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ABSTRACT 16 

Cryostratigraphy involves the description, interpretation and correlation of ground-ice 17 

structures (cryostructures) and their relationship to the host deposits. Recent advances in the 18 

study of ground ice and cryostratigraphy concern permafrost aggradation and degradation, 19 

massive-ice formation and evaluation of ground-ice content. Field studies have increased our 20 

knowledge of cryostructures and massive ground ice in epigenetic and syngenetic permafrost. 21 

Epigenetic permafrost deposits are relatively ice-poor and composed primarily of pore-filled 22 

cryostructures, apart from an ice-enriched upper section and intermediate layer. Syngenetic 23 

permafrost deposits are commonly identified from cryostructures indicative of an aggrading 24 

permafrost table and are characterized by a high ice content, ice-rich cryofacies, and nested 25 

wedge ice. Degradation of ice-rich permafrost can be marked by thaw unconformities, 26 

truncated buried ice wedges, ice-wedge pseudomorphs, and organic-rich ‘forest beds’. 27 

Studies of massive ground ice have focused on wedge ice, thermokarst-cave ice, intrusive ice, 28 

and buried ice. Significant advances have been made in methods for differentiating between 29 

tabular massive ice bodies of glacier and intrasedimental origin. Recent studies have utilized 30 

palynology, isotope geochemistry and hydrochemistry, in addition to sedimentary and 31 

cryostratigraphic analyses. The application of remote sensing techniques and laboratory 32 

methods such as CT scanning has improved estimations of the ice content of frozen 33 

sediments.   34 



INTRODUCTION 35 

Cryostratigraphy concerns the distribution and organization of ground ice in soil, sediment, or 36 

bedrock. It can be defined as “the study of layering within permafrost; based on the 37 

description and interpretation of ice, sediment and rock, cryostratigraphy identifies and 38 

correlates stratigraphic units – usually layers – of permafrost” (Murton, 2013, p. 174). The 39 

value of cryostratigraphy stems from the fact that ground ice within sediment produces 40 

structures whose identification can elucidate the thermal history and origin of the substrate, 41 

because ground-ice formation, morphology, and preservation are influenced by various 42 

climatic, geologic, and environmental factors (Katasonov, 2009; French and Shur, 2010; 43 

Popov, 2013; Murton, 2013). Ground ice may be preserved indefinitely in permafrost 44 

environments, providing an enduring palaeoenvironmental archive. The principles of 45 

cryostratigraphy and general problems related to ground ice studies have been recently 46 

discussed in English (French and Shur, 2010; Y. K. Vasil’chuk, 2012; Murton, 2013) and in 47 

Russian (Rogov, 2009; Badu, 2010; Shpolyanskaya, 2015). 48 

Ice-rich permafrost is commonly associated with frost-susceptible sediment and occurs 49 

where moisture is sufficient for ground-ice formation or where ice is buried (Murton, 2013). 50 

Conditions conducive to extensive ground-ice formation have existed for much of the 51 

Quaternary Period in Arctic and Subarctic lowlands underlain by fine-grained sediments. 52 

Hence, the geographical distribution of recent cryostratigraphic studies has focused mainly on 53 

northern and central Siberia, Alaska and western Arctic Canada (Figure 1). 54 

This review identifies recent advances in the understanding of ground ice and 55 

cryostratigraphy of present-day permafrost regions based on literature published between 56 

2008 and 2015. We focus on four cryostratigraphic themes: (1) permafrost aggradation, (2) 57 

renewed aggradation of permafrost following degradation, (3) massive ground ice, and (4) 58 



evaluation of ground-ice content. The dating of permafrost and the cryostratigraphy of past 59 

permafrost regions (e.g. northwest Europe) are beyond the scope of this review.  60 

 61 

PERMAFROST AGGRADATION 62 

Cryostratigraphic reconstructions of permafrost aggradation tend to focus on ground-ice 63 

development in unconsolidated sediments and classify permafrost in terms of its time of 64 

formation relative to the deposition of the host material. Epigenetic permafrost aggrades after 65 

the host material has formed, sometimes with a time lag of thousands or millions of years 66 

(French and Shur, 2010). Syngenetic permafrost aggrades at a rate proportional to the 67 

sedimentation rate at the ground surface, and characterizes cold-climate landscapes 68 

influenced by relatively continuous deposition by fluvial, colluvial, lacustrine, or aeolian 69 

processes. Quasi-syngenetic permafrost forms the top layer of permafrost (ice-rich 70 

intermediate layer) by upwards freezing as a result of the gradual thinning of the active layer 71 

over time – usually due to the development of surface vegetation (Shur, 1988). Many 72 

permafrost bodies consist of epigenetic, syngenetic, and/or quasi-syngenetic components and 73 

so are polygenetic. The distinction between them is made by systematically analyzing the 74 

spatial distribution of cryostructures and the nature of ground ice.  75 

Cryostructures, or patterns formed by ice inclusions in frozen ground, are defined as 76 

structures that reflect the amount and distribution of pore and segregated ice within frozen 77 

sediment (French and Shur, 2010). Individual cryostructures are identified based on the 78 

shape, distribution and proportions of ice, sediment or rock within frozen ground (Murton, 79 

2013). Nine cryostructures are commonly described in recent literature (Figure 2A-I). (A) 80 

Pore cryostructure develops where pore water freezes in situ in the interstices between 81 

mineral grains, forming an ice cement; the pore cryostructure may be visible to the naked eye 82 

in sands and gravels or nonvisible in silts or clays. (B) Organic-matrix cryostructure forms 83 



where ice fills void spaces in organic material (e.g. peat or organic-rich soil). (C) Crustal 84 

cryostructure occurs where ice segregation creates an ice crust around an object such as a 85 

rock clast or wood fragment in frost-susceptible material. (D) Vein cryostructure denotes ice 86 

veins that are inclined to vertical in orientation. (E) Lenticular cryostructure denotes lens-87 

shaped ice bodies, often horizontal to subhorizontal, formed by ice segregation in frost-88 

susceptible material. (F) Layered (or bedded) cryostructure comprises horizontal to dipping 89 

ice layers formed by ice segregation or injection of pressurized water. (G) Reticulate 90 

cryostructure represents a three-dimensional network of vertical ice veins and horizontal ice 91 

lenses that separate clayey or silty sediment blocks. (H) Ataxitic (suspended) cryostructure 92 

develops where sediment grains or aggregates are suspended in ice; in many cases it forms in 93 

the intermediate layer at the top of permafrost. (I) Solid cryostructure occurs where bodies of 94 

ice exceed 10 cm in thickness. These cryostructures are useful for logging of permafrost 95 

sequences, but in reality some cryostructures are transitional, composite or hierarchical in 96 

nature (Murton, 2013).  97 

The development of cryostructures relates to three main factors: (1) the physical properties 98 

of soil, sediment, or bedrock; (2) moisture availability; and (3) the mode of permafrost 99 

formation (epigenetic, syngenetic, or quasi-syngenetic). A key property is the grain-size 100 

distribution (particularly the proportion of silt) and packing of grains, which influence the 101 

frost susceptibility of the host sediment (i.e. the degree to which the soil favours the 102 

formation of segregated ice). Frost susceptibility in soils depends primarily on the continuous 103 

network of unfrozen water films in the frozen fringe. Moister sites promote the formation of 104 

ice-rich cryostructures compared to drier ones (Murton, 2013; Stephani et al., 2014).  105 

Distinguishing cryostructures is scale-dependent and may be difficult when working with 106 

cores. The small diameter of cores (mostly between 5 cm and 10 cm) means that lateral 107 

continuity of ground-ice bodies in many cases cannot be established. For instance, it may not 108 



be possible to distinguish between lenticular and layered cryostructures at the core scale. 109 

Natural sections or trial pits best reveal cryostructures.  110 

 111 

Epigenetic Permafrost  112 

When the ground surface begins to experience cold subaerial conditions, epigenetic 113 

permafrost aggrades downward. Under such conditions, ground ice and permafrost decrease 114 

in age with depth.  115 

Outside of areas with buried ice, epigenetic permafrost tends to be ice-poor, with wedge 116 

and segregated ice concentrated mostly in the top few meters. However, ice-rich epigenetic 117 

permafrost (including massive-ice bodies of segregated or intrusive origin) may form at any 118 

depth where the freezing front encounters a significant source of ground water. The distance 119 

between visible ice lenses generally increases with depth, whereas the overall ice content 120 

decreases. The ice-rich top, in many cases, may be explained by the formation of the ice-rich 121 

intermediate layer, which results from a gradual decrease in active-layer thickness (mostly 122 

due to accumulation of organic matter) and is characterized by an ataxitic (suspended) 123 

cryostructure (French and Shur, 2010). Formation of the intermediate layer is considered 124 

“quasi-syngenetic” because permafrost aggrades upward without any sedimentation on the 125 

ground surface (Shur et al., 2011).  126 

Cryostructures of ataxitic, lenticular and layered type are common in the intermediate 127 

layer (Osterkamp et al., 2009; Calmels et al., 2012). The type of cryostructure in this layer 128 

depends strongly on the rate of upward permafrost aggradation. Prolonged stability of the 129 

permafrost table favours layered cryostructures (so-called ‘ice belts’, discussed below), 130 

whereas slow aggradation of the permafrost table favours ataxitic cryostructures (Calmels et 131 

al., 2012), as illustrated from till deposits in Yukon, Canada (Stephani et al. 2014).  132 



Where groundwater supply is limited, epigenetic freezing forms a pore cryostructure with 133 

very low ice content (Stephani et al., 2014), whose presence in frost-susceptible material is a 134 

hallmark of epigenetic permafrost. Reticulate cryostructures also indicate epigenetic 135 

permafrost, and are believed to develop by desiccation and shrinkage during sediment 136 

freezing while moisture migrates towards an advancing freezing front (French and Shur, 137 

2010).  138 

Ice-rich epigenetic permafrost commonly forms in sediments where groundwater is 139 

abundant. Layered and reticulate cryostructures characterize epigenetically frozen lacustrine 140 

silts in the lowlands of west-central Alaska, with the volume of visible segregated ice varying 141 

from 10 to 50%, and ice lenses up to 10 cm thick (Kanevskiy et al., 2014). Similar 142 

cryostructures have been described in Nunavik, Canada (Calmels and Allard, 2008). Ice-rich 143 

epigenetic permafrost was also detected near Anchorage, close to the southern boundary of 144 

permafrost in Alaska (Riddle and Rooney, 2012). In the 10-m-thick section of glacio-145 

lacustrine deposits (silty clay with numerous layers of segregated ice up to 70 cm thick) there, 146 

the average volume of visible ice exceeded 40% (Kanevskiy et al., 2013a).  147 

In the discontinuous permafrost zone, epigenetic permafrost often starts to form with the 148 

development of palsas or lithalsas, which may eventually transform into permafrost plateaus 149 

elevated above the initial ground surface by accumulation of segregated ice. Palsas and 150 

lithalsas have been recently studied in Fennoscandia (Seppälä, 2011); the Altai and Sayan 151 

regions of Russia (Iwahana et al., 2012; Y. K. Vasil’chuk et al., 2015); NWT (e.g. Wolfe et 152 

al., 2014) and northern Quebec, Canada (Kuhry, 2008; Calmels and Allard, 2008; Calmels et 153 

al., 2008); the Himalayas (Wünnemann et al., 2008); and Mongolia (Sharkuu et al., 2012). 154 

Ice-rich syngenetic permafrost sometimes degrades, drains, and subsequently re-155 

establishes as epigenetic permafrost. Thawed and refrozen soils typically undergo a reduction 156 

in ice content when compared with their former state. However, in many cases ice-rich, quasi-157 



syngenetic permafrost forms on top of such refrozen soils, usually due to the development of 158 

surface vegetation and formation of an organic-rich surface horizon (Stephani et al., 2014; 159 

Kanevskiy et al., 2014).  160 

Bedrock hosts epigenetic permafrost in many areas, especially alpine settings and areas 161 

eroded by Pleistocene glaciers, for example the Canadian Shield. Classification of 162 

cryostructures in bedrock adopted from the Russian permafrost literature (translated by 163 

Mel’nikov and Spesivtsev, 2000) is presented by French and Shur (2010). Pore and layered 164 

cryostructures in basalt lava have recently been described from Kamchatka (Abramov et al., 165 

2008) and intrusive ice layers and lenses in limestones, dolomites, marls and kimberlites from 166 

central Yakutia (Alexeev et al., 2016).  167 

 168 

Syngenetic Permafrost 169 

Ground ice in syngenetic permafrost forms within aggrading sedimentary sequences during 170 

or soon after deposition, mainly as segregated ice at the top of permafrost (also named 171 

aggradational ice; Mackay 1972; Cheng 1983) or as syngenetic wedge ice. Layered and 172 

lenticular cryostructures record the progressively aggrading ground surface, and are typical of 173 

syngenetic permafrost (French and Shur, 2010). Russian studies of the 1950–1960s 174 

(Katasonov, 2009; Popov, 2013) revealed a rhythmic structure of syngenetic permafrost, 175 

formed by relatively uniform layers with a predominantly lenticular cryostructure separated 176 

by ‘ice belts’ (distinct icy layers several mm to several cm thick that indicate the position of 177 

the permafrost table during periods when it was relatively stable). Cryostructures between ice 178 

belts have been termed ‘microcryostructures’ (Kanevskiy et al., 2011), formed mainly by 179 

thin (<1 mm) densely spaced ice lenses and include microlenticular, microbraided and 180 

microataxitic types.  181 



Moisture availability, soil texture, and sedimentation rate strongly control cryostructure 182 

distribution in syngenetic permafrost. Two cryofacies diagnostic of syngenetic permafrost 183 

have been distinguished in organic-rich silts, in Yukon, Canada (Stephani et al., 2014). 184 

Microlenticular cryostructures formed in near-surface permafrost during periods of relatively 185 

rapid surface aggradation (e.g. by deposition of windblown silt). Conversely, ataxitic and 186 

reticulate cryostructures with thick ice belts formed during periods of slower siliciclastic 187 

sedimentation that favoured the accumulation of peat and resulted in active-layer thinning 188 

and formation of the intermediate layer. Buried ice-rich intermediate layers with thick ice 189 

belts and predominantly ataxitic cryostructure are typical of thick sequences of syngenetic 190 

permafrost (Stephani et al., 2014; Kanevskiy et al., 2011).  191 

Syngenetic permafrost of Holocene age tends to be thinner than that of Pleistocene age. 192 

Currently, syngenetic permafrost forms in mineral soils within floodplains of Arctic rivers 193 

(Shur and Jorgenson, 1998), deltas (Morse and Burn, 2013), and areas of loess accumulation 194 

(Härtel et al., 2012), and the reported thickness of modern syngenetic permafrost seldom 195 

exceeds 5 m. Cryostratigraphic studies of syngenetic permafrost, however, have focussed 196 

mainly on Pleistocene ‘yedoma’ (or ‘Ice Complex’), which represents relic ice-rich 197 

syngenetic permafrost with large ice wedges that formed in Siberia and North America 198 

during the Late Pleistocene (Figure 3A; Schirrmeister et al., 2013; Murton et al., 2015). 199 

Continued supply of fine-grained sediment favoured yedoma development over tens of 200 

thousands of years, producing syngenetic permafrost sequences often several tens of metres 201 

thick that archive Late Pleistocene environmental history. General maps of yedoma 202 

distribution in Siberia were presented by Konishchev (2009, 2011) and Kanevskiy et al. 203 

(2011), with the latter authors including a preliminary map of yedoma distribution in Alaska. 204 

Detailed maps of Siberian yedoma (scale 1:1,000,000) have been developed by Grosse et al. 205 

(2013) from Russian Quaternary geological maps. Yedoma sections have been recently 206 



described from northern Yakutia (Schirrmeister et al., 2011; Tumskoy, 2012; Strauss et al., 207 

2012; Wetterich et al., 2011, 2014), central Yakutia (Spektor et al., 2008), Taymyr 208 

(Streletskaya and Vasiliev, 2012), northern Alaska (Kanevskiy et al., 2011), interior Alaska 209 

(Kanevskiy et al., 2008; Meyer et al., 2008), Seward Peninsula (Shur et al., 2012; Stephani et 210 

al., 2012), and Yukon (Froese et al., 2009; Pumple et al., 2015; Sliger et al., 2015).  211 

Ground ice is abundant and buried cryosols are present within many yedoma sequences. 212 

Ground ice observed at 14 locations along the coast of the Laptev and East Siberian seas was 213 

primarily wedge ice, “net-like reticulated” cryostructures, and ice bands (Schirrmeister et al., 214 

2011). The ice wedges were identified as syngenetic on the basis of their large size and 215 

morphology. Ice bands (belts in the Russian literature) were interpreted to reflect stable 216 

surface conditions and active-layer thicknesses, leading to ice-enrichment of the near-surface 217 

permafrost. Buried cryosols within the yedoma contained peat “nests” and terrestrial plant 218 

leaves and woody debris. Schirrmeister et al. (2011) attributed these deposits to formation 219 

subaerially in polygonal terrain.  220 

 221 

PERMAFROST DEGRADATION AND RE-AGGRADATION 222 

The degradation of ice-rich permafrost (thermokarst) may produce distinctive features in the 223 

cryostratigraphic record that indicate the depth or mode of past thermokarst activity prior to 224 

re-aggradation of permafrost. This is well illustrated in two case studies from yedoma 225 

regions, which are particularly susceptible to thermokarst. The first identified 226 

cryostratigraphic evidence for shallow degradation of permafrost in non-glaciated Yukon and 227 

Alaska during the last interglaciation: (1) buried relict ice wedges whose tops were thaw 228 

truncated at the base of a palaeo-active layer; (2) ice-wedge pseudomorphs formed by 229 

complete melting of ice wedges; (3) wood-rich organic silt deposits (‘forest beds’) that 230 

represent forest vegetation reworked by thaw slumping or deposition in thermokarst ponds or 231 



depressions; and (4) lenticular and reticulate cryostructures interpreted as segregated ice at 232 

top of permafrost and the bottom of the active layer (Reyes et al., 2010). This study inferred a 233 

depth of thaw on the order of metres during the last interglaciation, highlighting the resilience 234 

of ice-rich discontinuous permafrost over glacial-interglacial timescales. The second case 235 

study used cryostratigraphic observations to evaluate the permafrost response to clearance of 236 

surface vegetation in discontinuous permafrost of the Klondike region, Yukon (Calmels et 237 

al., 2012). There, a thaw unconformity at a depth of about 2 m was interpreted to mark the 238 

thaw depth following deforestation during the gold rush era, beginning about 1900 AD. 239 

 240 

MASSIVE GROUND ICE 241 

Massive ice is a comprehensive term applied to large bodies of ground ice with ice contents 242 

exceeding 250% by weight (van Everdingen, 1998). Recent studies of massive ice have 243 

focused on four main genetic classes (wedge ice, thermokarst-cave (pool) ice, intrusive ice, 244 

and buried ice) and on the origin of tabular massive-ice bodies.  245 

 246 

Wedge Ice 247 

Ice wedges are the most common type of massive ice, and syngenetic wedges are particularly 248 

valuable in cryostratigraphy because both the wedge ice and surrounding sediments contain 249 

palaeoenvironmental archives. Syngenetic ice wedges grow both vertically and horizontally, 250 

resulting often in a vertically nested chevron pattern (Mackay, 1990). Syngenetic ice wedges 251 

in the outer Mackenzie Delta, Canada, have been identified from “shoulders” indicative of 252 

vertical growth stages and from the cross-sectional width of the wedges decreasing towards 253 

the top of permafrost (Figure 3B; Morse and Burn, 2013). The ice wedges developed below a 254 

slowly aggrading surface.  255 



A conceptual model of syngenetic ice-wedge development invokes micro-, meso-, and 256 

macrocycles (Y. K. Vasil’chuk, 2013). Microcycles affect ice wedges by changes in active-257 

layer depth and rates of deposition of thin sediment layers over time scales of several years to 258 

hundreds of years. Mesocycles of ice-wedge growth result from changes in water level, 259 

where ice wedges are located close to or under shallow water bodies. Deposits overlying 260 

wedge ice consist of alternating layers of peat (formed during exposure) and siliciclastic 261 

sediment (deposited during submergence). Ice-wedge growth is reduced or suspended during 262 

submergence. Macrocycles result from major changes in sedimentary regimes over time 263 

scales of tens of thousands to hundreds of thousands of years.  264 

Syngenetic ice wedges account for a significant proportion of the ground-ice record in 265 

lowland permafrost environments, especially in yedoma. Recent studies of the isotopic or 266 

trapped gas composition in wedge ice have reconstructed palaeoclimate and investigated 267 

infilling processes (e.g. Meyer et al., 2010; Opel et al., 2011; Raffi and Stenni, 2011; 268 

Lachniet et al., 2012). For example, Streletskaya et al. (2011) identified a trend of warming 269 

palaeoclimate since the Late Weichselian from different generations of syngenetic ice wedges 270 

near the Kara Sea. St-Jean et al. (2011) showed that site-specific factors influence the 271 

infilling characteristics of wedge ice: in cold dry settings, wedge ice shows evidence of snow 272 

densification, and in moister settings of freezing of liquid water.  273 

 274 

Thermokarst-Cave Ice 275 

Thermokarst-cave ice (or pool ice) forms by freezing of water trapped in underground 276 

cavities or channels (Murton, 2013), typically along degrading ice wedges (Figure 2I). Recent 277 

studies have described thermokarst-cave ice bodies underlain by silts with reticulate 278 

cryostructure in the CRREL Permafrost tunnel, interior Alaska (Fortier et al., 2008; 279 

Kanevskiy et al., 2008; Douglas et al., 2011). Measurements performed along a 600-m-long 280 



and 10-m-high exposure at Barter Island (Alaskan Beaufort Sea coast) showed that numerous 281 

thermokarst-cave ice bodies occupied almost 2% of the face of the coastal bluff (Kanevskiy 282 

et al., 2013b).  283 

 284 

Intrusive Ice 285 

Intrusive ice forms by freezing of water injected under pressure into freezing or frozen 286 

ground (Murton, 2013). Recent cryostratigraphic studies of intrusive ice have focused on 287 

stable isotope stratigraphy and the identification and development of tabular massive ice.  288 

Stable isotope analysis has been applied to reconstruct the freezing processes and growth 289 

history of pingos. Two different isotopic patterns, indicative of open-system and semi-closed 290 

system freezing, were observed in ice sections in an open-system (hydraulic) pingo in 291 

northwest Mongolia, indicating an oscillation between periods where the groundwater 292 

reservoir fed open-system ice-lens development and those of flow interruption, forming a 293 

closed-system environment (Yoshikawa et al., 2013). Y. K. Vasil’chuk et al. (2014) 294 

distinguished between two periods of development in a closed-system (hydrostatic) pingo in 295 

northwest Siberia.  296 

Massive bodies of intrusive ice may form following the drainage of palaeo-lake systems or 297 

from the repeated injection of lake water into marine sediments following shoreline 298 

regression. In glaciolacustrine deposits of central Yukon, Lauriol et al. (2010) identified, 299 

using stable O and H isotopes and occluded gas composition, intrusive ice bodies (10 m wide 300 

and 3–4 m thick) that aggraded following the lowering of water level in a palaeo-glacial lake. 301 

The glaciolacustrine sediments are underlain by permeable gravels and sands, which served 302 

as the water source during permafrost aggradation. The formation mechanism is therefore 303 

likely similar to growth conditions of hydrostatic pingos.  304 

 305 



Buried Ice 306 

Various types of ice bodies may be buried by soil or sediment. Recent literature on buried ice 307 

primarily concerns buried basal glacier ice (Murton, 2009; Fortier et al., 2012; Solomatin and 308 

Belova, 2012; Solomatin, 2013; Coulombe et al., 2015; Lacelle et al., 2015) and buried snow 309 

(Spektor et al., 2011). Investigations of cryostructures in basal ice from existing glaciers 310 

provide a basis for comparison with buried counterparts (e.g. Fortier et al., 2012). 311 

Several stratigraphic characteristics aid in identifying buried glacier ice, including: (1) a 312 

discordant upper contact; (2) inclusions of glacial sediment (Figure 3C); and (3) dynamic 313 

metamorphic structures. A discordant upper contact is identified by the truncation of internal 314 

ice structures such as folds, stratification, and structural and textural heterogeneities 315 

(Solomatin and Belova, 2012). Such thaw or erosional unconformities develop due to either 316 

glaciofluvial erosion or by the thaw front reaching the ice surface (Murton, 2013; Coulombe 317 

et al., 2015). Glaciotectonic deformation structures in ice-rich diamictons and ice structures 318 

similar to those in modern basal glacier ice may also serve as genetic indicators. Murton 319 

(2009) used an event stratigraphy related to the timing of glaciotectonic deformation to help 320 

distinguish between massive ice that was buried or at least glacially deformed from that 321 

which postdated deformation and must be of intrasedimental origin. Though the stratigraphic 322 

context for massive ice may provide a good indication of the ice origin, it is not always 323 

conclusive, and interpretations may be strengthened by studies of ice crystallography, 324 

geochemistry and palynology.  325 

 326 

Origin of Tabular Massive Ice 327 

Most descriptions of tabular bodies of massive ice are from regions formerly occupied by 328 

Pleistocene glaciers or ice sheets. Such ice bodies commonly overlie coarse-grained (sand-329 

rich) deposits, underlie fine-grained ones (muds) (Mackay and Dallimore, 1992) and contain 330 



sediment as individual particles or aggregates. Three models are generally employed to 331 

explain the origin of massive ice: (1) intrasedimental ice growth as segregated and/or 332 

intrusive ice, (2) burial of glacier ice, and (3) subglacial permafrost aggradation (Murton, 333 

2013). Investigations commonly combine traditional stratigraphy and cryostratigraphy with 334 

other methods (ice crystallography, geochemistry and analysis of gas inclusions). 335 

Recent studies of tabular massive ice have been conducted along the western Arctic coast 336 

of Canada (Murton, 2009; Fritz et al., 2011), central Yukon (Lauriol et al., 2010), the 337 

Alaskan Coastal Plain (Kanevskiy et al., 2013b), the Canadian Arctic Islands (Coulombe et 338 

al., 2015), and northwest Siberia (Slagoda et al., 2010, 2012a, b; Kritsuk, 2010; Leibman et 339 

al., 2011; Solomatin and Belova, 2012; Fotiev, 2014, 2015; Y. K. Vasil’chuk et al., 2009, 340 

2011, 2012, 2014; Vasiliev et al., 2015). Intrasedimental and buried ice have been 341 

distinguished on several lines of evidence. This includes the stratigraphic, sedimentological 342 

and geomorphological setting of the ice bodies; the upper and lower contacts between the ice 343 

and the surrounding sediments; internal characteristics of the ice body (e.g. bubble 344 

characteristics, suspended sediment and deformation structures; Figure 3D); and ice 345 

palynology, stable isotope geochemistry and hydrochemistry. However, in many cases the 346 

origin of tabular massive ice is disputed. For example, Y. K. Vasil’chuk (2012, p. 496) stated 347 

that “It should be particularly noted that presently not a single massive ice body identified in 348 

the plain areas of the permafrost regions of Russia can be definitely identified as buried 349 

glacier ice.” In contrast, Solomatin and Belova (2012, p. 430) wrote in the same proceedings 350 

that “The materials, experimental data, and theoretical concepts collected at the present time 351 

lead to the clear conclusion that tabular massive ice represents a single and separate genetic 352 

type of ground ice: the buried remnants of glaciers that formed during deglaciation of the 353 

ancient glaciation areas.” 354 



Interpreting the origin of massive ice is often challenging because growth of segregated 355 

ice, intrusive ice and gradations between them can occur in both non-glacial and subglacial 356 

settings. Intrasedimental bodies of tabular massive ice frequently display characteristics 357 

similar to those of buried glacier ice (Coulombe et al., 2015). Recently, however, some 358 

valuable contributions have come from studies of ice palynology, isotope geochemistry and 359 

hydrochemistry. Studies in western Siberia have suggested that pollen and spores occur in 360 

most massive-ice bodies, and although redeposited pre-Quaternary palynomorphs of 361 

Cenozoic, Mesozoic and Palaeozoic age are common, the pollen of aquatic plants, horsetail 362 

spores, limnetic diatoms and green algae remains indicate a non-glacial genesis of the ice (A. 363 

C. Vasil’chuk and Y. K. Vasil’chuk, 2010, 2012). Vasiliev et al. (2015) reported extremely 364 

high concentration of methane in tabular massive-ice bodies of the Yamal Peninsula, 365 

supporting the intrasedimental interpretation of tabular massive ice in this area.  366 

Isotopic and hydrochemical analysis of massive ice is now commonly used to assist 367 

interpretation, with the values of and relations between δ
18

O, δD and d-excess providing 368 

insights in processes of fractionation, sublimation and ionic segregation during freezing 369 

(Lacelle et al., 2011; Michel, 2011), including in Martian regolith (Lacelle et al., 2008). Such 370 

analyses often supplement field observations of the cryostratigraphy (Murton, 2009), and 371 

have permitted identification of buried perennial snowbank ice (Lacelle et al., 2009), 372 

intrusive ice (Lauriol et al., 2010) and aufeis (icing ice) (Lacelle and Y. K. Vasil’chuk, 2013; 373 

Lacelle et al., 2013), and basal regelation glacier ice (Fritz et al., 2011, 2012).  374 

A new classification of tabular massive ice, developed by Y. K. Vasil’chuk (2012), is 375 

based on three divisions. The first distinguishes between homogeneous and heterogeneous 376 

massive-ice bodies. Homogeneous massive-ice bodies have a similar genesis, composition 377 

and properties in all parts of a massive-ice complex. An example would be a single ice sill or 378 

body of massive segregated ice. Heterogeneous massive-ice bodies have a variable genesis, 379 



composition and properties across a massive-ice complex, and consist of two or more 380 

homogeneous ice bodies. Numerous examples occur on the Yamal Peninsula and adjacent 381 

regions of western Siberia (Y. K. Vasil’chuk et al., 2009, 2011, 2012, 2014). The second 382 

division distinguishes between autochthonous (intrasedimental) and allochthonous (buried) 383 

ice, and the third division classifies the massive ice according to its specific genetic process 384 

(e.g. injection, segregation, infiltration, burial). Overall, this classification provides a valuable 385 

framework for investigating massive ice, and emphasizes its genetic diversity.  386 

 387 

GROUND-ICE CONTENT 388 

Quantifying the amount and distribution of ground ice is necessary in order to predict 389 

permafrost landscape change in the future. Ground-ice content has become an important input 390 

to landscape and ecosystem models and in estimating organic carbon pools in permafrost 391 

(Kuhry et al., 2013; Strauss et al., 2013; Ulrich et al., 2014). Cryostratigraphic observations 392 

provide valuable field data to help evaluate ground-ice content. Ground-ice content has 393 

recently been assessed using three distinct approaches: (1) landscape-scale estimation of 394 

wedge-ice volume (WIV) using remote sensing, (2) laboratory analysis of permafrost 395 

samples, and (3) fine-scale determination of ice volume by X-ray Computed Tomography 396 

(CT) scanning.  397 

Y. K. Vasil’chuk (2009) reviewed different methods of WIV estimation (mainly based on 398 

ice-wedge geometry) developed by permafrost researchers since the 1960s. Several recent 399 

studies have estimated WIV in polygonal terrain using remotely sensed images (e.g. Bode et 400 

al., 2008; Morse and Burn, 2013; Skurikhin et al., 2013; Jorgenson et al., 2015). Ulrich et al. 401 

(2014) presented a method for calculating WIV in yedoma and Holocene thermokarst basin 402 

deposits, utilizing three-dimensional (3D) surface models generated from satellite images to 403 

identify ice-wedge polygon morphometry. Individual wedge volume is estimated using 404 



measurements obtained from field data. Some assumptions are employed when calculating 405 

WIV: epigenetic ice wedges are usually assumed to have the shape of isosceles triangles or 406 

trapezoids in cross-section (Kanevskiy et al., 2013b; Ulrich et al., 2014), and syngenetic ice 407 

wedges that of a rectangular-shaped frontal cut (Strauss et al., 2013). Ice-wedge size and 408 

morphology are commonly determined by field studies. Parameters determined from field 409 

measurements include the top and bottom width of individual wedges and the depth. Field 410 

data are used to parameterize 3D subsurface models and to upscale to the landscape scale.  411 

The ice content of sediments containing pore, segregated or intrusive ice can be 412 

determined by laboratory analysis of permafrost samples. Gravimetric moisture content is 413 

commonly expressed on a dry basis (the ratio of the mass of ice in a sample to the mass of the 414 

dry sample). Phillips et al. (2015) compared dry- and wet-basis gravimetric moisture contents 415 

and concluded that the latter has some advantages when used for ice-rich mineral soils. 416 

Volumetric ice content (VIC) is the ratio of the volume of ice in a sample to the volume of 417 

the whole sample. Excess ice content is equal to the volume in excess of the pore volume in 418 

an unfrozen state, and estimations of excess ice content (e.g. O’Neill and Burn, 2012) 419 

correspond to thaw strain measurements commonly performed during geotechnical 420 

investigations (e.g. Kanevskiy et al., 2012). In ice-rich soils, excess ice content is similar to 421 

the volumetric content of visible ice. In ice-rich epigenetic permafrost, VIC can be estimated 422 

relatively easily by analysing photographs of frozen cores and exposures (Kanevskiy et al., 423 

2013a, 2014). Total VIC of the upper layers of permafrost (which includes pore, segregated 424 

and massive ice) has been estimated based on terrain-unit approach for the Beaufort Sea 425 

coastal area of Alaska (Kanevskiy et al., 2013b) and Yukon (Couture and Pollard, 2015).  426 

CT scanning of frozen sediment cores provides a reasonable estimate of VIC and a non-427 

destructive method of 3D imaging and analyzing their internal structure (Calmels and Allard, 428 

2008; Calmels et al., 2010, 2012; Lapalme et al., 2015). CT scans image features such as 429 



stratification, sediment properties, fractures, gas inclusions, ice distribution and density 430 

variations. The method utilizes the density contrasts in the sample, allowing users to 431 

distinguish between gas, ice, organic and mineral components (Cnudde and Boone, 2013). 432 

Two limiting factors must be considered when determining VIC using image analysis of CT 433 

scans. Firstly, materials of similar densities are not easily differentiated. For example, 434 

organic-rich horizons (e.g. frozen, saturated peat) are similar in density to ice, which results 435 

in an overestimation of ice content unless the material can be correctly classified visually. 436 

Secondly, the spatial scan resolution (0.35 mm in the transverse directions and 0.5 mm in the 437 

longitudinal direction) limits the identification of pore ice in fine-grained sediment. Similarly, 438 

constituents (e.g. gas bubbles) that are smaller than the resolution size cannot be accounted 439 

for in volume calculations, which may lead to their underestimation, unless accounted for 440 

using calibration factors (Ducharme et al., 2015).  441 

 442 

CONCLUSIONS AND PERSPECTIVES FOR FUTURE RESEARCH 443 

Recent cryostratigraphic research in modern permafrost environments has focused on fine-444 

grained deposits of aeolian, fluvial, or lacustrine origin. As seen in Figure 1, however, 445 

relatively few cryostratigraphic studies have investigated permafrost in eastern Arctic 446 

Canada, Greenland and Scandinavia. Such landscapes include highly variable relief and 447 

depositional systems, where permafrost formation is closely tied to late Quaternary glacial 448 

and sea-level history. Evaluation of the cryostratigraphy of these environments may provide 449 

valuable insight into permafrost aggradation and ground-ice formation during the Holocene 450 

Epoch. Targeted studies in these locations may help to assess the nature of ground-ice 451 

formation in coarse-grained deposits, for example in alluvial fans and colluvium.  452 

Cryostructural classifications have been successfully applied to describe the occurrence 453 

and variability of ground ice in permafrost sediment sequences. To complement these largely 454 



descriptive and inferential studies, future research needs to investigate mechanistically the 455 

processes of cryostructure development. Freezing and thawing experiments under controlled 456 

field and laboratory conditions may allow hypothesis testing about cryostructure processes 457 

and boundary conditions, as well as quantification of rates of cryostructure formation.  458 

The presence of ground ice has important consequences for landscape and infrastructure 459 

development as well as ecosystem and climate models. Recent studies into VIC have 460 

integrated a number of remotely sensed and indirect methods to assess ground-ice 461 

characteristics in permafrost. Future research needs to constrain the uncertainty in these 462 

estimations.  463 
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 870 

Figure 2. Simplified classification of cryostructures in unconsolidated sediments. All 871 

photographs are oriented vertically such that the long-axis of the image is perpendicular to 872 



the ground surface. A) Pore cryostructure, note the absence of visible ice. B) Organic-matrix 873 

cryostructure, ice present in the void space but not visible. C) Crustal cryostructure. D) Vein 874 

cryostructure. E) Lenticular cryostructure. F) Layered cryostructure. G) Reticulate 875 

cryostructure. H) Ataxitic cryostructure. I) Solid cryostructure – thermokarst-cave (pool) ice 876 

overlying a vertically foliated ice wedge. Two drill holes several cm in diameter are visible in 877 

the ice. Based on a classification presented by Murton (2013), which is modified from 878 

previous classifications.  879 



 880 

Figure 3. A) Yedoma exposed in headwall of a retrogressive thaw slump at Duvanny Yar, 881 

northeast Yakutia, Russia. Syngenetic ice wedges (lighter-coloured grey) enclose columns of 882 

silt (darker-coloured grey), some of which degrade to form conical thermokarst mounds 883 

(baydzherakhs). Top of headwall is about 39 m above the level of the Kolyma River (in 884 

foreground); B) Ice-rich ca. 1-m-thick intermediate layer with thin active ice wedge on top of 885 

large buried syngenetic ice wedge, 35-m-high Itkillik River yedoma exposure, northern 886 

Alaska; C) Buried basal ice from the Laurentide Ice Sheet, Mason Bay, Richards Island, 887 

Northwest Territories, Canada. Pebbles and cobbles protrude from surface of massive ice, 888 

and folds occur within it. Sand wedge on left and two ice wedges on right penetrate massive 889 

ice. Dog and ice axe for scale in bottom centre; D) Post-glacial intrasedimental massive ice at 890 

Peninsula Point, near Tuktoyaktuk, Northwest Territories, Canada. Anticline in banded 891 

massive underlies a small slump.  892 


