
Graham L. Gilbert1,2*, Mikhail Kanevskiy3, Julian B. Murton4

1 Department of Arctic Geology, The University Centre in Svalbard, Longyearbyen, Norway
2 Department of Earth Science, The University of Bergen, Bergen, Norway
3 Institute of Northern Engineering, University of Alaska Fairbanks, Fairbanks, AK, USA
4 Permafrost Laboratory, Department of Geography, University of Sussex, Brighton, UK

* Correspondence to: Graham L. Gilbert
Arctic Geology Department, The University Centre in Svalbard, UNIS, P.O: Box 156, 9171 Longyearbyen, Norway.

E-mail: graham.gilbert@unis.no

Keywords: Cryostratigraphy; Ground Ice; Permafrost; Cryostructures
ABSTRACT

Cryostratigraphy involves the description, interpretation and correlation of ground-ice structures (cryostructures) and their relationship to the host deposits. Recent advances in the study of ground ice and cryostratigraphy concern permafrost aggradation and degradation, massive-ice formation and evaluation of ground-ice content. Field studies have increased our knowledge of cryostructures and massive ground ice in epigenetic and syngenetic permafrost.

Epigenetic permafrost deposits are relatively ice-poor and composed primarily of pore-filled cryostructures, apart from an ice-enriched upper section and intermediate layer. Syngenetic permafrost deposits are commonly identified from cryostructures indicative of an aggrading permafrost table and are characterized by a high ice content, ice-rich cryofacies, and nested wedge ice. Degradation of ice-rich permafrost can be marked by thaw unconformities, truncated buried ice wedges, ice-wedge pseudomorphs, and organic-rich ‘forest beds’.

Studies of massive ground ice have focused on wedge ice, thermokarst-cave ice, intrusive ice, and buried ice. Significant advances have been made in methods for differentiating between tabular massive ice bodies of glacier and intrasedimental origin. Recent studies have utilized palynology, isotope geochemistry and hydrochemistry, in addition to sedimentary and cryostratigraphic analyses. The application of remote sensing techniques and laboratory methods such as CT scanning has improved estimations of the ice content of frozen sediments.
INTRODUCTION

Cryostratigraphy concerns the distribution and organization of ground ice in soil, sediment, or bedrock. It can be defined as “the study of layering within permafrost; based on the description and interpretation of ice, sediment and rock, cryostratigraphy identifies and correlates stratigraphic units – usually layers – of permafrost” (Murton, 2013, p. 174). The value of cryostratigraphy stems from the fact that ground ice within sediment produces structures whose identification can elucidate the thermal history and origin of the substrate, because ground-ice formation, morphology, and preservation are influenced by various climatic, geologic, and environmental factors (Katasonov, 2009; French and Shur, 2010; Popov, 2013; Murton, 2013). Ground ice may be preserved indefinitely in permafrost environments, providing an enduring palaeoenvironmental archive. The principles of cryostratigraphy and general problems related to ground ice studies have been recently discussed in English (French and Shur, 2010; Y. K. Vasil’chuk, 2012; Murton, 2013) and in Russian (Rogov, 2009; Badu, 2010; Shpolyanskaya, 2015).

Ice-rich permafrost is commonly associated with frost-susceptible sediment and occurs where moisture is sufficient for ground-ice formation or where ice is buried (Murton, 2013). Conditions conducive to extensive ground-ice formation have existed for much of the Quaternary Period in Arctic and Subarctic lowlands underlain by fine-grained sediments. Hence, the geographical distribution of recent cryostratigraphic studies has focused mainly on northern and central Siberia, Alaska and western Arctic Canada (Figure 1).

This review identifies recent advances in the understanding of ground ice and cryostratigraphy of present-day permafrost regions based on literature published between 2008 and 2015. We focus on four cryostratigraphic themes: (1) permafrost aggradation, (2) renewed aggradation of permafrost following degradation, (3) massive ground ice, and (4)
evaluation of ground-ice content. The dating of permafrost and the cryostratigraphy of past
permafrost regions (e.g. northwest Europe) are beyond the scope of this review.

PERMAFROST AGGRADATION

Cryostratigraphic reconstructions of permafrost aggradation tend to focus on ground-ice
development in unconsolidated sediments and classify permafrost in terms of its time of
formation relative to the deposition of the host material. Epigenetic permafrost aggrades after
the host material has formed, sometimes with a time lag of thousands or millions of years
(French and Shur, 2010). Syngenetic permafrost aggrades at a rate proportional to the
sedimentation rate at the ground surface, and characterizes cold-climate landscapes
influenced by relatively continuous deposition by fluvial, colluvial, lacustrine, or aeolian
processes. Quasi-syngenetic permafrost forms the top layer of permafrost (ice-rich
intermediate layer) by upwards freezing as a result of the gradual thinning of the active layer
over time – usually due to the development of surface vegetation (Shur, 1988). Many
permafrost bodies consist of epigenetic, syngenetic, and/or quasi-syngenetic components and
so are polygenetic. The distinction between them is made by systematically analyzing the
spatial distribution of cryostructures and the nature of ground ice.

Cryostructures, or patterns formed by ice inclusions in frozen ground, are defined as
structures that reflect the amount and distribution of pore and segregated ice within frozen
sediment (French and Shur, 2010). Individual cryostructures are identified based on the
shape, distribution and proportions of ice, sediment or rock within frozen ground (Murton,
2013). Nine cryostructures are commonly described in recent literature (Figure 2A-I). (A)
Pore cryostructure develops where pore water freezes in situ in the interstices between
mineral grains, forming an ice cement; the pore cryostructure may be visible to the naked eye
in sands and gravels or nonvisible in silts or clays. (B) Organic-matrix cryostructure forms
where ice fills void spaces in organic material (e.g. peat or organic-rich soil). (C) *Crustal* cryostructure occurs where ice segregation creates an ice crust around an object such as a rock clast or wood fragment in frost-susceptible material. (D) *Vein* cryostructure denotes ice veins that are inclined to vertical in orientation. (E) *Lenticular* cryostructure denotes lens-shaped ice bodies, often horizontal to subhorizontal, formed by ice segregation in frost-susceptible material. (F) *Layered* (or bedded) cryostructure comprises horizontal to dipping ice layers formed by ice segregation or injection of pressurized water. (G) *Reticulate* cryostructure represents a three-dimensional network of vertical ice veins and horizontal ice lenses that separate clayey or silty sediment blocks. (H) *Ataxitic* (suspended) cryostructure develops where sediment grains or aggregates are suspended in ice; in many cases it forms in the intermediate layer at the top of permafrost. (I) *Solid* cryostructure occurs where bodies of ice exceed 10 cm in thickness. These cryostructures are useful for logging of permafrost sequences, but in reality some cryostructures are transitional, composite or hierarchical in nature (Murton, 2013).

The development of cryostructures relates to three main factors: (1) the physical properties of soil, sediment, or bedrock; (2) moisture availability; and (3) the mode of permafrost formation (epigenetic, syngenetic, or quasi-syngenetic). A key property is the grain-size distribution (particularly the proportion of silt) and packing of grains, which influence the frost susceptibility of the host sediment (i.e. the degree to which the soil favours the formation of segregated ice). Frost susceptibility in soils depends primarily on the continuous network of unfrozen water films in the frozen fringe. Moister sites promote the formation of ice-rich cryostructures compared to drier ones (Murton, 2013; Stephani *et al.*, 2014).

Distinguishing cryostructures is scale-dependent and may be difficult when working with cores. The small diameter of cores (mostly between 5 cm and 10 cm) means that lateral continuity of ground-ice bodies in many cases cannot be established. For instance, it may not
be possible to distinguish between lenticular and layered cryostructures at the core scale.

Natural sections or trial pits best reveal cryostructures.

Epigenetic Permafrost

When the ground surface begins to experience cold subaerial conditions, epigenetic permafrost aggrades downward. Under such conditions, ground ice and permafrost decrease in age with depth.

Outside of areas with buried ice, epigenetic permafrost tends to be ice-poor, with wedge and segregated ice concentrated mostly in the top few meters. However, ice-rich epigenetic permafrost (including massive-ice bodies of segregated or intrusive origin) may form at any depth where the freezing front encounters a significant source of ground water. The distance between visible ice lenses generally increases with depth, whereas the overall ice content decreases. The ice-rich top, in many cases, may be explained by the formation of the ice-rich intermediate layer, which results from a gradual decrease in active-layer thickness (mostly due to accumulation of organic matter) and is characterized by an ataxitic (suspended) cryostructure (French and Shur, 2010). Formation of the intermediate layer is considered “quasi-syngenetic” because permafrost aggrades upward without any sedimentation on the ground surface (Shur et al., 2011).

Cryostructures of ataxitic, lenticular and layered type are common in the intermediate layer (Osterkamp et al., 2009; Calmels et al., 2012). The type of cryostructure in this layer depends strongly on the rate of upward permafrost aggradation. Prolonged stability of the permafrost table favours layered cryostructures (so-called ‘ice belts’, discussed below), whereas slow aggradation of the permafrost table favours ataxitic cryostructures (Calmels et al., 2012), as illustrated from till deposits in Yukon, Canada (Stephani et al. 2014).
Where groundwater supply is limited, epigenetic freezing forms a pore cryostructure with very low ice content (Stephani et al., 2014), whose presence in frost-susceptible material is a hallmark of epigenetic permafrost. Reticulate cryostructures also indicate epigenetic permafrost, and are believed to develop by desiccation and shrinkage during sediment freezing while moisture migrates towards an advancing freezing front (French and Shur, 2010).

Ice-rich epigenetic permafrost commonly forms in sediments where groundwater is abundant. Layered and reticulate cryostructures characterize epigenetically frozen lacustrine silts in the lowlands of west-central Alaska, with the volume of visible segregated ice varying from 10 to 50%, and ice lenses up to 10 cm thick (Kanevskiy et al., 2014). Similar cryostructures have been described in Nunavik, Canada (Calmels and Allard, 2008). Ice-rich epigenetic permafrost was also detected near Anchorage, close to the southern boundary of permafrost in Alaska (Riddle and Rooney, 2012). In the 10-m-thick section of glacio-lacustrine deposits (silty clay with numerous layers of segregated ice up to 70 cm thick) there, the average volume of visible ice exceeded 40% (Kanevskiy et al., 2013a).

In the discontinuous permafrost zone, epigenetic permafrost often starts to form with the development of palsas or lithalsas, which may eventually transform into permafrost plateaus elevated above the initial ground surface by accumulation of segregated ice. Palsas and lithalsas have been recently studied in Fennoscandia (Seppälä, 2011); the Altai and Sayan regions of Russia (Iwahana et al., 2012; Y. K. Vasil’chuk et al., 2015); NWT (e.g. Wolfe et al., 2014) and northern Quebec, Canada (Kuhry, 2008; Calmels and Allard, 2008; Calmels et al., 2008); the Himalayas (Wünnemann et al., 2008); and Mongolia (Sharkuu et al., 2012).

Ice-rich syngenetic permafrost sometimes degrades, drains, and subsequently re-establishes as epigenetic permafrost. Thawed and refrozen soils typically undergo a reduction in ice content when compared with their former state. However, in many cases ice-rich, quasi-
syngenetic permafrost forms on top of such refrozen soils, usually due to the development of surface vegetation and formation of an organic-rich surface horizon (Stephani et al., 2014; Kanevskiy et al., 2014).

Bedrock hosts epigenetic permafrost in many areas, especially alpine settings and areas eroded by Pleistocene glaciers, for example the Canadian Shield. Classification of cryostructures in bedrock adopted from the Russian permafrost literature (translated by Mel’nikov and Spesivtsev, 2000) is presented by French and Shur (2010). Pore and layered cryostructures in basalt lava have recently been described from Kamchatka (Abramov et al., 2008) and intrusive ice layers and lenses in limestones, dolomites, marls and kimberlites from central Yakutia (Alexeev et al., 2016).

Syngenetic Permafrost

Ground ice in syngenetic permafrost forms within aggrading sedimentary sequences during or soon after deposition, mainly as segregated ice at the top of permafrost (also named aggradational ice; Mackay 1972; Cheng 1983) or as syngenetic wedge ice. Layered and lenticular cryostructures record the progressively aggrading ground surface, and are typical of syngenetic permafrost (French and Shur, 2010). Russian studies of the 1950–1960s (Katasonov, 2009; Popov, 2013) revealed a rhythmic structure of syngenetic permafrost, formed by relatively uniform layers with a predominantly lenticular cryostructure separated by ‘ice belts’ (distinct icy layers several mm to several cm thick that indicate the position of the permafrost table during periods when it was relatively stable). Cryostructures between ice belts have been termed ‘microcryostructures’ (Kanevskiy et al., 2011), formed mainly by thin (<1 mm) densely spaced ice lenses and include microlenticular, microbraided and microatactic types.
Moisture availability, soil texture, and sedimentation rate strongly control cryostructure distribution in syngenetic permafrost. Two cryofacies diagnostic of syngenetic permafrost have been distinguished in organic-rich silts, in Yukon, Canada (Stephani et al., 2014). Microlenticular cryostructures formed in near-surface permafrost during periods of relatively rapid surface aggradation (e.g. by deposition of windblown silt). Conversely, ataxitic and reticulate cryostructures with thick ice belts formed during periods of slower siliciclastic sedimentation that favoured the accumulation of peat and resulted in active-layer thinning and formation of the intermediate layer. Buried ice-rich intermediate layers with thick ice belts and predominantly ataxitic cryostructure are typical of thick sequences of syngenetic permafrost (Stephani et al., 2014; Kanevskiy et al., 2011).

Syngenetic permafrost of Holocene age tends to be thinner than that of Pleistocene age. Currently, syngenetic permafrost forms in mineral soils within floodplains of Arctic rivers (Shur and Jorgenson, 1998), deltas (Morse and Burn, 2013), and areas of loess accumulation (Härtel et al., 2012), and the reported thickness of modern syngenetic permafrost seldom exceeds 5 m. Cryostratigraphic studies of syngenetic permafrost, however, have focussed mainly on Pleistocene ‘yedoma’ (or ‘Ice Complex’), which represents relic ice-rich syngenetic permafrost with large ice wedges that formed in Siberia and North America during the Late Pleistocene (Figure 3A; Schirrmeister et al., 2013; Murton et al., 2015). Continued supply of fine-grained sediment favoured yedoma development over tens of thousands of years, producing syngenetic permafrost sequences often several tens of metres thick that archive Late Pleistocene environmental history. General maps of yedoma distribution in Siberia were presented by Konishchev (2009, 2011) and Kanevskiy et al. (2011), with the latter authors including a preliminary map of yedoma distribution in Alaska. Detailed maps of Siberian yedoma (scale 1:1,000,000) have been developed by Grosse et al. (2013) from Russian Quaternary geological maps. Yedoma sections have been recently
described from northern Yakutia (Schirrmüster et al., 2011; Tumskoy, 2012; Strauss et al., 2012; Wetterich et al., 2011, 2014), central Yakutia (Spektor et al., 2008), Taymyr (Streletskaya and Vasiliev, 2012), northern Alaska (Kanevskiy et al., 2011), interior Alaska (Kanevskiy et al., 2008; Meyer et al., 2008), Seward Peninsula (Shur et al., 2012; Stephani et al., 2012), and Yukon (Froese et al., 2009; Pumple et al., 2015; Sliger et al., 2015).

Ground ice is abundant and buried cryosols are present within many yedoma sequences. Ground ice observed at 14 locations along the coast of the Laptev and East Siberian seas was primarily wedge ice, “net-like reticulated” cryostructures, and ice bands (Schirrmüster et al., 2011). The ice wedges were identified as syngenetic on the basis of their large size and morphology. Ice bands (belts in the Russian literature) were interpreted to reflect stable surface conditions and active-layer thicknesses, leading to ice-enrichment of the near-surface permafrost. Buried cryosols within the yedoma contained peat “nests” and terrestrial plant leaves and woody debris. Schirrmüster et al. (2011) attributed these deposits to formation subaerially in polygonal terrain.

PERMAFROST DEGRADATION AND RE-AGGRADATION

The degradation of ice-rich permafrost (thermokarst) may produce distinctive features in the cryostratigraphic record that indicate the depth or mode of past thermokarst activity prior to re-aggradation of permafrost. This is well illustrated in two case studies from yedoma regions, which are particularly susceptible to thermokarst. The first identified cryostratigraphic evidence for shallow degradation of permafrost in non-glaciated Yukon and Alaska during the last interglaciation: (1) buried relict ice wedges whose tops were thaw truncated at the base of a palaeo-active layer; (2) ice-wedge pseudomorphs formed by complete melting of ice wedges; (3) wood-rich organic silt deposits (‘forest beds’) that represent forest vegetation reworked by thaw slumping or deposition in thermokarst ponds or
depressions; and (4) lenticular and reticulate cryostructures interpreted as segregated ice at top of permafrost and the bottom of the active layer (Reyes et al., 2010). This study inferred a depth of thaw on the order of metres during the last interglaciation, highlighting the resilience of ice-rich discontinuous permafrost over glacial-interglacial timescales. The second case study used cryostratigraphic observations to evaluate the permafrost response to clearance of surface vegetation in discontinuous permafrost of the Klondike region, Yukon (Calmels et al., 2012). There, a thaw unconformity at a depth of about 2 m was interpreted to mark the thaw depth following deforestation during the gold rush era, beginning about 1900 AD.

MASSIVE GROUND ICE

Massive ice is a comprehensive term applied to large bodies of ground ice with ice contents exceeding 250% by weight (van Everdingen, 1998). Recent studies of massive ice have focused on four main genetic classes (wedge ice, thermokarst-cave (pool) ice, intrusive ice, and buried ice) and on the origin of tabular massive-ice bodies.

Wedge Ice

Ice wedges are the most common type of massive ice, and syngenetic wedges are particularly valuable in cryostratigraphy because both the wedge ice and surrounding sediments contain palaeoenvironmental archives. Syngenetic ice wedges grow both vertically and horizontally, resulting often in a vertically nested chevron pattern (Mackay, 1990). Syngenetic ice wedges in the outer Mackenzie Delta, Canada, have been identified from “shoulders” indicative of vertical growth stages and from the cross-sectional width of the wedges decreasing towards the top of permafrost (Figure 3B; Morse and Burn, 2013). The ice wedges developed below a slowly aggrading surface.
A conceptual model of syngenetic ice-wedge development invokes micro-, meso-, and macrocycles (Y. K. Vasil’chuk, 2013). Microcycles affect ice wedges by changes in active-layer depth and rates of deposition of thin sediment layers over time scales of several years to hundreds of years. Mesocycles of ice-wedge growth result from changes in water level, where ice wedges are located close to or under shallow water bodies. Deposits overlying wedge ice consist of alternating layers of peat (formed during exposure) and siliciclastic sediment (deposited during submergence). Ice-wedge growth is reduced or suspended during submergence. Macrocycles result from major changes in sedimentary regimes over time scales of tens of thousands to hundreds of thousands of years.

Syngenetic ice wedges account for a significant proportion of the ground-ice record in lowland permafrost environments, especially in yedoma. Recent studies of the isotopic or trapped gas composition in wedge ice have reconstructed palaeoclimate and investigated infilling processes (e.g. Meyer et al., 2010; Opel et al., 2011; Raffi and Stenni, 2011; Lachniet et al., 2012). For example, Streletskaia et al. (2011) identified a trend of warming palaeoclimate since the Late Weichselian from different generations of syngenetic ice wedges near the Kara Sea. St-Jean et al. (2011) showed that site-specific factors influence the infilling characteristics of wedge ice: in cold dry settings, wedge ice shows evidence of snow densification, and in moister settings of freezing of liquid water.

Thermokarst-Cave Ice

Thermokarst-cave ice (or pool ice) forms by freezing of water trapped in underground cavities or channels (Murton, 2013), typically along degrading ice wedges (Figure 21). Recent studies have described thermokarst-cave ice bodies underlain by silts with reticulate cryostructure in the CRREL Permafrost tunnel, interior Alaska (Fortier et al., 2008; Kanevskiy et al., 2008; Douglas et al., 2011). Measurements performed along a 600-m-long
and 10-m-high exposure at Barter Island (Alaskan Beaufort Sea coast) showed that numerous thermokarst-cave ice bodies occupied almost 2% of the face of the coastal bluff (Kanevskiy et al., 2013b).

Intrusive Ice

Intrusive ice forms by freezing of water injected under pressure into freezing or frozen ground (Murton, 2013). Recent cryostratigraphic studies of intrusive ice have focused on stable isotope stratigraphy and the identification and development of tabular massive ice.

Stable isotope analysis has been applied to reconstruct the freezing processes and growth history of pingos. Two different isotopic patterns, indicative of open-system and semi-closed system freezing, were observed in ice sections in an open-system (hydraulic) pingo in northwest Mongolia, indicating an oscillation between periods where the groundwater reservoir fed open-system ice-lens development and those of flow interruption, forming a closed-system environment (Yoshikawa et al., 2013). Y. K. Vasil’chuk et al. (2014) distinguished between two periods of development in a closed-system (hydrostatic) pingo in northwest Siberia.

Massive bodies of intrusive ice may form following the drainage of palaeo-lake systems or from the repeated injection of lake water into marine sediments following shoreline regression. In glaciolacustrine deposits of central Yukon, Lauriol et al. (2010) identified, using stable O and H isotopes and occluded gas composition, intrusive ice bodies (10 m wide and 3–4 m thick) that aggraded following the lowering of water level in a palaeo-glacial lake. The glaciolacustrine sediments are underlain by permeable gravels and sands, which served as the water source during permafrost aggradation. The formation mechanism is therefore likely similar to growth conditions of hydrostatic pingos.
Buried Ice

Various types of ice bodies may be buried by soil or sediment. Recent literature on buried ice primarily concerns buried basal glacier ice (Murton, 2009; Fortier et al., 2012; Solomatin and Belova, 2012; Solomatin, 2013; Coulombe et al., 2015; Lacelle et al., 2015) and buried snow (Spektor et al., 2011). Investigations of cryostructures in basal ice from existing glaciers provide a basis for comparison with buried counterparts (e.g. Fortier et al., 2012).

Several stratigraphic characteristics aid in identifying buried glacier ice, including: (1) a discordant upper contact; (2) inclusions of glacial sediment (Figure 3C); and (3) dynamic metamorphic structures. A discordant upper contact is identified by the truncation of internal ice structures such as folds, stratification, and structural and textural heterogeneities (Solomatin and Belova, 2012). Such thaw or erosional unconformities develop due to either glaciofluvial erosion or by the thaw front reaching the ice surface (Murton, 2013; Coulombe et al., 2015). Glaciotectonic deformation structures in ice-rich diamictons and ice structures similar to those in modern basal glacier ice may also serve as genetic indicators. Murton (2009) used an event stratigraphy related to the timing of glaciotectonic deformation to help distinguish between massive ice that was buried or at least glacially deformed from that which postdated deformation and must be of intrasedimental origin. Though the stratigraphic context for massive ice may provide a good indication of the ice origin, it is not always conclusive, and interpretations may be strengthened by studies of ice crystallography, geochemistry and palynology.

Origin of Tabular Massive Ice

Most descriptions of tabular bodies of massive ice are from regions formerly occupied by Pleistocene glaciers or ice sheets. Such ice bodies commonly overlie coarse-grained (sand-rich) deposits, underlie fine-grained ones (muds) (Mackay and Dallimore, 1992) and contain
sediment as individual particles or aggregates. Three models are generally employed to explain the origin of massive ice: (1) intrasedimental ice growth as segregated and/or intrusive ice, (2) burial of glacier ice, and (3) subglacial permafrost aggradation (Murton, 2013). Investigations commonly combine traditional stratigraphy and cryostratigraphy with other methods (ice crystallography, geochemistry and analysis of gas inclusions).

Recent studies of tabular massive ice have been conducted along the western Arctic coast of Canada (Murton, 2009; Fritz et al., 2011), central Yukon (Lauriol et al., 2010), the Alaskan Coastal Plain (Kanevskiy et al., 2013b), the Canadian Arctic Islands (Coulombe et al., 2015), and northwest Siberia (Slagoda et al., 2010, 2012a, b; Kritsuk, 2010; Leibman et al., 2011; Solomatin and Belova, 2012; Fotiev, 2014, 2015; Y. K. Vasil’chuk et al., 2009, 2011, 2012, 2014; Vasiliev et al., 2015). Intrasedimental and buried ice have been distinguished on several lines of evidence. This includes the stratigraphic, sedimentological and geomorphological setting of the ice bodies; the upper and lower contacts between the ice and the surrounding sediments; internal characteristics of the ice body (e.g. bubble characteristics, suspended sediment and deformation structures; Figure 3D); and ice palynology, stable isotope geochemistry and hydrochemistry. However, in many cases the origin of tabular massive ice is disputed. For example, Y. K. Vasil’chuk (2012, p. 496) stated that “It should be particularly noted that presently not a single massive ice body identified in the plain areas of the permafrost regions of Russia can be definitely identified as buried glacier ice.” In contrast, Solomatin and Belova (2012, p. 430) wrote in the same proceedings that “The materials, experimental data, and theoretical concepts collected at the present time lead to the clear conclusion that tabular massive ice represents a single and separate genetic type of ground ice: the buried remnants of glaciers that formed during deglaciation of the ancient glaciation areas.”
Interpreting the origin of massive ice is often challenging because growth of segregated ice, intrusive ice and gradations between them can occur in both non-glacial and subglacial settings. Intrasedimental bodies of tabular massive ice frequently display characteristics similar to those of buried glacier ice (Coulombe et al., 2015). Recently, however, some valuable contributions have come from studies of ice palynology, isotope geochemistry and hydrochemistry. Studies in western Siberia have suggested that pollen and spores occur in most massive-ice bodies, and although redeposited pre-Quaternary palynomorphs of Cenozoic, Mesozoic and Palaeozoic age are common, the pollen of aquatic plants, horsetail spores, limnetic diatoms and green algae remains indicate a non-glacial genesis of the ice (A. C. Vasil’chuk and Y. K. Vasil’chuk, 2010, 2012). Vasiliev et al. (2015) reported extremely high concentration of methane in tabular massive-ice bodies of the Yamal Peninsula, supporting the intrasedimental interpretation of tabular massive ice in this area.

Isotopic and hydrochemical analysis of massive ice is now commonly used to assist interpretation, with the values of and relations between δ^{18}O, δD and d-excess providing insights in processes of fractionation, sublimation and ionic segregation during freezing (Lacelle et al., 2011; Michel, 2011), including in Martian regolith (Lacelle et al., 2008). Such analyses often supplement field observations of the cryostratigraphy (Murton, 2009), and have permitted identification of buried perennial snowbank ice (Lacelle et al., 2009), intrusive ice (Lauriol et al., 2010) and aufeis (icing ice) (Lacelle and Y. K. Vasil’chuk, 2013; Lacelle et al., 2013), and basal regelation glacier ice (Fritz et al., 2011, 2012).

A new classification of tabular massive ice, developed by Y. K. Vasil’chuk (2012), is based on three divisions. The first distinguishes between homogeneous and heterogeneous massive-ice bodies. Homogeneous massive-ice bodies have a similar genesis, composition and properties in all parts of a massive-ice complex. An example would be a single ice sill or body of massive segregated ice. Heterogeneous massive-ice bodies have a variable genesis,
composition and properties across a massive-ice complex, and consist of two or more
homogeneous ice bodies. Numerous examples occur on the Yamal Peninsula and adjacent
division distinguishes between *autochthonous* (intrasedimental) and *allochthonous* (buried)
ice, and the third division classifies the massive ice according to its specific genetic process
(e.g. injection, segregation, infiltration, burial). Overall, this classification provides a valuable
framework for investigating massive ice, and emphasizes its genetic diversity.

GROUND-ICE CONTENT

Quantifying the amount and distribution of ground ice is necessary in order to predict
permafrost landscape change in the future. Ground-ice content has become an important input
to landscape and ecosystem models and in estimating organic carbon pools in permafrost
(Kuhry et al., 2013; Strauss et al., 2013; Ulrich et al., 2014). Cryostratigraphic observations
provide valuable field data to help evaluate ground-ice content. Ground-ice content has
recently been assessed using three distinct approaches: (1) landscape-scale estimation of
wedge-ice volume (WIV) using remote sensing, (2) laboratory analysis of permafrost
samples, and (3) fine-scale determination of ice volume by X-ray Computed Tomography
(CT) scanning.

Y. K. Vasil’chuk (2009) reviewed different methods of WIV estimation (mainly based on
ice-wedge geometry) developed by permafrost researchers since the 1960s. Several recent
studies have estimated WIV in polygonal terrain using remotely sensed images (e.g. Bode et
al., 2008; Morse and Burn, 2013; Skurikhin et al., 2013; Jorgenson et al., 2015). Ulrich et al.
(2014) presented a method for calculating WIV in yedoma and Holocene thermokarst basin
deposits, utilizing three-dimensional (3D) surface models generated from satellite images to
identify ice-wedge polygon morphometry. Individual wedge volume is estimated using
measurements obtained from field data. Some assumptions are employed when calculating WIV: epigenetic ice wedges are usually assumed to have the shape of isosceles triangles or trapezoids in cross-section (Kanevskiy et al., 2013b; Ulrich et al., 2014), and syngenetic ice wedges that of a rectangular-shaped frontal cut (Strauss et al., 2013). Ice-wedge size and morphology are commonly determined by field studies. Parameters determined from field measurements include the top and bottom width of individual wedges and the depth. Field data are used to parameterize 3D subsurface models and to upscale to the landscape scale.

The ice content of sediments containing pore, segregated or intrusive ice can be determined by laboratory analysis of permafrost samples. Gravimetric moisture content is commonly expressed on a dry basis (the ratio of the mass of ice in a sample to the mass of the dry sample). Phillips et al. (2015) compared dry- and wet-basis gravimetric moisture contents and concluded that the latter has some advantages when used for ice-rich mineral soils. Volumetric ice content (VIC) is the ratio of the volume of ice in a sample to the volume of the whole sample. Excess ice content is equal to the volume in excess of the pore volume in an unfrozen state, and estimations of excess ice content (e.g. O’Neill and Burn, 2012) correspond to thaw strain measurements commonly performed during geotechnical investigations (e.g. Kanevskiy et al., 2012). In ice-rich soils, excess ice content is similar to the volumetric content of visible ice. In ice-rich epigenetic permafrost, VIC can be estimated relatively easily by analysing photographs of frozen cores and exposures (Kanevskiy et al., 2013a, 2014). Total VIC of the upper layers of permafrost (which includes pore, segregated and massive ice) has been estimated based on terrain-unit approach for the Beaufort Sea coastal area of Alaska (Kanevskiy et al., 2013b) and Yukon (Couture and Pollard, 2015).

CT scanning of frozen sediment cores provides a reasonable estimate of VIC and a non-destructive method of 3D imaging and analyzing their internal structure (Calmels and Allard, 2008; Calmels et al., 2010, 2012; Lapalme et al., 2015). CT scans image features such as
stratification, sediment properties, fractures, gas inclusions, ice distribution and density variations. The method utilizes the density contrasts in the sample, allowing users to distinguish between gas, ice, organic and mineral components (Cnudde and Boone, 2013).

Two limiting factors must be considered when determining VIC using image analysis of CT scans. Firstly, materials of similar densities are not easily differentiated. For example, organic-rich horizons (e.g. frozen, saturated peat) are similar in density to ice, which results in an overestimation of ice content unless the material can be correctly classified visually.

Secondly, the spatial scan resolution (0.35 mm in the transverse directions and 0.5 mm in the longitudinal direction) limits the identification of pore ice in fine-grained sediment. Similarly, constituents (e.g. gas bubbles) that are smaller than the resolution size cannot be accounted for in volume calculations, which may lead to their underestimation, unless accounted for using calibration factors (Ducharme et al., 2015).

CONCLUSIONS AND PERSPECTIVES FOR FUTURE RESEARCH

Recent cryostratigraphic research in modern permafrost environments has focused on fine-grained deposits of aeolian, fluvial, or lacustrine origin. As seen in Figure 1, however, relatively few cryostratigraphic studies have investigated permafrost in eastern Arctic Canada, Greenland and Scandinavia. Such landscapes include highly variable relief and depositional systems, where permafrost formation is closely tied to late Quaternary glacial and sea-level history. Evaluation of the cryostratigraphy of these environments may provide valuable insight into permafrost aggradation and ground-ice formation during the Holocene Epoch. Targeted studies in these locations may help to assess the nature of ground-ice formation in coarse-grained deposits, for example in alluvial fans and colluvium.

Cryostructural classifications have been successfully applied to describe the occurrence and variability of ground ice in permafrost sediment sequences. To complement these largely
descriptive and inferential studies, future research needs to investigate mechanistically the processes of cryostructure development. Freezing and thawing experiments under controlled field and laboratory conditions may allow hypothesis testing about cryostructure processes and boundary conditions, as well as quantification of rates of cryostructure formation.

The presence of ground ice has important consequences for landscape and infrastructure development as well as ecosystem and climate models. Recent studies into VIC have integrated a number of remotely sensed and indirect methods to assess ground-ice characteristics in permafrost. Future research needs to constrain the uncertainty in these estimations.
ACKNOWLEDGEMENTS

We would like to thank the two reviewers (D. Lacelle and one anonymous) and Editor C.R. Burn for their constructive comments on the manuscript. M. Kanevskiy acknowledges the National Science Foundation (NSF grants ARC 1023623 and ArcSEES 1233854) for financial support.
REFERENCES

Alexeev SV, Alexeeva LP, Kononov AM. 2016. Trace elements and rare earth elements in ground ice in kimberlites and sedimentary rocks of Western Yakutia. *Cold Regions Science and Technology* 123: 140-148. DOI: 10.1016/j.coldregions.2015.10.008

Calmels F, Froese DG, Clavano WR. 2012. Cryostratigraphic record of permafrost degradation and recovery following historic (1898-1992) surface disturbances in the

Lacelle D, Lauriol B, Zazula G, Ghaleb B, Utting N, Clark ID. 2013. Timing of advance and basal conditions of the Laurentide Ice Sheet during the last glacial maximum in the
Richardson Mountains, NWT. *Quaternary Research* **80**: 274-283. DOI: 10.1016/j.yqres.2013.06.001

Popov AI. 2013. Selected works, and about him. Moscow, Nauchniy Mir, 536 pp. (in Russian)

Slagoda EA, Opokina OL, Kurchatova AN, Rogov VV. 2012a. Structure and composition of complex massive ice bodies in Late Pleistocene-Holocene sediments of the Marre-Sale

Vasil'chuk YK, Vasil'chuk AC, Budantseva NA, Chizhova JN, Papesch W, Podborny YY,

Figure 2. Simplified classification of cryostructures in unconsolidated sediments. All photographs are oriented vertically such that the long-axis of the image is perpendicular to
Figure 3. A) Yedoma exposed in headwall of a retrogressive thaw slump at Duvanny Yar, northeast Yakutia, Russia. Syngenetic ice wedges (lighter-coloured grey) enclose columns of silt (darker-coloured grey), some of which degrade to form conical thermokarst mounds (baydzherakhs). Top of headwall is about 39 m above the level of the Kolyma River (in foreground); B) Ice-rich ca. 1-m-thick intermediate layer with thin active ice wedge on top of large buried syngenetic ice wedge, 35-m-high Itkillik River yedoma exposure, northern Alaska; C) Buried basal ice from the Laurentide Ice Sheet, Mason Bay, Richards Island, Northwest Territories, Canada. Pebbles and cobbles protrude from surface of massive ice, and folds occur within it. Sand wedge on left and two ice wedges on right penetrate massive ice. Dog and ice axe for scale in bottom centre; D) Post-glacial intrasedimental massive ice at Peninsula Point, near Tuktoyaktuk, Northwest Territories, Canada. Anticline in banded massive underlies a small slump.