0.501 -0.641 -0.493

Banking Crisis (01/09/08 - 31/03/09)

Maturity 30 60 90 120 150 180 210 240 270

ASSR

Mean -0.60 -0.47 -0.32 -0.30 -0.28 -0.22 -0.15 -0.09 -0.05
StDev 0.184 0.230 0.271 0.237 0.177 0.175 0.173 0.171 0.177

Skewness 0.169 0.172 0.247 0.122 0.077 0.168 0.113 0.149 0.278
Kurtosis -0.201 -0.240 -0.002 0.133 0.032 -0.039 0.018 -0.037 -0.138

AKSR

Mean 0.46 -0.23 -0.71 -0.83 -0.59 -0.62 -0.70 -0.74 -0.75
StDev 0.580 0.493 0.653 0.647 0.333 0.276 0.244 0.201 0.169

Skewness 0.096 0.574 0.335 0.230 0.986 0.702 0.720 0.734 0.600
Kurtosis -0.447 0.301 -1.105 -0.502 1.176 0.316 0.237 0.502 0.472

Table 5: ASSR and AKSR Descriptive Statistics, FTSE 100
First four moments of the ASSR and AKSR term structure distribution over the historical sample, 12
October 1992 to 22 December 2015. The lower part of the table shows the moments during the banking
crisis period, September 2008 to March 2009. Two sets of moments are calculated in each case, the
moments of the ASSR (14) and those of the AKSR, (15).
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