
This version is available from Sussex Research Online: http://sro.sussex.ac.uk/id/eprint/62065/

This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher’s version. Please see the URL above for details on accessing the published version.

Copyright and reuse:
Sussex Research Online is a digital repository of the research output of the University.

Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available.

Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.
Saving the World’s Terrestrial Megafauna

William J. Ripple\(^1\), Guillaume Chapron\(^2\), José Vicente López-Bao\(^3\), Sarah M. Durant\(^4\), David W. Macdonald\(^5\), Peter A. Lindsey\(^6,7\), Elizabeth L. Bennett\(^8\), Robert L. Beschta\(^1\), Jeremy T. Bruskotter\(^9\), Ahimsa Campos-Arceiz\(^10\), Richard T. Corlett\(^11\), Chris T. Darimont\(^12\), Amy J. Dickman\(^5\), Rodolfo Dirzo\(^13\), Holly T. Dublin\(^8,14\), James A. Estes\(^15\), Kristoffer T. Everatt\(^16\), Mauro Galetti\(^17\), Varun R. Goswami\(^18\), Matt W. Hayward\(^16,19,20\), Simon Hedges\(^8\), Michael Hoffmann\(^21\), Luke T. B. Hunter\(^6\), Graham I. H. Kerley\(^16\), Mike Letnic\(^22\), Taal Levi\(^23\), Fiona Maisels\(^8,24\), John C. Morrison\(^25\), Michael Paul Nelson\(^1\), Thomas M. Newsome\(^1,26,27,28\), Luke Painter\(^1\), Robert M. Pringle\(^29\), Christopher J. Sandom\(^30\), John Terborgh\(^31\), Adrian Treves\(^32\), Blaire Van Valkenburgh\(^33\), John A. Vucetich\(^34\), Aaron J. Wirsing\(^28\), Arian D. Wallach\(^35\), Christopher Wolf\(^1\), Rosie Woodroffe\(^4\), Hillary Young\(^36\), Li Zhang\(^37\)

\(^1\) Global Trophic Cascades Program, Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR 97331, USA

\(^2\) Department of Ecology, Swedish University of Agricultural Sciences, 73091 Riddarhytta, Sweden

\(^3\) Research Unit of Biodiversity (UO/CSIC/PA), Oviedo University, 33600 Mieres, Spain.

\(^4\) Institute of Zoology, Zoological Society of London, Regents Park, London, NW1 4RY, UK

\(^5\) Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, The Recanati-Kaplan Centre, Tubney House, Tubney, Abingdon OX13 5QL, UK

\(^6\) Panthera, 8 West 40th Street, 18th Floor, New York, NY 10018, USA

\(^7\) Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria, Gauteng, South Africa

\(^8\) Wildlife Conservation Society, 2300 Southern Blvd., Bronx, NY 10460, USA.

\(^9\) School of Environment & Natural Resources, The Ohio State University, 210 Kottman Hall, 2021 Coffey Rd., Columbus, OH 43214, USA

\(^10\) School of Geography, The University of Nottingham Malaysia Campus, Jalan Broga, Semenyih 43500, Kajang, Selangor, Malaysia

\(^11\) Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, China

\(^12\) Department of Geography, University of Victoria, Victoria, BC, V8W 2Y2, Canada; Raincoast Conservation Foundation, Bella Bella, BC, V0T 1B0, Canada
13 Department of Biology, Stanford University, Stanford, CA 94305, USA
14 IUCN Species Survival Commission, African Elephant Specialist Group, P.O. Box 68200, Nairobi, Kenya 00200
15 Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA. 95060, USA
16 Centre for African Conservation Ecology, Nelson Mandela Metropolitan University, P O Box 77000, NMMU 6031, Port Elizabeth, South Africa
17 Departamento de Ecologia, Universidade Estadual Paulista – UNESP, 13506-900 Rio Claro, SP, Brazil
18 Wildlife Conservation Society, India Program, Bangalore 560070, India;
19 Schools of Biological Science; and Environment, Natural Resources and Geography, Bangor University, Deiniol Road, Bangor, Gwynedd, LL572UW, U.K.;
20 Centre for Wildlife Management, University of Pretoria, 0002 Pretoria, South Africa.
21 IUCN Species Survival Commission, International Union for Conservation of Nature, 28 rue Mauverney, CH-1196 Gland, Switzerland
22 Centre for Ecosystem Science, University of New South Wales, Sydney, 2052, Australia
23 Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR 97331, USA
24 School of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK.
25 World Wildlife Fund-US, 42 Sexton Avenue, Hope, ME 04847, USA
26 Desert Ecology Research Group, School of Biological Sciences, University of Sydney, NSW 2006, Australia
27 Deakin University, Geelong, Australia. School of Life and Environmental Sciences, Centre for Integrative Ecology, (Burwood Campus).
28 School of Environmental and Forest Sciences, Box 352100, University of Washington, Seattle, WA 98195, USA
29 Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
30 School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
31 Nicholas School of the Environment and Earth Sciences, Duke University, P. O. Box 90381, Durham, NC 27708, USA
From the late Pleistocene to the Holocene, and now the so called Anthropocene, humans have been driving an ongoing series of species declines and extinctions (Dirzo et al. 2014). Large-bodied mammals are typically at a higher risk of extinction than smaller ones (Cardillo et al. 2005). However, in some circumstances terrestrial megafauna populations have been able to recover some of their lost numbers due to strong conservation and political commitment, and human cultural changes (Chapron et al. 2014). Indeed many would be in considerably worse predicaments in the absence of conservation action (Hoffmann et al. 2015). Nevertheless, most mammalian megafauna face dramatic range contractions and population declines. In fact, 59% of the world’s largest carnivores (≥ 15 kg, n = 27) and 60% of the world’s largest herbivores (≥ 100 kg, n = 74) are classified as threatened with extinction on the International Union for the Conservation of Nature (IUCN) Red List (supplemental table S1 and S2). This situation is particularly dire in sub-Saharan Africa and Southeast Asia, home to the greatest diversity of extant megafauna (figure 1). Species at risk of extinction include some of the world’s most iconic animals—such as gorillas, rhinos, and big cats (figure 2 top row)—and, unfortunately, they are vanishing just as science is discovering their essential ecological roles (Estes et al.)
Here, our objectives are to raise awareness of how these megafauna are imperiled (species in supplemental table S1 and S2) and to stimulate broad interest in developing specific recommendations and concerted action to conserve them.

Megafauna provide a range of distinct ecosystem services through top-down biotic and knock-on abiotic processes (Estes et al. 2011). Many megafauna function as keystone species and ecological engineers, generating strong cascading effects in the ecosystems in which they occur. These species also provide important economic and social services. For example, ecotourism is the fastest growing subsector of tourism in developing countries (UNEP 2013), and megafauna are a major draw for these tourists. Besides contributing considerable revenue to conservation, wildlife-based tourism can contribute significantly to education, economies, job creation, and human livelihoods.

Many of the surviving mammalian megafauna remain beset by long-standing and generally escalating threats of habitat loss, persecution, and exploitation (Ripple et al. 2014, 2015). Large mammals are extremely vulnerable to these threats due to their large area requirements, low densities (particularly for carnivores), and relatively “slow” life history traits (Wallach et al. 2015). Various anthropogenic forces such as deforestation, agricultural expansion, increasing livestock numbers, and other forms of human encroachment have severely degraded critical habitat for megafauna by increased fragmentation or reduced resource availability. Although some species show resilience by adapting to new scenarios under certain conditions (Chapron et al. 2014), livestock production, human population growth and cumulative land use impacts can trigger new conflicts or exacerbate existing ones, leading to additional declines. According to the Food and Agriculture Organization, as of 2014, there were an estimated 3.9 billion ruminant livestock on Earth compared with ~8.5 million individuals of 51 of 74 species of wild
megaherbivores for which population estimates are available within their native ranges (supplemental table S2), a magnitude difference of ~400 times.

The current depletion of megafauna is also due to overhunting and persecution: shooting, snaring, and poisoning by humans ranging from individuals to governments, as well as by organized criminals and terrorists (Darimont et al. 2015). Megafauna are killed for meat and body parts for traditional medicine and ornaments, or because of actual or perceived threats to humans, their crops or livestock. Meat and body parts are sold locally, to urban markets, or traded regionally and internationally. Striking instances include the slaughter of thousands of megafauna such as African elephants (*Loxodonta africana*) for their ivory, rhinoceroses for their horns, and tigers (*Panthera tigris*) for their body parts. In addition, many lesser-known megafauna species (figure 2, bottom row) are now imperiled (supplemental table S1 and S2).

Most of the world’s megaherbivores remain poorly studied and this knowledge gap makes conserving them even more difficult (Ripple et al. 2015).

Under a business-as-usual scenario, conservation scientists will soon be busy writing obituaries for species and subspecies of megafauna as they vanish from the planet. In fact, this process is already underway: eulogies have been written for Africa’s western black rhinoceros (*Diceros bicornis longipes*) and the Vietnamese subspecies of the Javan rhinoceros (*Rhinoceros sondaicus annamiticus*) (IUCN 2015). Epitaphs will probably soon be needed for scimitar-horned oryx (*Oryx dammah*), now extinct in the wild; the kouprey (*Bos sauveli*), last seen in 1988; and the northern white rhinoceros (*Ceratotherium simum cottoni*), which now numbers three individuals (IUCN 2015). The Sumatran rhino (*Dicerorhinus sumatrensis*) is already extinct in the wild in Malaysia and is very close to extinction in Indonesia with the population collapsing during the last 30 years from over 800 to fewer than 100 (supplemental table 2). The Javan rhino
(Rhinoceros sondaicus) is down to a single population of ~58 in a single reserve (supplemental table 2). The Critically Endangered Bactrian camel (Camelus ferus) and African wild ass (Equus africanus) are not far behind. Even in protected areas, megafauna are increasingly under assault. For example, in West and Central Africa, several large carnivores [including lions (Panthera leo), African wild dogs (Lycaon pictus), and cheetahs (Acinonyx jubatus)] have experienced recent severe range contractions and have declined markedly in many protected areas (IUCN 2015).

Although many of the general causes and mechanisms of declines are well identified and recognized, this understanding has not translated into adequate conservation action. Some of the existing mammal prioritization schemes could be incorporated into a comprehensive global strategy for conserving the largest mammals (Rondinini et al. 2011). Increasing prioritization and political will to conserve megafauna—and actions to restore or reintroduce them in areas where they have declined or been extirpated (such as plans to reintroduce scimitar-horned oryx into Chad and to rehabilitate the entire Gorongosa ecosystem in Mozambique)—are urgently needed. We suggest that the problem has two parts: i) a need to further and more effectively implement, expand, and refine current interventions at relevant scales and; ii) a need for large-scale policy shifts and global increases in funding for conservation to alter the framework and ways in which people interact with wildlife.

In order to save declining species, there is a need to increase global conservation funding by at least an order of magnitude (McCarthy et al. 2012). Without such a transformation, there is a risk that many of the world’s most iconic species may not survive to the 22nd Century. We must not go quietly into this impoverished future. Rather, we believe it is our collective responsibility, as scientists who study megafauna, to act to prevent their decline. We therefore present a call to the
broader international community to join together in conserving the remaining terrestrial megafauna (see declaration in Box 1).

From declaration to action

Social and political commitment to provide sufficient protection across the vast landscapes needed for the conservation of the world’s megafauna is increasingly required. International frameworks and conventions such as the Convention on Biological Diversity (CBD), the Convention on the Conservation of Migratory Species of Wild Animals (CMS), and the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) have had some success in safeguarding species and regions. However, the decisions of these conventions are not always binding, and they will require substantially increased political will and financial support if they are to be effective in the critical task of securing the survival of the world’s megafauna. Some regional legal instruments such as the CMS Gorilla Agreement and the Global Tiger Initiative incorporate environmental or biodiversity commitments, and are playing a growing role in protecting biodiversity. International agreements are often well-placed for enforcing regional frameworks for megafauna; examples include the African Elephant Action Plan and the regional conservation strategy for cheetahs and African wild dogs. However, implementation of such initiatives requires financial resources and capacity that are seldom available at those locations where the highest diversity of megafauna remains (figure 1).

Therefore, the onus is on developed countries, which have long ago lost most of their megafauna, to not only embark on conservation and restoration programs on their own lands, but also support conservation initiatives in those nations where diverse megafauna still persist. For conservation efforts to be successful, actions should be taken at all levels by authorities that have the public interest in mind, and to work to secure the continued existence of these species.
Successfully conserving megafauna requires bold social, political, and financial commitments from nations around the world. Through understanding the value and importance of local human needs, and by combining international financial support with a coordinated multilateral approach to conservation, it may be possible to rescue megafauna from the brink of extinction. As biologists, ecologists and conservation scientists, we are mindful that none of our arguments are new, and that our prescriptions are far easier to write out than to accomplish. However, our objective in presenting them together here is to demonstrate a consensus of opinion amongst the global community of scientists who study and conserve these animals, thereby emphasizing to the wider world the gravity of the problem. Our hope is that this declaration, with the proposed actions and list of signatories, will attract the public and media attention that this issue requires to galvanize opinion, catalyze action, and establish new funding mechanisms. Comprehensive actions to save these iconic wildlife species will help to curb an extinction process that appears to have begun with our ancestors in the late Pleistocene.

Acknowledgements

We thank L. West for work on the estimated population sizes in the appendices.

Supplemental material

Supplemental table S1: The 27 large terrestrial carnivores (order Carnivora) with average masses of at least 15 kg. In addition to common and scientific names, average species masses (kg), estimated population sizes (sources: IUCN 2015, Ripple et al. 2014), IUCN Red List threat
category, population trends, and years assessed are shown. Red List categories are: LC (Least Concern), NT (Near Threatened), VU (Vulnerable), EN (Endangered), CR (Critically Endangered). Population trends are: Dec (decreasing), Stable, Inc (increasing), Unk (unknown).

Supplemental table S2: The 74 large terrestrial herbivores with average masses of at least 100 kg. In addition to common and scientific names, average species masses (in kg), estimated population sizes (sources: IUCN 2015, Ripple et al. 2015), IUCN Red List category, population trends, and years assessed are shown. IUCN Red List categories are: LC (Least Concern), NT (Near Threatened), VU (Vulnerable), EN (Endangered), CR (Critically Endangered), EW (Extinct in the Wild). Population trends are: Dec (decreasing), Stable, Inc (increasing), Unk (unknown).
References Cited

Cardillo RN, Mace GM, Jones KE, Bielby J, Bininda-Emonds ORP, Sechrest W, Orme DL,

Purvis A. 2005. Multiple causes of high extinction risk in large mammal species. Science

309: 1239–1241.

Chapron G et al. 2014. Recovery of large carnivores in Europe’s modern human-dominated

Dirzo, R., Young, H.S., Galetti, M., Ceballos, G., Isaac, N.J.B. & Collen, B. 2014. Defaunation

difference conservation makes to extinction risk of the world’s ungulates. Conservation

Biology 29: 1303–1313.

McCarthy DP et al. 2012. Financial costs of meeting global biodiversity conservation targets:

Ripple WJ et al. 2014. Status and ecological effects of the world’s largest carnivores. Science

343: 1241484.

Ripple WJ et al. 2015. Collapse of the world’s largest herbivores. Science Advances 1:

e1400103.

Philosophical Transactions of the Royal Society B: Biological Sciences 366: 2722–2728.

Figures

Figure 1. Richness map of (a) number of megafaunal species, (b) number of declining megafauna species, and (c) number of threatened megafaunal species in their native ranges. Megafauna are defined as terrestrial large carnivores (>15 kg) and large herbivores (>100 kg). Threatened includes all species categorized as Vulnerable, Endangered or Critically Endangered on the IUCN Red List (see supplemental tables).

Figure 2. Photos of well-known species, top row left to right: Western gorilla (*Gorilla gorilla*) (CR), black rhino (*Diceros bicornis*) (CR), Bengal tiger, (*Panthera tigris tigris*) (EN); and lesser-known species, bottom row left to right: African wild ass (*Equus africanus*) (CR), Visayan warty pig (*Sus cebifrons*) (CR), banteng (*Bos javanicus*) (EN). Photo credits: Julio Yeste, Four Oaks, Dave M. Hunt, Mikhail Blajenov, KMW Photography, and Kajornyot.
Figure 1.
Figure 2.
Box 1. A declaration to save the world’s terrestrial megafauna.

We conservation scientists:

1. **Acknowledge** that most of the terrestrial megafauna species are threatened with extinction and have declining populations. Some megafauna species that are not globally threatened nonetheless face local extinctions or have critically endangered subspecies.

2. **Appreciate** that ‘business as usual’ will result in the loss of many of the Earth’s most iconic species.

3. **Understand** that megafauna have ecological roles that directly and indirectly affect ecosystem processes and other species throughout the food-web; failure to reverse megafaunal declines will disrupt species interactions with negative consequences for ecosystem function, biological diversity, and the ecological, economic, and social services that these species provide.

4. **Realize** that megafauna are epitomized as a symbol of the wilderness, exemplifying the public’s engagement in nature, and that this is a driving force behind efforts to maintain the ecosystem services they can provide.

5. **Recognize** the importance of integrating and better aligning human development and biodiversity conservation needs through engagement and support of local communities in developing countries.

6. **Propose** that funding agencies and scientists increase conservation research efforts in developing countries, where most threatened megafauna occur. Specifically, there is a need to increase the amount of research directed at finding solutions for the conservation of megafauna, especially for lesser-known species.

7. **Request** the help of individuals, governments, corporations, and nongovernmental organizations to stop practices that are harmful to these species and to actively engage in helping to reverse declines in megafauna.

8. **Strive** for increased awareness among the global public of the current megafauna crisis using traditional media as well as social media and other networking approaches.

9. **Seek** a new and comprehensive global commitment and framework for conserving megafauna. The international community should take necessary action to prevent mass extinction of the world’s megafauna and other species.

10. **Urge** the development of new funding mechanisms to transfer the current benefits accrued through existence values of megafauna into tangible payments to support research and conservation actions in the places where highly valued megafauna must be preserved.

11. **Advocate** for interdisciplinary scientific interchange between nations to improve social and ecological understanding of the drivers of the decline of megafauna, and to increase capacity for megafauna science and conservation.

12. **Recommend** the reintroduction and rehabilitation of degraded megafauna populations whenever possible, following accepted IUCN guidelines, the ecological and economic importance of which is evidenced by a growing number of success stories, from Yellowstone’s wolves (*Canis lupus*), to the Père David’s deer (*Elaphurus davidianus*) in China, to various megafauna species of Gorongosa National Park in Mozambique.

13. **Affirm** an abiding moral obligation to protect the earth’s megafauna.