Metal oxide semiconductor thin-film transistors for flexible electronics

This version is available from Sussex Research Online: http://sro.sussex.ac.uk/id/eprint/61869/

This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher's version. Please see the URL above for details on accessing the published version.

Copyright and reuse:
Sussex Research Online is a digital repository of the research output of the University.

Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available.

Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.
Metal oxide semiconductor thin-film transistors for flexible electronics
Luisa Petti, Niko Münzenrieder, Christian Vogt, Hendrik Faber, Lars Büthe, Giuseppe Cantarella, Francesca Bottacchi, Thomas D. Anthopoulos, and Gerhard Tröster

Citation: Applied Physics Reviews 3, 021303 (2016); doi: 10.1063/1.4953034
View online: http://dx.doi.org/10.1063/1.4953034
View Table of Contents: http://scitation.aip.org/content/aip/journal/apr2/3/2?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in
Selective wet-etch processing of optically transparent flexible InGaZnO thin-film transistors

Contact resistance and overlapping capacitance in flexible sub-micron long oxide thin-film transistors for above 100MHz operation

Effect of In-Ga-Zn-O active layer channel composition on process temperature for flexible oxide thin-film transistors

Scaling down of amorphous indium gallium zinc oxide thin film transistors on the polyethersulfone substrate employing the protection layer of parylene-C for the large-scale integration
Appl. Phys. Lett. 96, 243504 (2010); 10.1063/1.3454775

A model of electrical conduction across the grain boundaries in polycrystalline-silicon thin film transistors and metal oxide semiconductor field effect transistors
Metal oxide semiconductor thin-film transistors for flexible electronics

Luisa Petti,1 Niko Münzenrieder,1,2 Christian Vogt,1 Hendrik Faber,3 Lars Büthe,1 Giuseppe Cantarella,1 Francesca Bottacchi,3 Thomas D. Anthopoulos,3 and Gerhard Tröster1

1Electronics Laboratory, Swiss Federal Institute of Technology, Zürich, Switzerland
2Sensor Technology Research Centre, University of Sussex, Falmer, United Kingdom
3Department of Physics and Centre for Plastic Electronics, Imperial College London, London, United Kingdom

(Received 7 April 2016; accepted 15 April 2016; published online 9 June 2016)

The field of flexible electronics has rapidly expanded over the last decades, pioneering novel applications, such as wearable and textile integrated devices, seamless and embedded patch-like systems, soft electronic skins, as well as imperceptible and transient implants. The possibility to revolutionize our daily life with such disruptive appliances has fueled the quest for electronic devices which yield good electrical and mechanical performance and are at the same time light-weight, transparent, conformable, stretchable, and even biodegradable. Flexible metal oxide semiconductor thin-film transistors (TFTs) can fulfill all these requirements and are therefore considered the most promising technology for tomorrow’s electronics. This review reflects the establishment of flexible metal oxide semiconductor TFTs, from the development of single devices, large-area circuits, up to entirely integrated systems. First, an introduction on metal oxide semiconductor TFTs is given, where the history of the field is revisited, the TFT configurations and operating principles are presented, and the main issues and technological challenges faced in the area are analyzed. Then, the recent advances achieved for flexible n-type metal oxide semiconductor TFTs manufactured by physical vapor deposition methods and solution-processing techniques are summarized. In particular, the ability of flexible metal oxide semiconductor TFTs to combine low temperature fabrication, high carrier mobility, large frequency operation, extreme mechanical bendability, together with transparency, conformability, stretchability, and water dissolubility is shown. Afterward, a detailed analysis of the most promising metal oxide semiconducting materials developed to realize the state-of-the-art flexible p-type TFTs is given. Next, the recent progresses obtained for flexible metal oxide semiconductor-based electronic circuits, realized with both unipolar and complementary technology, are reported. In particular, the realization of large-area digital circuitry like flexible near field communication tags and analog integrated circuits such as bendable operational amplifiers is presented. The last topic of this review is devoted for emerging flexible electronic systems, from foldable displays, power transmission elements to integrated systems for large-area sensing and data storage and transmission. Finally, the conclusions are drawn and an outlook over the field with a prediction for the future is provided. Published by AIP Publishing.

[http://dx.doi.org/10.1063/1.4953034]

TABLE OF CONTENTS

I. INTRODUCTION .. 2
 A. Historical perspective 2
 B. TFT configuration and operation 3
 C. Present issues and challenges 6

II. N-TYPE METAL OXIDE SEMICONDUCTOR TFTS 7
 A. N-type metal oxide semiconductors 7
 B. Flexible n-type vacuum-processed TFTs 8
 C. Flexible n-type solution-processed TFTs 25

III. P-TYPE OXIDE SEMICONDUCTOR TFTS 32
 A. P-type metal oxide semiconductors 32
 B. Flexible p-type vacuum-processed TFTs 33
 C. Flexible p-type solution-processed TFTs 34

IV. METAL OXIDE SEMICONDUCTOR-BASED CIRCUITS 36
 A. Circuit configuration and operation 36
 B. Flexible unipolar circuits 38
 C. Flexible complementary circuits 41

V. METAL OXIDE SEMICONDUCTOR-BASED SYSTEMS 43
 A. Optical display systems 43
 B. Sensoric systems 44
 C. Power transmission systems 45
 D. Data transmission systems 46
 E. Data storage systems 46

VI. CONCLUSIONS 46

1931-9401/2016/3(2)/021303/53/$30.00 Published by AIP Publishing.
I. INTRODUCTION

Electronics today is facing a disruptive evolution, advancing from heavy, bulky, and rigid devices to light-weight, soft, and flexible appliances. Emerging new applications like smart labels\(^1\) and intelligent packaging,\(^2\) wearable\(^1\)–\(^4\) and textile integrated systems,\(^5\)–\(^7\) seamless and embedded patch-like electronics,\(^8\)–\(^9\) epidermal devices,\(^10\)–\(^16\) artificial skins for robots,\(^17\)–\(^19\) imperceptible\(^20\)–\(^22\) biomimetic\(^23\) and transient\(^24\)–\(^26\) medical implants, as well as advanced surgical tools\(^13\)–\(^15\),\(^17\)–\(^28\) promise to revolutionize our daily life. To enable all these applications, electronic devices have to become flexible, light-weight, transparent, conformable, stretchable, and even bio-compatible and biodegradable. Flexible thin-film transistors (TFTs) are able to fulfill all these requirements and are thus becoming increasingly important to realize next-generation electronic device platforms. Among the state-of-the-art flexible TFT technologies, metal oxide semiconductors are especially suitable, owing to their high optical transparency,\(^29\) good electrical performance [electron carrier mobility of \(\geq 10\, \text{cm}^2\, \text{V}^{-1}\, \text{s}^{-1}\) even if processed at room temperature (RT)],\(^29\) as well as excellent mechanical properties (large bendability down to 25 \(\mu\)m radii and good insensitivity to strain).\(^23\),\(^30\) Table I provides a summary and a comparison of the most important device properties for the established flexible TFT technologies: amorphous silicon (a-Si),\(^31\)–\(^32\) organic semiconductors,\(^33\),\(^34\) low temperature poly-crystalline silicon (LTPS),\(^34\)–\(^35\) and metal oxide semiconductors. As evident from Table I, metal oxide semiconducting technology presents several advantages typical of a-Si and organic materials, such as low cost, low process complexity and temperature, and large-area scalability, but at the same time yields a larger carrier mobility.\(^36\) Compared with LTPS, metal oxide semiconductors present slightly lower carrier mobility, but also larger scalability, smaller manufacturing cost, as well as process complexity and temperature.\(^36\) Furthermore, metal oxide semiconductor TFTs show a larger resistance to mechanical strain if compared with LTPS devices.\(^36\) This is why metal oxide semiconductors are considered the most prominent candidate for next-generation flexible high-resolution active matrix organic light emitting diode (AMOLED) display backplanes,\(^38\)–\(^41\) as well as the most suitable technology to fuel the realization of tomorrow’s ubiquitous electronics. Main aim of this review is to report the recent advances obtained in the field of flexible metal oxide semiconductor TFTs: from single devices (Sections II and III), large-area circuits (Section IV) up to entirely integrated systems (Section V). Before reviewing the state-of-the-art of flexible metal oxide semiconductor technology in the Sections II–V, in this section an introduction on the topic is given. First, in Sec. IA, a historical overview on TFTs based on metal oxide semiconductors is presented. Subsequently, in Sec. IB, the operating principle of TFTs together with the available device configurations are reported. Finally, in Sec. IC, the main issues and technological challenges faced in the field are analyzed.

A. Historical perspective

TFTs find their origin back in the 1930 when the field-effect transistor (FET) was proposed and patented by Lilienfeld.\(^42\)–\(^44\) In these reports, Lilienfeld described the concept of a device in which the current flow is controlled by the application of a transversal electric field. Even if TFTs and FETs share the same operating principle, the first TFT was realized only in 1962 by Weimer at RCA laboratory.\(^45\) In his work, Weimer used a vacuum technique (evaporation) and high-pressure shadow masking to deposit and structure a gold (Au) source/drain (S/D) electrodes, a micro-crystalline cadmium sulfide (CdS) n-type (electron conducting) semiconductor, a silicon monoxide gate dielectric, and an Au gate contact on an insulating glass substrate (Fig. 1). Interestingly, Weimer already showed a preliminary evaluation of thin-film circuits, such as flip-flops, \(\text{AND}\), and \(\text{NOR}\) gates. His proceeding of IRE “The TFT - a new Thin-Film Transistor” draws worldwide attention\(^45\) opening the way to a new field of study. Few years later in 1964, the first TFT with a metal oxide semiconductor was demonstrated by Klasens and Koelmans.\(^46\) The device was manufactured by photolithographic techniques and comprised aluminum (Al) electrodes, anodized aluminum oxide (Al\(_2\)O\(_3\)) gate dielectric, evaporated n-type tin oxide (SnO\(_2\)) semiconductor, and source/drain contacts on a glass substrate. For the first time, the transparency of substrate, semiconductor, and gate dielectric allowed realizing a self-aligned (SA) lithographic lift-off process, where the source/drain contacts were defined by exposing the photoresist to ultraviolet (UV) light penetrating from the back of the substrate. In this way, the opaque Al gate electrode could act as a shielding layer for the UV light.\(^46\) Subsequently, TFTs with single crystal lithium-doped zinc oxide (ZnO:Li) hydrothermally grown from solution,\(^47\) as well as SnO\(_2\) deposited from vapor phase reaction, were presented.\(^48\) Nevertheless, none of these two devices outperformed the results shown by Klasens and Koelmans. After a few decades of silence, in 1996 metal oxide semiconductors gained new attention as active layers in ferroelectric memory TFTs.\(^49\),\(^50\) The pioneering work of

<table>
<thead>
<tr>
<th>Device type</th>
<th>Microstructure</th>
<th>Carrier mobility ((\text{cm}^2, \text{V}^{-1}, \text{s}^{-1}))</th>
<th>Manufacturing cost</th>
<th>Process complexity</th>
<th>Process temperature ((\degree C))</th>
<th>Large-area scalability</th>
<th>Device type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metal oxide semiconductors</td>
<td>Mainly amorphous</td>
<td>10–100</td>
<td>Low</td>
<td>Low</td>
<td>RT to 350</td>
<td>High</td>
<td>Mainly n-type</td>
</tr>
<tr>
<td>Amorphous silicon</td>
<td>Amorphous</td>
<td>1</td>
<td>Low</td>
<td>Low</td>
<td>150–300</td>
<td>High</td>
<td>N-type</td>
</tr>
<tr>
<td>Low temperature</td>
<td>Poly-crystalline</td>
<td>50–100</td>
<td>High</td>
<td>High</td>
<td>350–500</td>
<td>Low</td>
<td>N- and p-type</td>
</tr>
<tr>
<td>Poly-crystalline silicon</td>
<td>Poly-crystalline</td>
<td>0.1–10</td>
<td>Low</td>
<td>Low</td>
<td>RT to 250</td>
<td>High</td>
<td>Mainly p-type</td>
</tr>
</tbody>
</table>
Prins et al. demonstrated the first fully transparent and metal oxide-based TFT with antimony-doped SnO₂ (SnO₂:Sb) semiconductor grown by pulsed layer deposition (PLD) (Fig. 2).⁴⁹ At the same time, Seager et al. showed the first indium oxide (In₂O₃) non-volatile memory TFT with ferroelectric gate dielectric.⁵⁰ Following the success of these works, from 2003 metal oxide semiconductors gained an increasingly interest. The majority of the attention was initially directed to zinc oxide (ZnO) TFTs,⁵¹–⁵⁹ resulting in an electron mobility above 1 cm² V⁻¹ s⁻¹.¹,¹¹,¹³,¹⁴,¹⁷,¹⁹,¹⁸ Such values highlighted the suitability of this technology as a replacement for a-Si, commonly employed in TFT display backplanes. In this context, Hoffman, Norris, and Wager reported fully transparent ZnO TFTs yielding a carrier mobility of 2.5 cm² V⁻¹ s⁻¹ and current on/off ratio of 10⁷.⁵¹ In this case, the ZnO layer was deposited by ion-beam sputtering (IBS) and annealed between 600 and 800°C. A few months later, Carcia et al. presented TFTs with ZnO radio-frequency (RF) sputtered at room temperature exhibiting similarly good performance.³² At the same time, also Norris et al. showed the first TFT with spin coated ZnO active layer, yielding a satisfactory carrier mobility of 0.2 cm² V⁻¹ s⁻¹.⁶⁰ Subsequently, Fortunato et al. reported fully transparent TFTs with ZnO RF sputtered at room temperature presenting an electron mobility of 20 cm² V⁻¹ s⁻¹.⁶¹ whereas Carcia, McLean, and Reilly demonstrated how semiconductor engineering during ZnO sputtering can lead to TFTs with a carrier mobility as high as 42 cm² V⁻¹ s⁻¹.⁵⁹ Additionally, also TFTs with other binary metal oxide semiconductors like In₂O₃ and SnO₂ were reported, yielding also good performance.⁶²,⁶³ Main breakthrough in the field was achieved in 2003 by Nomura et al. who demonstrated a multicomponent indium gallium zinc oxide (IGZO) single-crystalline active layer epitaxially grown at 1400°C on an yttria-stabilized zirconium (YSZ) substrate.⁶⁴ The resulting TFT presented an electron mobility of 80 cm² V⁻¹ s⁻¹ and a current on/off ratio of 10⁶, demonstrating that high-performance TFTs can be realized with metal oxide semiconductors. Continuing their work, in 2004 Nomura et al. reported transparent TFTs with amorphous IGZO layers grown at room temperature by PLD on flexible polyethylene terephthalate (PET) foils (Fig. 3).⁵⁹ The results were impressive (especially considering the low temperature process): an electron mobility of 9 cm² V⁻¹ s⁻¹ and a current on/off ratio of 10⁷. Furthermore, first mechanical bending tests of the devices at 30 mm radius were demonstrated. Nomura’s report paved the way to an impressive number of publications on metal oxide semiconductor TFTs. In the following years, several multicomponent metal oxide semiconductors, ranging from zinc tin oxide (ZTO),⁶⁵,⁶⁶ indium zinc oxide (IZO)⁶⁶ to IGZO (the most common),⁶⁷,⁶⁸ were investigated. From 2005, also the first reports on hole transporting (p-type) metal oxide semiconductors appeared. First, Chang et al. demonstrated p-type behavior in gallium oxide (Ga₂O₃) nanowire (NW) TFTs,⁷⁰ followed by other works on p-type tin monoxide (SnO),⁷¹,⁷² cuprous oxide (Cu₂O),⁷³,⁷⁴ and nickel oxide (NiO)⁷⁵ devices all presenting low carrier mobility and high process temperatures. Remarkably, in 2007 Ju et al. showed the first flexible and solution-processed metal oxide semiconductor TFTs based on ZnO and In₂O₃ NWs.⁷⁶ From 2008, tremendous advances were made in the field of flexible devices, from IGZO TFTs on cellulose fiber-based paper,⁷⁷ stretchable and transparent ZnO TFTs,⁷⁸ complementary inverters based on n-type IGZO and p-type SnO TFTs with and on paper,⁷⁹ ultraflexible and transparent IGZO TFTs,⁸⁰ three-dimensionally (3D) conformable IGZO TFTs and circuits,⁸¹ water soluble IGZO TFTs,⁸² to mechanically active biomimetic IGZO TFTs.⁷⁳ Nowadays, the state-of-the-art flexible IGZO TFTs yield excellent electrical performance with carrier mobility values up to 84 cm² V⁻¹ s⁻¹ (Ref. ⁸³) and current on/off ratio above 10⁹ depending on the semiconductor composition and device configuration.

B. TFT configuration and operation

In this subsection, the most common TFT configurations are presented, followed by a short explanation of the basic TFT operating principle.
1. TFT configuration

TFTs are three terminal field-effect devices, whose working principle is similar to those of metal oxide semiconductor field-effect transistors (MOSFETs) used in conventional Silicon (Si) electronics. However, in MOSFET technology, the substrate is a single crystal Si wafer (representing also the active layer) and device functionality is added through a large variety of complex, high temperature (>1000 °C) and expensive processes (e.g., diffusion/implantation of dopants, lithography, and etching). On the other hand, TFTs are fabricated typically on insulating substrates (glass and plastic), on which all the device layers are grown at lower temperature (<650 °C) by vacuum- or solution-processing deposition techniques. Given the different manufacturing processes, the active layers of TFTs are typically poly-crystalline or amorphous materials, which are both characterized by a reduced charge carrier transport (if compared with single-crystal Si). Like in MOSFETs, TFT functionality is achieved through the following components: a dielectric layer inserted between the semiconductor and a transversal gate contact, together with two source/drain electrodes directly in contact with the semiconductor. Current modulation between source/drain is achieved through the semiconducting layer by the capacitive injection of carriers close to the dielectric/semiconductor interface (the so-called field-effect). Even if both MOSFETs and TFTs rely on the field-effect to modulate the conductance of the active layer, in TFTs this is achieved by an accumulation layer (and not an inversion region like in MOSFETs). TFTs can be fabricated using a wide range of device configurations. Most peculiar planar TFT structures are: bottom-gate (BG) (Figs. 4(a) and 4(b)) and top-gate (TG) (Figs. 4(c) and 4(d)) architectures, depending on whether the gate electrode is deposited before or after the active layer. BG and TG devices can be either staggered or coplanar, depending if the source/drain contacts are on the opposite or on the same side of the semiconductor/dielectric interface. BG structures, especially staggered (Fig. 4(a)), have been widely used for a-Si TFTs, as well as in most display prototypes due to easier processing and enhanced performance. Nevertheless, BG structures require an additional layer (passivation) that protects the back channel from air exposure and therefore hinders undesired instability effects. TG structures, especially coplanar (Fig. 4(d)), are mainly used for LTPS technology. With such a configuration indeed, the semiconductor can be deposited and crystallized at high temperatures without any damage to other materials/interfaces that are realized in successive steps. In TG TFTs, the gate dielectric can also act as a passivation layer, reducing thus the number of patterning steps. To improve the static (DC) performance, double-gate (DG) TFT structures (Fig. 4(e)) can be employed. In DG TFTs, an additional gate is utilized to effectively control a larger portion of the semiconductor channel. Recently, the quest for small device footprint and nanoscaled channel lengths has led to the development of alternatives to planar geometries, such as vertical TFTs (VTFTs) (Fig. 4(f)) or quasi-vertical TFTs (QVTFTs), where the channel is not anymore defined by a photolithographic patterning step, but rather by the thickness of a device layer.

2. TFT operation

The most important DC performance parameters are extracted from the current-voltage (I-V) characteristics in compliance with the gradual channel approximation. As shown in the transfer I_D-V_{GS} (Fig. 5(a)) and output I_D-V_{DS} (Fig. 5(b)) curves, there are two main operating regimes: linear and saturation. For small values of the drain-source...
voltage V_{DS} ($V_{DS} \ll V_{GS} - V_{TH}$, where V_{GS} is the gate-source voltage and V_{TH} is the threshold voltage), the device operates in linear regime and the drain current I_D is approximated by the simplified Shichman - Hodges FET model.\(^\text{98}\)

$$I_{D,lin} = \frac{W \cdot \mu \cdot C_{ox}}{L} \cdot (V_{GS} - V_{TH}) \cdot V_{DS}, \quad (1.1)$$

where W is the channel width, μ is the channel mobility, C_{ox} is the specific capacitance of the gate dielectric per unit area, and L is the channel length. When $V_{DS} \geq V_{GS} - V_{TH}$, the device operates in saturation regime and I_D equals

$$I_{D,sat} = \frac{W \cdot \mu \cdot C_{ox}}{2 \cdot L} \cdot (V_{GS} - V_{TH})^2. \quad (1.2)$$

Equations (1.1) and (1.2) can be used to extract the TFT DC parameters: carrier mobility, threshold voltage, current on/off ratio, sub-threshold swing (SS), and contact resistance.\(^\text{97}\)

\textit{a. Carrier mobility.} This parameter describes the efficiency of charge carrier transport in a material, which affects directly the maximum drain current and the operating frequency (the so-called transit frequency f_T) of a device.\(^\text{98}\) In a material, μ depends on several scattering mechanisms (e.g., lattice vibrations, impurities, and grain boundaries).\(^\text{99,100}\) The most common way to characterize the intrinsic mobility of a bulk material is to extract the Hall mobility (μ_{H}) from the Hall effect.\(^\text{100}\) The mobility in a TFT is typically different from the intrinsic mobility of its semiconductor, since charge transfer is now limited to a narrow region close to the gate dielectric semiconductor interface and further sources of scattering (e.g., Coulomb scattering from dielectric charges and interface states, and surface roughness scattering) need to be considered.\(^\text{100}\) According to Schroder,\(^\text{100}\) several TFT mobilities can be extracted: the effective mobility μ_{EFF}, the field-effect mobility μ_{F}, and the saturation mobility μ_{sat}. Most common mobilities are μ_{EFF} (also known as linear mobility μ_{lin})

$$\mu_{EFF} = \mu_{lin} = \frac{L}{W \cdot C_{ox} \cdot V_{DS}} \cdot \frac{dI_D}{dV_{GS}}, \quad (1.3)$$

and

$$\mu_{sat} = \frac{2 \cdot L}{W \cdot C_{ox}} \cdot \frac{d^2I_D}{dV_{GS}^2} = \frac{2 \cdot L}{W \cdot C_{ox}} \cdot \left(\frac{dV_{GS}}{dI_D}\right)^2. \quad (1.4)$$

\textit{b. Threshold voltage.} The threshold voltage V_{TH} corresponds to the gate-source voltage at which a conductive channel is formed at the dielectric/semiconductor interface.\(^\text{97}\) In n-type TFTs, if V_{TH} is positive/negative, the devices are designated to operate in enhancement/depletion mode.\(^\text{51}\) There are several methods used to extract V_{TH}\(^\text{101}\) If not explicitly specified, the most employed methodology is represented by the linear extrapolation of the I_D-V_{GS} plot (linear regime) or $I_D^{1/2}$-V$_{GS}$ plot (saturation regime).\(^\text{101}\)

\textit{c. Current on/off ratio.} The current on/off ratio I_{ON}/I_{OFF} is extracted from the transfer curve (Fig. 5(a)), dividing the maximum with the minimum drain current (typically in saturation regime).\(^\text{97}\) A value of 10^4 or higher is desirable for digital circuits.\(^\text{102}\) Nevertheless, smaller I_{ON}/I_{OFF} can also result in successful switching operation.\(^\text{102}\) For analog circuits, a current on/off ratio of $>10^4$ is typically sufficient.\(^\text{80}\)

\textit{d. Sub-threshold swing.} Another important parameter is the sub-threshold swing (SS), which is a measure of how efficiently the transistor can turn on and off. SS is directly related to the quality of the interface dielectric/semiconductor.\(^\text{97}\) The sub-threshold swing is defined as the inverse of the maximum slope of the I_D-V_{GS} plot and indicates the gate-source voltage needed to increase the drain current by one decade

$$SS = \left(\frac{dV_{GS}}{d \log_{10}(I_D)}\right)_{\text{max}}. \quad (1.5)$$

A low sub-threshold swing <100 mV/dec (together with a threshold voltage close to 0 V) is desirable to reduce the power consumption and the operating voltage in circuit applications.\(^\text{102,104}\)

\textit{e. Contact resistance.} Besides the above mentioned parameters, a less cited (but still important) parameter is given by the contact resistance (R_C) between the source/drain electrodes and the semiconductor. Controlling the contact resistance is especially important in short-channel devices ($L \leq 5 \mu m$), since a high R_C value can lead to the degradation of both the device μ_{EFF} and f_T.\(^\text{105,106}\) In a TFT, the contact resistance depends on the source/drain electrodes,\(^\text{107,108}\) the interface metal/semiconductor,\(^\text{107}\) the source/drain to gate contact area,\(^\text{106,108}\) as well as specific contact treatments (plasma, temperature, etc.) performed.\(^\text{109}\) A well-known and utilized indirect method to extract R_C is the transmission-line method (TLM), which requires the linear I_D-V_{GS} curves of a series of TFTs with different channel lengths.\(^\text{108}\) More specifically, R_C can be extracted from the total TFT resistance (R_T)

$$R_T = \frac{1}{I_{CH}} \cdot L + R_C, \quad (1.6)$$

where I_{CH} is the channel resistance per unit channel length.\(^\text{108}\) By fitting the experimental values of the R_T-L plot for different V_{GS} with a linear curve, the total contact resistance can be estimated. Alternatively, the R_C can also be extracted from the ratio of two linear I_D-V_{GS} measurements taken on the same device (at two different V_{DS}), as explained by Campbell et al.\(^\text{110}\)

\textit{f. Overlap capacitance.} Besides the contact resistance, also the overlap capacitance C_{OV} between the gate contact and the source/drain electrodes is an important parameter, since it directly influences the TFT’s transit frequency.\(^\text{97}\) C_{OV} can be extracted from the capacitance-voltage (C-V) characteristics (Fig. 6), from which the total gate capacitance C_G can be estimated

$$C_G = C_{GS} + C_{GD} = C_{ox} \cdot W \cdot (L + L_{OV,TOT}), \quad (1.7)$$
where C_{GS} is the gate-source capacitance, C_{GD} is the gate-drain capacitance, and $L_{OV,TOT}$ is the total overlap length between the gate and the source/drain electrodes ($L_{OV,TOT} = L_{OV,S} + L_{OV,D}$). The overlap capacitance $C_{OV} = C_{GS} \cdot W \cdot L_{OV,TOT}$ and can be extracted from the C-V plot (Fig. 6) as the minimum C_{G} value.

\[f_T = \frac{1}{2 \cdot \pi} \frac{g_m}{C_G} \times \frac{\mu \cdot (V_{GS} - V_{TH})}{L \cdot (L + L_{OV,TOT})}, \]
(1.8)

where g_m is the transconductance ($g_m = \frac{dI_D}{dV_G}$) calculated in the saturation regime. A first value of the transit frequency can be estimated from the g_m and C_G values extracted from the I_D-V_{GS} and C_G-V_{GS} data, respectively. A more precise value of the transit frequency can be calculated by measuring the TFT’s S-parameters, i.e., by applying a low voltage RF voltage on top of the V_{GS} bias and subsequently measuring the $I_{DS,sat}$ of the devices. From the device S-parameter measurement, the corresponding small signal current gain H_{21} can be calculated as a function of the frequency. The f_T is then given by the value where H_{21} equals 1 (see Fig. 13 for a practical example).

C. Present issues and challenges

From 2003 onwards with the work of Hosono, Wager, Carcia, and Fortunato, metal oxide semiconductor TFTs have gained an increasingly interest, especially in view of their application in optical display backplanes. At the beginning, the attention has been mainly focused on the realization of metal oxide semiconductor TFT yielding high carrier mobility, as well as good stability under bias and illumination stress. In particular, the influence of semiconductor composition, passivation layer, gate dielectric, and source/drain electrodes on the device performance and stability have been extensively investigated, as reported in several reviews. The enormous progresses achieved in the last ten years in these areas have directed current research efforts towards new directions and challenges. In particular, the possibility to replace vacuum-processing techniques with higher throughput continuous processes is especially attractive in view of novel large-area and cost-effective applications, such as foldable and printable displays, disposable smart labels, and intelligent packaging. To this aim, solution-processing techniques, especially spray pyrolysis (SP) or digitally controlled on-demand deposition methods like ink-jet printing, are gaining an increasing interest. Another open issue is represented by the development of metal oxide semiconductor TFTs with good p-type conduction. Even if notable advances have been made in this direction, p-type metal oxide semiconductor devices can hardly yield performance levels similar to their n-type counterpart. As explained later in this review, this is due to the specific charge transport characteristics of metal oxide semiconductors. Due to the scarce availability of good p-type devices, the majority of the reported metal oxide semiconductor-based circuits are thus unipolar, employing only n-type TFTs. Even if complex large-area and high TFT count digital and analog electronic circuits have been demonstrated by employing only n-type metal oxide semiconductor TFTs, the development of a complementary technology based on both n- and p-type devices is essential to realize compact and low-power circuits. To this purpose, research on complementary circuits based on hybrid metal oxide/organic or fully metal oxide semiconducting materials has expanded. All of the above mentioned topics apply for both rigid and flexible metal oxide semiconductor TFTs. Nevertheless, in the case of flexible substrates, the solution of the previously listed issues is even more challenging, due to the generally more complicated processing conditions (i.e., low temperature fabrication, substrate dimensional instability during TFT fabrication, and circuit integration). Furthermore, in the case of flexible TFTs, special care needs to be taken also on the mechanical properties of the devices (e.g., induced strain, maximum strain resistance, influence of strain on the TFT performance, and role of mechanical fatigue). Additionally, novel device features such as transparency, conformability, stretchability, biocompatibility, and biodegradability (with their related challenges) need also to be taken into account. In this review, we tackle all of the above mentioned issues and challenges, focusing only on devices fabricated on flexible substrates. To date and to the best of our knowledge, no report has specifically targeted this topic. We are only aware of a book chapter dealing with flexible solution-processed metal oxide semiconductor TFTs, as well as two review articles, respectively, on the mechanical and electronic properties of flexible TFTs (all technologies) and on p-type metal oxide semiconductor materials and devices (rigid and flexible). For this reason, this paper presents the recent progresses in the field of flexible TFTs and circuits, based on both n- and p-type metal oxide semiconductors grown by vacuum- and solution-processing techniques. Main aim of this review is to underline the process/material/device/circuit requirements that are specific to flexible substrates compared with rigid ones and provide at the same time guidelines for the realization of flexible devices with good electrical and mechanical properties.
properties, using metal oxide semiconductor technology. The reviews are structured as follows:

- In Section II, the state-of-the-art flexible n-type metal oxide semiconductor TFTs are presented. First, in Sec. II A, a short overview of the available metal oxide semiconductors is given. Then, in Sec. II B, flexible devices based on vacuum-processed metal oxide semiconductors are reviewed. Finally, in Sec. II C, flexible TFTs with novel solution-deposited metal oxide semiconductors are reported.

- Section III deals with the recent progresses in the field of flexible p-type metal oxide semiconductor TFTs. As for Section II, also in this case first a brief overview on the available materials is given Sec. III A; then in Sec. III B, flexible devices based on vacuum-processed metal oxide semiconductors are reviewed; finally in Sec. III C, solution-processed flexible TFTs are analyzed.

- Section IV reviews the state-of-the-art flexible circuits based on metal oxide semiconductors. Section IV A provides a basic explanation of the possible configurations, as well as of the basic operating principle of both digital and analog circuits. Then, in Sec. IV B, flexible unipolar digital and analog electronic circuits based on metal oxide semiconductors are presented. Finally, in Sec. IV C, flexible complementary metal oxide semiconductor-based circuits are reviewed.

- Section V deals with novel flexible electronic systems based on metal oxide semiconductor TFTs.

- In Section VI, the conclusions are drawn and an outlook over the field is given.

In order to provide a broad overview of the field, the first subsections of each section (II A, III A, and IV A) reference reports on both rigid and flexible substrates. However, the main subsections of this review (II B, II C, III B, III C, IV B, and IV C) deal only with flexible TFTs and circuits based on metal oxide semiconducting materials. We have done an exhaustive literature review on the topic and have tried to include all the relevant works until the submission of this review (April 2016). If there is some work not referenced, we apologize the authors in advance.

II. N-TYPE METAL OXIDE SEMICONDUCTOR TFTs

In this section, flexible n-type metal oxide semiconductor TFTs are presented. In particular, in Sec. II A, binary and multicomponent metal oxide semiconductor compounds are reported, together with a short explanation on the theory of these materials. Then in Sec. II B, a detailed description of the recent progresses obtained for flexible vacuum-processed metal oxide semiconductor TFTs is given, with a special focus on materials, fabrication techniques, electrical performance, and bendability. Finally, in Sec. II C, novel solution-processing methods to realize flexible metal oxide semiconductor TFTs are shown.

A. N-type metal oxide semiconductors

The first reported metal oxide semiconductors were binary compounds, such as SnO₂, ZnO, In₂O₃, and Ga₂O₃, in either a pure composition or with an impurity dopants. These binary materials are characterized by wide band gap \(E_g > 3 \text{ eV} \) and large transmission in the visible range (above 80%).\(^{115,121}\) The resulting films are n-type semiconducting, yielding a high carrier concentration (N) in the order of \(10^{16} \text{ cm}^{-3} - 10^{21} \text{ cm}^{-3} \), which is attributed to native donors, e.g., oxygen (O₂) vacancies and/or metal atoms.\(^{115,121}\) Additionally, even if these films present an amorphous phase, they yield large \(\mu_{FE} > 10 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1} \) due to their unique electronic structure.\(^{117}\) Indeed, in contrast to covalent semiconductors like Si, metal oxide semiconductors are valence compounds with a strong degree of ionicity within their chemical bonding.\(^{87,117}\) In metal oxide semiconductors, charge transfer occurs from the metal orbitals (\(s \)) to the oxygen orbitals (2p). The conduction band minimum (CBM) is indeed formed by highly dispersive unoccupied metal orbitals, whereas the valence band maximum (VBM) is constituted by fully occupied and localized oxygen orbitals.\(^{87,117}\) Those vacant metal orbitals are spherical (i.e., non directional) and exhibit large spatial spread.\(^{115,117}\)

As a consequence, electron transport can easily occur through the direct overlap of the metal orbitals in neighboring metal cations.\(^{87,115,117}\) This explains why the majority of existing metal oxide semiconductors yield n-type conductivity, and hole transport is intrinsically hindered by a larger effective mass.\(^{87}\) By employing binary metal oxide semiconducting materials (SnO₂, ZnO, In₂O₃, and Ga₂O₃) as active layers in TFTs, large differences in carrier mobility and current on/off ratios can be achieved. For example, In₂O₃ TFTs can lead to high \(\mu_{FE} \) up to 100 cm² V⁻¹ s⁻¹, but at the same time also large \(\frac{I_{ON}}{I_{OFF}} \) (due to high N > 10¹⁷ cm⁻³).\(^{36,122}\) Ga₂O₃ films possess large resistivity (due to low carrier density and large density of empty traps), resulting thereby in poor device performance (\(\mu_{FE} = 0.05 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1} \)).\(^{36,123}\) Similar to In₂O₃, SnO₂ TFTs can reach higher carrier mobility, as well as larger on-off current.\(^{62}\) The best-known and most performing binary metal oxide semiconductor is ZnO, which can lead to high \(\mu_{FE} \) and \(\frac{I_{ON}}{I_{OFF}} \).\(^{36,88}\) However, most binary metal oxide semiconductors (especially ZnO) tend to form poly- or nano-crystalline structures, which lead to the creation of grain boundary defects and therefore non-uniform TFT performance over larger areas.\(^{88,115}\) Compared with binary compounds, multicomponent metal oxide semiconductor, in general, result in better TFT performance.\(^{36,115}\) In multicomponents, a stable amorphous phase can be achieved by mixing two or more metal cations with different ionic charges and sizes, whereas the incorporation of a stabilizer metal cation can be used to better control the carrier concentration.\(^{117}\) For example, IZO presents a stable amorphous phase, which results in TFTs with good uniformity and \(\mu_{FE} \). Nevertheless, the high N > 10¹⁷ cm⁻³ leads to high \(\frac{I_{ON}}{I_{OFF}} \) and low \(I_{OFF}/I_{ON} \).\(^{36,115,124}\) Given the stronger bonds of gallium (Ga) with O₂, indium gallium oxide (IGO) leads to a lower carrier density, but at the same time also smaller \(\mu_{FE} \).\(^{36}\) To realize an amorphous oxide semiconductor with large \(\mu_{FE} \) and \(\frac{I_{ON}}{I_{OFF}} \), in 2004 Nomura et al. proposed the introduction of Ga into IZO, developing IGZO, the most widely used metal oxide semiconductor nowadays.\(^{29}\) IGZO...
1. Metal oxide semiconductors for flexible TFTs

Not all of the above mentioned metal oxide semiconducting materials have been employed as active layers in flexible TFTs.

a. Vacuum-processed metal oxide semiconductors. In the case of flexible vacuum-processed metal oxide semiconductor TFTs, amorphous IGZO is the most widely used material. Flexible IGZO TFTs exhibit μ_{FE} up to 76 cm2 V$^{-1}$ s$^{-1}$, depending on the stoichiometric composition employed. Other metal oxide semiconducting materials used are: IZO with μ_{FE} up to 50 cm2 V$^{-1}$ s$^{-1}$, ZTO with μ_{FE} up to 20.7 cm2 V$^{-1}$ s$^{-1}$, and ZTO with μ_{FE} up to 14 cm2 V$^{-1}$ s$^{-1}$. Despite being considered a conductor, in general, thin layers of indium tin oxide (ITO) can also be used, yielding a μ_{FE} of 28.6 cm2 V$^{-1}$ s$^{-1}$.

b. Solution-processed metal oxide semiconductors. Most used solution-processed semiconductors are crystalline In$_2$O$_3$ and ZnO. For In$_2$O$_3$ TFTs, μ_{FE} up to 120 cm2 V$^{-1}$ s$^{-1}$ have been reported, including neat layers, nanoparticle (NP), or nanowire (NW) films, as well as blends of In$_2$O$_3$ and polyvinylpyrrolidion (PVP). In the case of ZnO, the highest μ_{FE} values reached are of 7 cm2 V$^{-1}$ s$^{-1}$. Other solution-deposited metal oxide semiconductors include IZO with μ_{FE} around 4 cm2 V$^{-1}$ s$^{-1}$ and ZTO with μ_{FE} of 0.04 cm2 V$^{-1}$ s$^{-1}$. Furthermore, solution-processed IGZO TFTs have shown excellent results with extremely high μ_{FE} values up to 84 cm2 V$^{-1}$ s$^{-1}$, either in the form of neat IGZO or in blends of IGZO and graphene nanosheets.

B. Flexible n-type vacuum-processed TFTs

In this subsection, the recent advances in the field of flexible n-type vacuum-processed metal oxide semiconductor TFTs are reviewed. In particular, the materials and the fabrication techniques employed are first presented. Then, the electrical performance and the mechanical properties of the resulting devices are discussed. Finally, additional features such as dissolubility, mechanical activity, stretchability, and transparency are tackled.

1. Materials

The materials needed for the fabrication of flexible n-type vacuum-processed TFTs include flexible substrates, conducting materials to realize the source/drain and gate electrodes, dielectric materials for buffer, passivation and/or insulating layers, and most importantly metal oxide semiconducting active layers.

a. Substrates. In contrast to standard Si MOSFET technology, the substrate used for the realization of TFTs is, in general, not a part of the active device itself, since it only provides a surface for the fabrication process. Nevertheless, the substrate, especially if flexible, has a significant influence on the final TFT properties, as well as on the manufacturing process. The key requirements concerning the substrate are:

(I) The surface has to be compatible with standard thin-film fabrication technology, which calls for roughness values in the nanometer regime.

(II) The melting or glass transition temperature (Tm or Tg) of the substrate has to be high enough to be compatible with the chosen fabrication process.

(III) The substrate has to be bendable enough (in line with the mechanical requirements of the final devices) and at the same time has to provide sufficient stability for the manufacturing process.

(IV) The deformation of the substrate caused by temperature gradients, mechanical load, as well as absorption or desorption of gasses or liquids during the fabrication has to be smaller than the minimum device feature size.

(V) Vacuum-processing techniques call for small outgassing rates, compatible with the available deposition tools.

(VI) Concerning a future mass production and commercialization, the substrates should be at least potentially available in large quantities and sizes, as well as cheap.

(VII) Furthermore, the substrate needs to be resistant to the chemicals used during the fabrication process, especially photoresists and developers.

(VIII) Finally, specific applications require substrates which are transparent, light-weight, conformable, stretchable, biocompatible, and even biodegradable.

All these requirements have led to the evaluation of a large variety of different substrates. Due to their properties and their availability, polymers are the natural choice and the most commonly used substrate materials. Among the different polymers, polyimide (PI) foils with thicknesses (t) between 5 μm and 125 μm are the most frequently utilized substrates together with PI and nano silica.
are, in general, also cheaper and more easily available, include PET, polyethylene naphthalate (PEN), polycarbonate (PC), polype-theretherketone (PEEK), polycarbonate (PC), polypropylene (PP) based synthetic paper, parylene, polyethersulfone (PES), water-soluble polyvinyl alcohol (PVA), as well as polydimethylsiloxane (PDMS). In particular, PDMS is also stretchable and biocompatible, but at the same time hard to process using standard fabrication techniques. An alternative to polymers is constituted by metal foils, such as Al foils, and stainless steel substrates. The main benefit of metal foils is the high T_{wa} (above 1000°C in the case of stainless steel). Nevertheless, metallic substrates are conductive and thus require additional insulating buffer layers, which further increase weight and decrease flexibility. Other typologies of supports include flexible and transparent glass substrates (with high temperature resistance), glass-fabric reinforced composites, cheap and biodegradable cellulose fiber-based paper, as well as nontoxic biobased paper like beeswax. Additionally, also standard tracing paper (STP) and lab paper samples (LPS) have been employed. Finally, mechanically active multilayer substrates using a highly cross-linked hydrogel swelling layer and a stiff PI have been shown.

b. Barrier layers. Before starting the effective TFT fabrication, often buffer or encapsulation layers are deposited on top of the substrate itself. Although there are numerous examples of flexible n-type vacuum-processed metal oxide semiconductor TFTs manufactured without barrier layers, there are several reasons why an encapsulation of the substrate is beneficial, including:

(I) The need to electrically insulate a conductive substrate (e.g., Al or stainless steel).

(II) A reduction of the substrate surface roughness by the deposition of a smoothing layer.

(III) A reduction of the absorption and desorption of solvents during the fabrication process by decreasing the effective humidity expansion coefficient (HEC).

(IV) An improvement of the adhesion between the substrate and the device layers.

(V) A reduction of the substrate outgassing in low pressure environments to speed up the pumping steps during the deposition process.

(VI) A decrease of the substrate permeability by decreasing the effective water vapor transmission ratio (WVTR).

Typical adhesion or buffer layers are made of silicon nitride (SiN_x), silicon oxide (SiO_x), and photosensitive sandwiched between SiN_x and SiO_x. Organic materials, in particular, SU8 or PVP is especially well-suited as smoothing layers. A direct comparison of the influence of different buffer layers (50 nm SiO_x, 50 nm SiN_x, or 50 nm SiO_x in combination with 10 nm or 100 nm AlO_x) on the performance of TG IGZO TFTs on PI substrate is given by Ok et al., as shown in Fig. 7. The buffer layer with the smallest WVTR = 0.033 g/(cm2-day) is given by 50 nm $\text{SiN}_x + 100$ nm AlO_x. As shown by Ok et al., this buffer layer is able to reduce the carrier trapping at water related defects and results in the best device performance and stability (Fig. 7). Consequently, several groups have published the use of multi-layers which can potentially combine the advantages of different materials. These layer stacks include organic TR-8857-SA7 with Al_2O_3, undefined organic layers in combination with Al_2O_3, as well as SiO_2. The most complex published structure is a $\text{SiO}_2/\text{SiN}_x/\text{SiO}_2/\text{SiN}_x/\text{SiO}_2$ sandwich layer (also used to engineer the strain in the stack) and other multi-stacked $\text{SiO}_2/\text{SiN}_x$ barrier layers.

c. Gate dielectrics. Together with the metal oxide semiconductor, also the gate dielectric plays a fundamental role. This is mainly due to the following reasons:

(I) As visible from Equation (1.1), the drain current I_D is directly proportional to $C_{\text{ox}} = \varepsilon_R \varepsilon / \varepsilon_0$, where ε and ε_0 are, respectively, the dielectric constant and the thickness of the gate dielectric. For low-voltage TFT operation, the gate dielectric materials with high ε_R are desirable.

(II) The insulation properties, correlated with the specific resistance and the pinhole density (and therefore the layer deposition quality) of the dielectric material, define the gate leakage of the device (the so called gate current I_G).

(III) The quality of the interface between the gate dielectric and the semiconductor can strongly influence the carrier mobility, as well as the stability of the TFT, by determining the interface trap density.

The most widely used gate dielectric is aluminum oxide in different forms, such as Al_2O_3, and also anodized Al_2O_3 on Al gates. Additionally, anodic neodymium-doped Al_2O_3 ($\text{Al}_2\text{O}_3\text{Nd}$) on aluminum...
neodymium (AlNd) gates has been used.158 The advantages of aluminum oxide are comparably high \(\varepsilon_R \) around 9.5, low pinhole density if deposited by atomic layer deposition (ALD), and, especially in combination with IGZO, a good interface quality. Employed materials with a higher \(\varepsilon_R \) include hafnium oxide (HfO\textsubscript{2}),177,180,181 hafnium lanthanum oxide (HfLaO\textsubscript{2}),170 titanium oxide (TiO\textsubscript{2}),154 and yttrium oxide (Y\textsubscript{2}O\textsubscript{3}).29,69 The drawback of these dielectrics is a scarcer availability, a worst interface quality, as well as a reduced compatibility with the TFT fabrication process. At the same time, silicon oxide (either SiO\textsubscript{2},40,78,133,137,138,148,163,164,166,173,174,188,205 or SiO\textsubscript{x}) is a more established material but results in a reduced specific gate dielectric capacitance \(C_{ox} \) (\(\varepsilon_R \approx 3.9 \)).82,156 Even if a direct comparison between SiO\textsubscript{2} and SiN\textsubscript{x} by Lim \textit{et al} showed that IGZO TFTs with SiN\textsubscript{x} dielectric exhibit slightly better performance than those with SiO\textsubscript{2},171 SiN\textsubscript{x} is only rarely used in the community.134,142,159,160 Besides metal oxide dielectrics, also organic materials have been used as gate dielectric, such as layers made from olefin polymers,38 or cross-linked PVP (c-PVP).165 To this regard, a direct comparison of c-PVP and SiO\textsubscript{2} showed that both materials have a comparable \(\varepsilon_R \) and result in flexible IGZO TFTs with similar performance parameters,165 although the thick c-PVP layer (\(t_{ox} = 280 \text{ nm} \)) reduces \(C_{ox} \) if compared with the thinner SiO\textsubscript{2} (\(t_{ox} = 170 \text{ nm} \)). A third class of gate dielectrics is ferroelectric materials, in particular, poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)).132,136,149,167 P(VDF-TrFE) can be reversibly polarized and hence used for the fabrication of non-volatile memory TFTs. Interestingly, recently also chicken albumen ferroelectric gate dielectrics have been demonstrated, as shown in Fig. 8.204 A fourth class of gate dielectric materials is constituted by solid electrolytes (e.g., phosphorus (P)-doped SiO\textsubscript{2}), which are characterized by high specific gate dielectric capacitance per unit area (\(C_{mol} \)) and therefore low-voltage device operation.184,189 This improvement is generally ascribed by a redistribution of mobile ions with the applied voltage. Fig. 9 illustrates how P-doped SiO\textsubscript{2} gate dielectrics allow achieving high \(C_{ox} \) values of up to 13 \(\mu \text{F cm}^{-2} \). To combine the advantageous properties of different dielectric materials, a variety of hybrid and multi-layer materials have been utilized as gate dielectrics for flexible n-type vacuum-processed metal oxide semiconductor TFTs. These include: TiO\textsubscript{2} with HfO\textsubscript{2},157 PVP-Al\textsubscript{2}O\textsubscript{3},152 or PVP with methylcyclohexane (pp-MCH) and Al\textsubscript{2}O\textsubscript{3},172 SiN\textsubscript{x} with SiO\textsubscript{x},135,144 tri-layer stacks like TiO\textsubscript{2} sandwiched between SiO\textsubscript{2} or TiO\textsubscript{2} sandwiched between HfO\textsubscript{2},154 as well as P(VDF-TrFE) with Al\textsubscript{2}O\textsubscript{3}.146 Finally, an interesting approach is constituted by the use of a paper substrate as gate dielectric.77,79,186,208 Although the paper thickness is as high as 75 \(\mu \text{m} \), a \(C_{ox} \) value of 4 \(\times 10^{-4} \text{ F m}^{-2} \) was achieved.79 This is because the dielectric properties are determined by an arbitrary serial and parallel combination of discrete fiber capacitors within the paper substrate. The large choice concerning possible dielectrics results in a big variety of published \(C_{ox} \) values ranging from 1.2 \(\times 10^{-4} \text{ F m}^{-2} \) measured for an organic layer165 up to 1.3 \(\times 10^{-1} \text{ F m}^{-2} \) for a solid electrolyte.184 Finally, ZnO was sandwiched between two layers of Al\textsubscript{2}O\textsubscript{3} to create a charge trapping layer in the gate dielectric, leading to non-volatile memory TFTs.139

d. Contacts. This class of materials includes metals and other conductors employed to fabricate gate and source/drain electrodes. Since the gate contact of a TFT (and in general of a FET) does not need to conduct a significant amount of current, the material is, in general, selected to achieve a high

Fig. 8. Chicken albumen ferroelectric gate dielectric: preparation procedure for diluted chicken albumen solution. Reproduced with permission from Kim \textit{et al}., Appl. Mater. Interfaces 7, 4869 (2015). Copyright 2015 American Chemical Society.

Fig. 9. Phosphorus-doped SiO\textsubscript{2} solid electrolyte dielectric: (a) total gate capacitance (\(C_G \)) and ionic conductivity, as well as (b) leakage current (\(I_G \)) through the electrolyte. Reproduced with permission from Jiang \textit{et al}., IEEE Electron Device Lett. 33, 65 (2012). Copyright 2012 Institute of Electrical and Electronic Engineers.
compatibility with the TFT fabrication process. This issue was also addressed by a direct comparison between different gate metals like chromium (Cr), titanium (Ti), copper (Cu), and platinum (Pt). Fig. 10 displays the corresponding transfer characteristics showing that although the work function of the various gate metals is different, their influence on the electrical performance of IGZO TFTs is minor. Consequently, a variety of different metals: silver (Ag), Al, Au, Cr, Cu, Ni/Au, Mo/Al, Cr/Au/Cr, Mo/Al/Mo, AlNd, Cr/Au, Ti/Au/Ti, or Ti/IZO have been used as gate contacts. Especially for BG TFTs, the adhesion of the gate contact to the flexible substrate appears to be the main concern. To this aim, Cr and Ti show good results, whereas Cr often suffers from a high built-in strain. Multi-layer metals offer, in general, a compromise between good adhesion and high conductivity, especially in the case of Ti/Au, Ti/Cu, Cu/Au, or Ti/Au/Ti gate stacks. Besides metals and metal alloys, SiO2, SiOx, and TiO2 have been used to passivate the device using the same material already used for the gate dielectric. Furthermore, Al2O3 passivation layers are widely used because of the low oxygen transmission rate (OTR) of ≈1.26 × 10^-4 mol/(m² day) and WVTR rate of ≈6.61 × 10^-2 mol/(m² day) (both measured for a 8 nm thick Al2O3 layer on PET). Al2O3 passivation layers result in BG metal oxide semiconductor TFTs with significantly improved stability, compared with unpassivated devices. Additionally, organic layers such as photoresist, SUS, tetratetracontane, and polychloroprene in combination with Al2O3 have been utilized to passivate flexible n-type vacuum-processed metal oxide semiconductor TFTs.

2. Fabrication techniques

The fabrication of flexible n-type vacuum-processed metal oxide semiconductor TFTs employs standard semiconductor fabrication tools. Nevertheless, the large variety of available substrates with different physical and chemical properties has led to the use of a wide range of different techniques. These include several approaches to handle the flexible substrates, as well as to deposit and structure the various device layers.

The choice of the substrate is important, since it limits the maximum allowed temperature, as well as the typology of chemicals that can be used during the fabrication process. At the same time, the mechanical properties of the flexible support also determine the way how the substrate can be handled. Up to now, free-standing flexible substrates have been widely employed. Free-standing foils are a natural choice for the fabrication of flexible devices because they are compatible with large-scale substrates and future roll-to-roll processes. Furthermore, the mechanical robustness of free-standing foils results in an insensitivity against mechanical shocks. At the same time, free-standing substrates also present the following drawbacks:

(I) They have to be sufficiently thick and stable to be mechanically handled with tweezers.

To simplify the fabrication process, it is quite common to passivate the device using the same material already used for the gate dielectric. Furthermore, Al2O3 passivation layers are widely used because of the low oxygen transmission rate (OTR) of ≈1.26 × 10^-4 mol/(m² day) and WVTR rate of ≈6.61 × 10^-2 mol/(m² day) (both measured for a 8 nm thick Al2O3 layer on PET). Al2O3 passivation layers result in BG metal oxide semiconductor TFTs with significantly improved stability, compared with unpassivated devices.

FIG. 10. Transfer characteristics of flexible IGZO TFTs fabricated using different gate metals: chrome (Cr), titanium (Ti), copper (Cu), and platinum (Pt). Conduction layers have been published. Especially for BG TFTs, the adhesion of the gate contact to the flexible substrate appears to be the main concern. To this aim, Cr and Ti show good results, whereas Cr often suffers from a high built-in strain. Multi-layer metals offer, in general, a compromise between good adhesion and high conductivity, especially in the case of Ti/Au, Ti/Cu, Cu/Au, or Ti/Au/Ti gate stacks. Besides metals and metal alloys, SiO2, SiOx, and TiO2 have been used to passivate the device using the same material already used for the gate dielectric. Furthermore, Al2O3 passivation layers are widely used because of the low oxygen transmission rate (OTR) of ≈1.26 × 10^-4 mol/(m² day) and WVTR rate of ≈6.61 × 10^-2 mol/(m² day) (both measured for a 8 nm thick Al2O3 layer on PET). Al2O3 passivation layers result in BG metal oxide semiconductor TFTs with significantly improved stability, compared with unpassivated devices. Additionally, organic layers such as photoresist, SUS, tetratetracontane, and polychloroprene in combination with Al2O3 have been utilized to passivate flexible n-type vacuum-processed metal oxide semiconductor TFTs.
(II) They can suffer from expansion caused by temperature gradients or by the absorption of solvents.

(III) They have to be temporarily attached to a rigid carrier at least during the use of standard photolithographic tools.

One way to simplify the use of photolithographic tools like mask aligners or spinners is to bond the flexible foil to a glass or silicon wafer for the complete fabrication process. This can either be done using native adhesion forces or utilizing an additional adhesive. Alternatively, a flexible foil can also be mechanically fixed on particularly designed holders using metallic clamps. In alternative to flexible substrates manufactured independently from the TFTs, it is also possible to create the flexible substrate by covering a host substrate with a polymer using either evaporation, spin, slot or blade coating techniques. The advantages of these fabrication techniques based on a rigid support are a high compatibility with the standard fabrication processes on Si or glass wafers, a reduction of the expansion of the substrate during the manufacturing process, as well as the possibility to realize devices on very thin (≈1 μm) substrates. After the TFT fabrication is completed, the flexible foils or thin deposited polymer layers carrying the devices can be separated from the rigid support using: (1) mechanical peeling, (2) a low adhesion releasing layer, (3) a supporting laser, or (4) a sacrificial layer between the host carrier and the polymer. To this regard, a direct comparison of different releasing methods by Lin et al. showed that mechanical peeling of the flexible substrate from the hosting carrier wafer can lead to deformation and cracking of the TFTs in case of high adhesion forces between the polymer and the carrier. To increase the mechanical stability or to realize electronic devices on alternative surfaces, thin flexible substrates have also been transferred and attached to a new carrier like PI or organic tissues. Finally, it is also possible to fabricate TFTs directly on a rigid carrier coated with a sacrificial layer and subsequently transfer only the devices onto a flexible substrate. In addition to the different handling possibilities, the substrate preparation typically includes a heat treatment step prior to the device fabrication itself. In the case of fabrication on free-standing plastic foil or foil bonded to a host substrate, the substrate is backed at high temperatures (around 200 °C) for several hours, to remove trapped residual liquids.

This step allows also pre-shrinking flexible substrates which are not permanently attached to a rigid support.

b. Deposition methods. Besides the standard criteria used for thin-film deposition techniques on Si or glass wafer (e.g., homogenous and dense layers), there are extra requirements which are especially important for the realization of flexible devices. These include:

(I) Low temperatures, compatible with the thermal resistance of the employed flexible substrates.

(II) A sufficient adhesion of the deposited materials to the substrate, in order to prevent a possible delamination of the layers, especially when the substrate is bent.

(III) Finally, the strain built in the deposited materials has to be small enough to allow good mechanical properties (e.g., bendability) of the final devices.

The predominant technique to deposit n-type vacuum-processed metal oxide semiconductors is sputtering. RF and RF-magnetron sputtering have been used to deposit IGZO, GZO, and ZnO. Furthermore, IGZO was also deposited by DC sputtering and pulsed DC sputtering. The advantages of sputtering are the large availability of sputter tools, the low temperature (typically room temperature) deposition, as well as the good adhesion and dense structure of the final layers. Additionally, sputter tools offer several opportunities to optimize the layer properties, by adjusting the power and/or the sputtering pressure. Also, reactive sputtering using different concentrations of Argon (Ar) and O2 has been used to adjust the oxygen content in the metal oxide semiconductor active layer. An even better control of the stoichiometric composition of IGZO is possible by using co-sputtering techniques based on an IZO and a Ga2O3 target. Among all the n-type metal oxide semiconductors, ZnO is the only one that can be deposited by ALD, plasma enhanced atomic layer deposition (PEALD), and PLD. Even if ALD has the advantage that the layers are conformal, the process is slow and less prone to variations of the chemical composition.

The deposition of insulating layers to realize gate dielectrics, passivation, or barrier layers aims at a high ϵr, a low pinhole density, and a good sidewall coverage. This is why conformal deposition techniques are particularly well-suited: ALD, sputtering, and PEALD of Al2O3, ALD of HfO2, as well as plasma-enhanced chemical vapor deposition (PECVD) of SiO2, SiN, Si3N4, SiO2:P, but also organic pp-MCH. These depositions are, in general, done at temperatures between 150 °C and 200 °C. Sputtering also results in comparably conformal layers and has therefore been used to deposit Y2O3, SiO2, and HfO2, whereas PLD has only been employed to grow Y2O3. Although evaporation of metal oxides requires high temperatures, different dielectrics (Al2O3, HfLaO, SiO2, TiO2, and HfO2) have been deposited by electron-beam evaporation. Besides the mentioned vacuum-deposition techniques, high-quality Al2O3 and Al2O3:Nd gate dielectrics have also been grown anodizing a metallic gate. Finally, organic layers, in particular PVP, chicken albumen, or P(VDF-TrFE), have been spin coated. As regards the deposition techniques of conductive materials, we have to distinguish between metals and transparent metal oxide conductors. Metals are typically deposited using e-beam evaporation, thermal evaporation, or sputtering. Among these...
techniques, the most common is evaporation, due to the non-conformal shape of the resulting layers that is beneficial for subsequent lift-off processes. Non metallic but transparent metal oxide conductors have been fabricated by sputtering (ITO), In_{2}O_{3}, AZO, IZO, and PLD (ITO), by e-beam evaporation (ITO) or by PLD (ITO). It is worth mentioning that also graphene monolayers grown by chemical vapor deposition (CVD) and transferred to a flexible PET substrate can be employed, as reported by Liu et al.

Some of the presented deposition procedures (e.g., from Li and Jackson or Cherenack and Tröster) are designed in a way that the semiconductor and the gate dielectric can be deposited with the same tool. In this way, it is possible to avoid the surface contamination caused by breaking the vacuum and transferring the sample to another tool. However, there is no clear evidence in literature that breaking the vacuum necessarily leads to a degenerated device performance.

c. Layer structuring. As for the structuring of layers on rigid wafers, patterning of thin-films on flexible substrates is mainly done by etching and lift-off processes. However, the definition of flexible structures needs to be adapted to the mechanical and chemical properties of the substrates. Since the most common substrates, in particular, PI foils, are resistant to standard photolithographic chemicals, UV lithography is widely used. Employing etching and lift-off processes allows realizing flexible structures with lateral feature size down to 1 μm. If the chosen substrate is not resistant to chemicals (e.g., photoresists, developers, and/or strippers) and if feature sizes >1 μm are sufficient, shadow masking can be used. Shadow mask structuring does not require any photoresist baking step and allows therefore preventing unintended annealing of the devices, as well as undesired thermal load of the substrate leading to subsequent expansion. The problem of substrate expansion is illustrated by the fact that a 7.6 cm × 7.6 cm large PI substrate undergoes an expansion of ≈25 μm (in each direction) during a 150 °C TFT fabrication process. Due to this expansion, tolerances of ≈10 μm on the photolithographic masks are necessary, limiting thus the minimum feature sizes that can be achieved. In particular, special care needs to be taken during the alignment of the source/drain contacts to the gate electrode, which can result in large total overlap lengths L_{OV,TOT} and therefore low transit frequency f_T (see Equation (1.8)).

The problem of source/drain contacts misaligned with respect to the gate electrode is practically shown in Fig. 11 for a flexible IGZO TFT. A solution to misalignment caused by thermally induced substrate expansion is constituted by self-aligned lithography. Due to the transparency of the majority of flexible substrates, the photoresist can be structured using back-side exposure and predefined opaque patterns (e.g., metallic BG contacts). In this way, there is no need for tolerances on the photolithographic masks and feature sizes down to 0.5 μm are possible. Fig. 11 displays a direct comparison of TFTs fabricated using standard and self-aligned lithography. Furthermore, by using a TG configuration with metallic gate contacts, it is also possible to self-align SiO_{2} gate dielectric to Mo gate electrodes in an RIE process. This approach has the additional advantage that the RIE plasma increases the conductivity of the active layer (IGZO) in the contact areas. Similarly, TG IGZO devices with highly conductive IGZO source/drain electrodes self-aligned to Mo gate contacts can be realized by PECVD-growing a SiN_{x} after the TG patterning. Here, this SiN_{x} layer allows increasing the conductivity of IGZO in the contact area (not covered by the TG electrode) and thereby forming SA S/D electrodes.

d. Device configuration. For flexible n-type vacuum-processed metal oxide semiconductor devices, the four main TFT configurations (see Sec. 1B) have been employed:

(I) The most common TFT geometry is the BG, either coplanar (Fig. 4(a)) or staggered (Fig. 4(b)). Some groups have also reported BG TFTs employing a continuous conductive bottom gate (either a metallic substrates or a metallic deposited layer).

(II) TG structures (Figs. 4(c) and 4(d)) have also been utilized, especially in combination with fragile gate dielectrics that do not survive extensive processing and/or chemicals [e.g., P(VDF-TrFE)].

(III) DG TFTs (Fig. 4(d)) have been used to improve the TFT DC performance, as well as the device environmental stability.

(IV) Finally, also flexible VQFTTs (Fig. 4(e)) and QVTFTs with short channel lengths (down to 300 nm (Ref. 145)) and reduced device footprint have been presented.

3. Electrical properties

One of the main reasons why flexible metal oxide semiconductor TFTs have received an increasingly amount of attention in the last years is their electrical performance,
which is superior to other flexible TFT platforms, especially organic and a-Si technologies (see Table I). A typical transfer and output characteristic of a flexible n-type vacuum-processed metal oxide semiconductor TFT (in this case based on IGZO) are plotted in Fig. 12. The DC performance parameters of the shown device are given in the figure caption. The best DC performance parameters ever reported for flexible n-type vacuum-processed metal oxide semiconductor TFTs. Each of the devices shown in Table II yields at least one of the best performance parameters ever reported for flexible n-type vacuum-processed metal oxide semiconductor TFTs.

These results have been possible thanks to several optimization approaches:

(I) The probably simplest way to influence the device performance is to expose the TFTs to high temperatures either during or after the fabrication process. Annealing at or around 200 °C is a common way,

whereas temperatures above 260 °C are not possible due to the limited thermal resistance of the majority of the (polymeric) substrates. Nevertheless, flexible glass and metal substrates allow higher annealing temperatures of 300 °C,

and even 400 °C.

An investigation of the influence of annealing on e-beam evaporated TiO2 gate dielectrics showed that for annealing temperatures below 200 °C, the ÐG only weakly depends on the temperature but decreases by approximately one order of magnitude if the annealing temperature is increased to 300 °C. Besides traditional post-deposition annealing of thin-films, also the deposition of metal oxide semiconductors at high temperatures influences the performance. Fig. 14 shows TFTs based on IGZO deposited at elevated temperatures.

In this case, the frequency fT of 76 cm2 V−1 s−1 is lower than that of a-Si and a-Si:H TFTs of the same thickness but higher than that of organic TFTs. Additionally, the sub-threshold swing (SS) of 102 mV/dec is lower than that of organic TFTs but higher than that of a-Si and a-Si:H TFTs. Finally, the signal current gain H21 of the devices.

The probably simplest way to influence the device performance is to expose the TFTs to high temperatures either during or after the fabrication process. Annealing at or around 200 °C is a common way.

An investigation of the influence of annealing on e-beam evaporated TiO2 gate dielectrics showed that for annealing temperatures below 200 °C, the ÐG only weakly depends on the temperature but decreases by approximately one order of magnitude if the annealing temperature is increased to 300 °C. Besides traditional post-deposition annealing of thin-films, also the deposition of metal oxide semiconductors at high temperatures influences the performance. Fig. 14 shows TFTs based on IGZO deposited at elevated temperatures.
sputtering of IGZO at 150 °C results in slightly higher \(\mu_{FE} \) compared with untreated or post-annealed (at 150 °C) TFTs.

Nevertheless, while increased temperatures definitely improve the performance \(^{168}\) and the stability of single TFTs, \(^{153,166}\) there is no clear trend showing that annealed TFTs always exhibit better performance (e.g., higher \(\mu_{FE} \)) than non-annealed one. One explanation could be the fact that TFTs are often exposed to an indirect annealing at elevated temperatures during the fabrication process (e.g., during the deposition of passivation layers at high temperatures around 150 °C). \(^{113,179}\) The same trend also applies for room temperature fabricated devices with unspecified temperatures employed during the photolithographic steps. \(^{29,77,154,181,188}\) Even TFTs fabricated by shadow masking by Erb et al. with at least two elevated temperature steps during and after the IGZO deposition resulted in reasonable \(\mu_{SAT} \) and \(I_{ON}/I_{OFF} \) of 4.6 cm\(^2\) V\(^{-1}\) s\(^{-1}\) and 1 x 10\(^5\), respectively. \(^{162}\) A more uncommon approach was used by Park et al., who significantly increased the \(\mu_{FE} \) of ZnO TFTs (from 0.2 cm\(^2\) V\(^{-1}\) s\(^{-1}\) to 1.5 cm\(^2\) V\(^{-1}\) s\(^{-1}\)) by using microwave annealing at a frequency of 2.45 GHz and a power of 700 W for 15 min. \(^{178} \)

TABLE II. Set of performance parameters extracted from recently demonstrated flexible n-type vacuum-processed metal oxide semiconductor TFTs. Each line includes the best performance parameter ever reported (highlighted in bold).

<table>
<thead>
<tr>
<th>Device Type</th>
<th>Mobility ((\text{cm}^2\ \text{V}^{-1}\ \text{s}^{-1}))</th>
<th>Threshold voltage ((\text{V}))</th>
<th>Sub-threshold swing ((\text{mV/dec}))</th>
<th>ON/off ratio</th>
<th>Transit frequency ((\text{MHz}))</th>
<th>Channel length ((\mu\text{m}))</th>
<th>Substrate thickness ((\mu\text{m}))</th>
<th>Bending radius ((\text{mm}))</th>
<th>Strain ((%))</th>
<th>Bending cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGZO TFT with stacked titanium oxide gate dielectric (^{114})</td>
<td>76</td>
<td>0.5</td>
<td>129</td>
<td>1 x 10(^3)</td>
<td>...</td>
<td>32</td>
<td>...</td>
<td>15</td>
<td>0.43</td>
<td>...</td>
</tr>
<tr>
<td>DG IGZO TFT (^{109})</td>
<td>8.5</td>
<td>0.95</td>
<td>69</td>
<td>2 x 10(^3)</td>
<td>...</td>
<td>10</td>
<td>50</td>
<td>5</td>
<td>0.55</td>
<td>...</td>
</tr>
<tr>
<td>BG IGZO TFT (^{114})</td>
<td>15.3</td>
<td>1</td>
<td>126</td>
<td>2 x 10(^3)</td>
<td>...</td>
<td>60</td>
<td>50</td>
<td>1.9</td>
<td>1.43</td>
<td>1</td>
</tr>
<tr>
<td>SA IGZO TFT (^{114})</td>
<td>7.5</td>
<td>0</td>
<td>130</td>
<td>2 x 10(^3)</td>
<td>135</td>
<td>0.5</td>
<td>50</td>
<td>3.5</td>
<td>0.72</td>
<td>1</td>
</tr>
<tr>
<td>Quasi-vertical IGZO TFT (^{145})</td>
<td>0.2</td>
<td>1.5</td>
<td>400</td>
<td>1 x 10(^3)</td>
<td>1.5</td>
<td>0.3</td>
<td>50</td>
<td>0.48</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>IGZO TFT on mechanically active substrate (^{23})</td>
<td>17</td>
<td>0.6</td>
<td>165</td>
<td>...</td>
<td>...</td>
<td>15</td>
<td>0.7</td>
<td>0.025</td>
<td>...</td>
<td>1</td>
</tr>
<tr>
<td>IGZO TFT with hybrid buffer layer (^{202})</td>
<td>15.5</td>
<td>4.1</td>
<td>200</td>
<td>5 x 10(^9)</td>
<td>...</td>
<td>...</td>
<td>125</td>
<td>3.3</td>
<td>1.89</td>
<td>10,000</td>
</tr>
<tr>
<td>IGZO TFT on island structures (^{37})</td>
<td>14</td>
<td>...</td>
<td>...</td>
<td>1 x 10(^3)</td>
<td>...</td>
<td>4</td>
<td>17</td>
<td>1</td>
<td>...</td>
<td>100,000</td>
</tr>
</tbody>
</table>

(II) Another effective way to improve the TFT performance and stability is the optimization of the semiconductor that can be realized by adjusting the oxygen content in the sputter atmosphere and/or employing dual-layer semiconductors. Flexible GZO TFTs, for example, exhibit an optimized current on/off ratio if an O\(_2\) content of 25% is used during the semiconductor deposition. \(^{188}\) A study by Nag et al. showed how TFTs with dual-layers of IGZO with different thicknesses and different amounts of O\(_2\) allow precisely controlling the charge carrier density. \(^{41}\) In this case, it was demonstrated that TFTs with dual-layers (7 nm IGZO with 0% O\(_2\)/15 nm IGZO with 5% O\(_2\)) result in enhanced performance, if compared with devices with 20 nm single-layer of IGZO. \(^{41}\) At the same time, if compared with single-layer TFTs, dual-layer IGZO devices exhibit also improved stability, as displayed in Fig. 15. \(^{41}\) Dual-layers of IZO deposited in gradient O\(_2\) ambient have been used to fabricate semiconducting (4% or 7% O\(_2\)) and low resistance IZO layers (0% O\(_2\)). \(^{164}\) The resulting flexible TFTs (Fig. 16) show a strong dependency of the \(\mu_{FE} \) and \(V_{TH} \) on the sputtering conditions. Finally, Marrs et al. demonstrated flexible dual-layer TFTs (with IGZO at the interface with the dielectric and with highly doped IZO close to the source/drain contacts) yielding improved stability and effective mobility. \(^{173}\)

Also, the choice of the gate dielectric plays a key role in the TFT optimization, by directly influencing the specific gate dielectric capacitance (and therefore also the drain current and the sub-threshold swing) of the device. One possibility to improve \(C_{ox} \) is the use of multi-layer gate dielectrics with good interface quality, such as HfO\(_2\)/TiO\(_2\), PVP/TiO\(_2\), SiO\(_2\)/SiNx, and HfO\(_2\)/TiO\(_2\)/HfO\(_3\). \(^{144,152,154,157}\) Another approach to increase the \(C_{ox} \) while keeping the advantageous interface properties of Al\(_2\)O\(_3\) is the use of thin (10 nm) Al\(_2\)O\(_3\) grown by ALD. \(^{90}\) Additionally, ferroelectric gate dielectrics, either P(VDF-TrFE), \(^{149,167}\) Al\(_2\)O\(_3\) in combination with chicken albumen \(^{204}\) (see Fig. 8), or Al\(_2\)O\(_3\)/P(VDF-TrFE) stacks, \(^{146}\) can be used to generate a gate hysteresis of up to several volts in the TFT transfer characteristics. Fig. 17 displays the...
transfer curve of a flexible IGZO TFT with Al2O3/P(VDF-TrFE) gate dielectric, showing how the gate hysteresis allows realizing a non-volatile 1-bit memory element.146

(IV) The use of a suitable passivation layer can lead to TFTs with enhanced stability, as well as performance. A direct comparison of TFTs with and without a TiO2 passivation layer has been reported by Hsu et al.157 Hsu et al. showed that a TiO2 capping layer on BG IGZO TFTs increases the μ_{FE} from 10 cm2 V$^{-1}$ s$^{-1}$ to 61 cm2 V$^{-1}$ s$^{-1}$. Such improvement has been attributed to the higher electron accumulation caused by the higher electric field under the high-ε_R TiO2 capping layer.

(V) Even if the barrier layer has no direct impact on the TFT performance, its barrier and surface properties can influence the final device. TFTs with SiO$_2$, SiN$_x$, or SiN$_x$ in combination with AlO$_x$ (10 nm or 100 nm) buffer layer have been compared by Ok et al.155 In their work, Ok et al. showed that SiN$_x$/AlO$_x$ dual-layer barriers yield better water and hydrogen diffusion barriers and therefore improved device performance, if compared with TFT with single buffer layers (SiN$_x$ or SiO$_x$).155 Similarly, flexible IGZO TFTs fabricated on PEN using 3μm organic TR-8857-SA7 + 50 nm Al$_2$O$_3$ dual-layer result in superior performance compared with those manufactured on PET with a single 3μm thick TR-8857-SA7 layer or without buffer layer.202

(VI) Finally, the device geometry can be adjusted to achieve significant improvements in the electrical performance. First, it is worth mentioning that BG TFTs (Figs. 4(a) and 4(b)) provide a generally better performance if compared with TG devices (Figs. 4(c) and 4(d)). Indeed, the average μ_{FE} of all the flexible n-type vacuum metal oxide semiconductor BG TFTs cited in this subsection is 16.6 cm2 V$^{-1}$ s$^{-1}$, while the corresponding value for TG devices is only 12.7 cm2 V$^{-1}$ s$^{-1}$. Although this comparison is not entirely valid since the values are not normalized for the different channel materials, these two average numbers highlight the better interface quality of BG TFTs, compared with TG ones. On the other side, DG architectures (Fig. 4(e)) exhibit by a factor of \approx2 larger effective gate area,90,106 which results in a total gate capacitance increased by the same factor, as shown in Fig. 18.

The increased gate capacitance C_G leads to a larger transconductance g_{m} as demonstrated in Fig. 18(b), where flexible DG and BG IGZO TFTs are compared. Since g_{m} and C_G increase simultaneously, there is no significant effect on the TFT AC performance (see Equation (1.8)).106 Nevertheless, DG structures also influence the threshold voltage, and the increased C_G enabled the smallest published SS of 69 mV/dec.90 DG architectures present also an increased effective gate to source/drain overlap and hence reduced R_C from
205 kΩ µm to 165 kΩ µm (if compared with the corresponding BG TFT reference structures).106 Furthermore, the \(\mu_{FE} \) of DG TFTs can be either reduced (because of more interface scattering caused by additional process steps, and thus a lack of clean interfaces) or increased (because of less interface scattering caused by the reduced lateral electric field) if compared with the corresponding BG TFTs.106 Which of these effects is dominant varies across literature. To realize fast and flexible TFTs, devices with small feature sizes (especially short channel lengths) need to be fabricated. Since the realization of short channels on flexible substrates is challenging, two alternative concepts based on vertical device geometries have been developed: flexible metal oxide semiconductor VTFTs (Fig. 4(f))92,93,96 and QVTFTs.145 Both device structures are characterized by the fact that the channel is oriented out of the plane with respect to the substrate.145 This is realized by depositing an insulating layer between the source and the drain contacts (the so-called spacer), whose thickness defines the channel length. Thereby, channels as short as 300 nm are possible.145 Unfortunately, VTFTs and QVTFTs often suffer from a bad interface quality, a high contact resistance, and a large overlap capacitance.92,145 Therefore, only transit frequencies below 1.5 MHz have been possible with such vertical structures.92,145 Nevertheless, VTFTs have great potential for applications where a small footprint is required. Flexible n-type vacuum-processed metal oxide semiconductor TFTs with both short channels and small overlap capacitance have been manufactured using self-alignment techniques. In particular, flexible self-aligned IGZO TFTs (\(L = 500 \text{ nm} \) and \(L_{OV, S} = L_{OV, D} = 1.5 \text{ µm} \)) have enabled the realization of the highest \(f_T \) of 135 MHz (see Fig. 13) ever reported for flexible metal oxide semiconductor devices.114,209 The same self-alignment approach has been used to fabricate flexible DG IGZO TFTs with two self-aligned gates (\(L = 7.5 \text{ µm} \) and \(L_{OV} = 1 \text{ µm} \)), yielding an \(f_T \) of 5.6 MHz.106 The influence of the channel scaling, together with the use of different source/drain to gate overlaps, is shown in Fig. 19. The graph displays the transit frequency (extracted from S-parameter measurements) of flexible IGZO TFTs fabricated with conventional lithography (\(L_{OV} \) of 15 µm and 5 µm) and self-alignment (\(L_{OV} = 1.5 \text{ µm} \)). The positive effect of the reduced device dimensions is evident. At the same time, Fig. 20 shows how the overlap length-dependent contact resistance of TFTs limits the impact of further channel scaling on the device \(f_T \). Therefore, significantly higher frequency values call for a reduction of the specific contact resistance.209

b. Modeling. Besides the optimization of the electrical properties itself, it is also important to model the TFT behavior prior to the fabrication.

Device modeling is not only essential for the design and simulation of complete circuits but it also allows predicting the influence of TFT scaling, as well as of any device layout modification. Flexible IGZO TFTs have been modeled using I-V data measurements and artificial neural networks (ANNs), such as multi-layer perceptron (MLP), radial basis functions (RBFs), and least squares-support vector machine (LS-SVM).211 Among these ANN approaches, MLP seems to be the most suitable methodology since it provides the best trade-off between accuracy and complexity.211 Nevertheless, these ANN-based techniques have only been used to simulate the static and quasi-static behavior of TFTs with \(L \geq 10 \text{ µm} \).211 One possibility to simulate both DC and AC performance of TFTs with channel lengths down to 6 µm was presented by Zysset et al., who proposed a level 61 HS Spice model (AIM Spice level 15 model).212 The drawback of the model presented by Zysset et al. is that no testing on
the channel scaling has been provided. A more complete model was presented by Perumal et al., who reported the simulation of flexible IGZO TFTs based on a level 3 HSpice template. Fig. 21 demonstrates the successful simulation of the TFT DC performance parameters. Additionally, also the AC performance parameters, including the S-parameters of flexible IGZO TFTs, have been simulated. Finally, an analytical model including also the contact resistance and the gate dielectric capacitance of flexible IGZO TFTs has been reported. This model has been used to analyze the influence of scaling (channel and overlap length) on the TFT transit frequency (see Fig. 20), allowing also a prediction on the scalability of current flexible IGZO TFT technology. In this model, flexible TFTs with channels as short as 0.5 μm have been simulated.

4. Mechanical properties

A complete set of performance parameters of flexible TFTs cannot be limited to the electrical characteristics but needs to deal also with the mechanical properties. To fully describe the mechanical properties of flexible n-type vacuum-processed metal oxide semiconductor TFTs, issues like induced strain, maximum strain resistance, influence of strain on the electrical properties, as well as role of mechanical fatigue need to be thoroughly addressed.

a. Bendability. Bending is the most common technique employed to induce strain in flexible TFTs. This is mainly because bent thin-film devices enable many applications such asrollable displays, smart labels, seamless and embedded patch-like systems, electronic textiles, and implantable electronic devices for medical equipment. Whilerollable displays, smart labels, as well as embedded patch-like systems can be realized using flexible TFTs with minimum bending radii in the centimeter range, smart electronic textiles call for much smaller radii in the sub-millimeter regime. On the other side, medical applications need thin-film devices that can adapt to the human body, e.g., to a human hair which exhibits a radius of ≈ 50 μm. Flexible n-type vacuum-processed metal oxide semiconductor TFTs, especially based on IGZO active layers, bent to different radii have been characterized by many research groups. As illustrated in Fig. 22(a), mechanical bending tests are, in general, performed by winding the flexible TFTs substrate around cylindrical rods. At the same time, some research groups have also developed automated bending testers like the one shown in Fig. 22(b), which can be used to perform multiple bending and re-flattening cycles, as well as to characterize the TFTs at arbitrary bending radii while the devices are connected to a parameter analyzer. The approach based on the bending tester allows carefully controlling the applied strain during the entire measurement and in some cases also ensures a permanent and reliable contact between the TFTs and the characterization equipment.
Independently of the measurement setup, flexible n-type vacuum-processed metal oxide semiconductor TFTs can be bent down to 50 μm in the case of tensile (outward) bending and down to 25 μm for compressive (inward) bending. Nevertheless, it has to be mentioned that because of difficulties in contacting the devices while being inward bent, bending in compressive direction is not very common. As visible from Table II, the maximum strain values do not only depend on the minimum bending radii, but also on the device layers and thicknesses. Since the calculation of the mechanical strain in a multi-layer system can be complex, different equations have been used to estimate numerical values of the strain induced by bending. One of the most common approximation is the following:

$$\epsilon = \left(\frac{1}{R} - \frac{1}{R_0}\right) \times \frac{t_D}{2} \times \frac{Y_D}{Y_S} \left(\frac{t_D}{t_S}\right)^2 + \frac{2}{Y_D} \frac{t_D}{t_S} + 1$$

(2.1)

where R is the bending radius, R0 is the initial bending radius caused by the built-in strain (has to be added if the built-in strain is in the opposite direction as the induced strain, elsewhere subtracted), tD and tS are, respectively, the thicknesses of the substrate and of the device, and YS and YD are the Young’s moduli of the substrate and the device, respectively. The highest strain values at which flexible n-type vacuum-processed metal oxide semiconductor TFTs have been able to operate include 1.89%, 139,202 (tensile direction) and processed metal oxide semiconductor TFTs have been able to operate include 1.89%, 139,202 (tensile direction) and processed metal oxide semiconductor TFTs have been able to operate include 1.89%, 139,202 (tensile direction) and processed metal oxide semiconductor TFTs have been able to operate include 1.89%, 139,202 (tensile direction) and processed metal oxide semiconductor TFTs have been able to operate include 1.89%, 139,202 (tensile direction) and processed metal oxide semiconductor TFTs have been able to operate include 1.89%, 139,202 (tensile direction) and processed metal oxide semiconductor TFTs have been able to operate include 1.89%, 139,202 (tensile direction) and processed metal oxide semiconductor TFTs have been able to operate include 1.89%, 139,202 (tensile direction).146 In addition to one-time bending tests, also the TFT resistance to mechanical fatigue caused by repeated bending and re-flattening cycles has been investigated. In particular, tensile bending cycles up to 100,000 have been reported,137,152 while repeated compressive bending tests have been limited to 24 cycles.151 While the majority of the published bending measurements have only confirmed the functionality of the devices at a given bending radius or after repeated bending cycles, other more sophisticated experiments have focused on the influence of strain on the electrical TFT performance. In the majority of the cases (for IGZO TFTs), bending results in a increase of the drain current under tensile bending and in a decrease of the drain current under compressive strain. At typical tensile strain of \(\approx 0.5\%\), the \(I_D\) changes are caused by an increase of the \(\mu_{FE}\) by \(\approx 2.5\%\) and by a decrease of the \(V_{TH}\) by \(\approx 20–200\) mV. At the same time, compressive strain of \(\approx 0.5\%\) causes \(\mu_{FE}\) and \(V_{TH}\) changes around \(\approx -2\%\) and \(\approx 10–150\) mV, respectively. The opposing effect of tensile and compressive bending on the DC performance of flexible IGZO TFTs is visualized in Fig. 23. Furthermore, also the influence of repeated cycles of bending and re-flattening on the characteristics of flexible IGZO TFTs (measured while flat) has been analyzed.151 The effect of long-term bending depends on the repetition duration.151 Nevertheless, bending cycles nearly always lead to a decreased \(I_D\), probably due to the formation of micro-cracks on a short time scale (already after 24 bending cycles). However, also cyclic tensile/compressive bending results in parameter shifts similar to those observed for tensile/compressive one-time tests (see Fig. 23).143,151,152,179 The observed threshold voltage and mobility shifts induced in flexible IGZO TFTs under tensile/compressive bending have been explained by an increase/decrease of the carrier density caused either by the creation of oxygen vacancies160 or by a change of the electronic structure.151 These effects (together with the above mentioned values) are only valid if the IGZO TFTs are bent within the mechanically elastic region, whereas bending to smaller radii induces cracks that cause permanent parameter shifts or even device failure.84,143,152,182 At the same time, it has to be mentioned that other groups have also observed no effect or even an opposing influence of mechanical bending.149,180,181 These partially contradictory observations (concerning both the direction and the magnitude of strain-induced changes) can be explained by a number of additional factors that need to be considered:

(I) Illumination can have a significant effect on bending measurements. Even if the illumination condition is not reported in the majority of the published bending experiments, it is important to take into account the combined light-strain effect, especially for the fabrication of flexible optical displays. A direct comparison of flexible IGZO TFTs bent while in darkness and under illumination is shown in Fig. 24. Without illumination, the \(\mu_{FE}\) and \(V_{TH}\) change by +3.1% (−1.8%) and −15 mV (+19 mV), respectively, under tensile (compressive) strain \(\epsilon\) of \(\approx \pm 0.3\%\). Under an illumination of 901x, the \(\mu_{FE}\) varies by +14.8% (−3.7%) and the \(V_{TH}\) changes by −110 mV (+37 mV) under tensile (compressive) bending. Additionally, also the relaxation behavior is different: a full recovery of the parameters is possible only if the devices are bent in darkness.151 It is important to underline that illumination only influences the magnitude of the measured parameter shifts, whereas the sign depends on the direction of bending (tensile or compressive). Additionally, Park et al. have recently reported a similar study on the combined effect of mechanical bending, illumination, and bias stress in flexible IGZO TFTs.135

FIG. 23. Transfer characteristic of a flexible IGZO TFT measured while flat and subsequently bent in tensile and compressive direction. The inset displays an enlargement on the strain-induced shifts. Reproduced with permission from Münzenrieder et al., IEEE Trans. Electron Devices 58, 2041 (2011). Copyright 2011 Institute of Electrical and Electronic Engineers.
In short-channel TFTs ($L \lesssim 5 \mu m$), the channel resistance (R_{CH}) can become comparable to the contact resistance, as well as to the resistance of the interconnection lines. Therefore, also the strain sensitivity of the, generally metallic, contacts (and not only of the metal oxide semiconductor) can influence the response of the TFTs under applied mechanical bending.\(^{(113)}\)

Device encapsulation can move the neutral bending axis above the TFT layers, leading to an effective compressive strain induced even if tensile bending is applied.\(^{(140)}\) A similar effect can also occur if the strain built-in in the device layers is larger than the strain induced by bending.\(^{(90,151)}\) In both cases, strain-induced parameter shifts with an opposite algebraic sign are observed.

The geometry of the TFTs can also influence their strain sensitivity. While BG and TG IGZO TFTs, in general, exhibit the parameter shifts described above, DG IGZO TFTs show exactly the opposite behavior.\(^{(209)}\) A direct comparison of flexible BG and DG IGZO TFTs bent in tensile direction resulted in a μ_{FE} and V_{TH} shift of $+2\%$ and -75 mV for BG TFTs, but in shifts of -7% and $+25$ mV in the DG case, respectively.\(^{(90)}\) Similarly, IGZO VTFTs exhibit μ_{FE} and V_{TH} shift between -2% and -5% and $+100$ mV and $+130$ mV while strained by $+0.5\%$.\(^{(92,145)}\) Here, the Poisson effect leads to the fact that tensile bending results in compressive strain in the device channel.

The influence of repeated bending cycles combined with the specific relaxation behavior causes a time sensitivity of the TFTs during bending experiments. At the same time, different groups also use diverse time scales to apply mechanical bending, with time differences spanning to up to 1 h.\(^{(158)}\)

Furthermore, extensive bending beyond a certain strain value (which delimits the elastic with the inelastic region) can lead to the formation of micro-cracks in different material layers.\(^{(84,143)}\) These cracks can be hardly visible and do not necessarily result in device failure. Nevertheless, TFTs with micro-cracked layers can present different device parts disconnected from each other and therefore exhibit a reduced W/L ratio, as well as a worst electrostatic control over the channel. In these cases, a decrease of the I_D together with an increase of the I_{OFF} (under both tensile and compressive bending) is observed.

Finally, the influence of the electrical stress induced by measuring the devices repeatedly during the bending tests needs also to be taken into account. On one hand, it has been reported that the parameter variations caused by mechanical stress (especially cyclic bending) are in the same order of magnitude as the shifts caused be electrical stress (standard gate bias stress measurements).\(^{(151)}\) On the other hand, gate bias stress (positive and negative) induces basically the same shifts, regardless if IGZO TFTs are strained, bent to different tensile radii (down to 40 mm), or cycled between flat (radius of 15 mm) and bent state for up to 10,000 repetitions.\(^{(155)}\)

Also, the influence of bending on the AC performance of flexible IGZO TFTs has been analyzed.\(^{(113,114)}\) The AC performance, in particular, the f_T, is mainly determined by the transconductance g_{m} and the gate capacitance C_G of the TFTs (see Equation (1.8)). On one side, g_{m} increases under tensile bending due to the increased μ_{FE} and decreased V_{TH}. On the other side, tensile bending also increases the C_G (typically by 1%--2% for 0.5%--1% tensile strain), due to an increased area, decreased t_{ox}, and increased carrier density under bending. Due to the simultaneous increase of g_{m} and C_G, the transit frequency remains basically unchanged.

Additionally, it is also important to predict and simulate the strain sensitivity of TFT (as well as circuits) prior to fabrication, in order to optimize the devices and reduce the strain-induced performance variations as much as possible. One step in this direction was done by Ma et al.\(^{(217)}\) who included strain-induced μ_{FE} variations into a HSpice-based flexible circuit analyzer. Furthermore, purely mechanical simulations of flexible n-type vacuum-processed metal oxide semiconductor TFTs have also been reported. In particular, COMSOL multiphysics has been used to model strain-stress.
curves, as well as von Mises stress induced by tensile, compressive, and torsional forces. Based on these mechanical models, IGZO and graphene active layers show similar performance. Moreover, also device failure due to crack formation has been predicted by a finite element method (FEM). The FEM simulations have been used for flexible IGZO TFTs to identify device areas prone to stress localization under tensile and compressive bending or simulate the strain of a PVP/Al2O3 hybrid gate dielectric. Finally, the mechanical stress induced in IGZO TFTs roll-transferred onto a flexible PDMS substrate has also been calculated by Sharma et al.

b. Improvement of bendability. As already mentioned, sub-millimeter bending radii are necessary for many novel applications (e.g., smart textiles and implantable and imperceptible medical devices). While TFTs bending radii of several millimeters or even centimeters can be obtained easily, smaller curvatures are more complicated to be achieved. There are two main approaches to enhance the device bendability: either improving the TFT flexibility or reducing the mechanical strain induced by bending. In particular, the TFT flexibility can be enhanced with the following techniques:

(I) The most obvious way is to increase the ductility of the different device layers. An investigation of flexible IGZO TFTs with different metals used as BG (see Fig. 10) showed that the device bendability scales with the ductility of the gate. Flexible IGZO TFTs using Cr (thin film rupture strain $\epsilon_c \approx 0.5\%$), Ti ($\epsilon_c \approx 2\%$), Pt ($\epsilon_c \approx 4\%$), or Cu ($\epsilon_c \approx 4.5\%$) BG exhibit average bendabilities of 4.2 mm, 2.4 mm, 2.2 mm, and 1.9 mm radii, respectively.

(II) Another promising approach consists of replacing the brittle ceramic gate dielectrics (e.g., Al2O3) with more ductile polymers. For example, P(VDF-TrFE) can be used without additional insulating layers and results in TFTs with good electrical and mechanical performance. The use of P in combination with 20 nm, 30 nm, or 40 nm thick Al2O3 confirmed that 40 nm thick Al2O3 yields a reduced mechanical stability. It is also worth mentioning that a comparison of TG TFTs with 25 nm Al2O3 or 100 nm P(VDF-TrFE) in combination with 10 nm Al2O3 resulted in an increase of the minimum bending radius from 4 mm to 4.7 mm. Therefore, the gain in ductility offered by polymeric dielectrics has to be compared with the increase in thickness and therefore strain (see Equation (2.1)) of the entire device stack.

(III) Although all the n-type vacuum-processed metal oxide semiconductors employed for flexible TFTs have a similar chemical composition, their mechanical properties can vary significantly. If amorphous IGZO TFTs are compared with nano-crystalline ZnO TFTs (Fig. 25), the flexible IGZO devices exhibit considerably higher bendability (≈ 5 mm instead of ≈ 15 mm). The worst bendability of ZnO can be explained by its piezoelectric properties, which lead to the creation of an electric field under the applied strain. The so-formed electric field can subsequently significantly influence the TFT performance. Furthermore, the grain boundaries in ZnO can act as nucleation points for micro-cracks.

IV) Also, the source/drain materials can influence the TFT mechanical properties. A study by Chien et al. reported that IGZO TFTs with IZO/Ti source/drain contacts yield better electrical performance and are less sensitive to mechanical bending (down to 3 mm) if compared with devices with only Ti electrodes.

(V) The ductility of flexible IGZO TFTs can also be increased by reducing the device area, and thereby the number of micro-cracks induced by repeated cycles of bending and re-flattening cycles.

(VI) Another way to increase the TFT ductility can be achieved by aligning the devices relative to the strain. Fig. 26 shows that bending parallel to the IGZO TFT channel increases the carrier mobility until the devices are destroyed above $\epsilon \approx 0.7\%$. Perpendicular bending only slightly increases the μ_{FE} for small strain values ($\epsilon \approx 0.3\%$) but leads to a strong μ_{FE} degradation if the strain is further increased. The higher sensitivity of TFTs to perpendicular bending (compared with parallel) is caused by a significantly higher cracking probability in this direction (remember that generally $W \gg L$). This is also confirmed by Hong, Mativenga, and Jang, who reported flexible IGZO TFTs with $L > W$ showing a reduced cracking formation for cyclic bending in the perpendicular direction. A similar experiment performed with ZnO TFTs showed no significant difference for parallel and perpendicular cyclic bending, which can be probably explained by the low strain values always $\leq 0.07\%$.

Alternatively, the strain induced by bending can be reduced using the following techniques:
The strain induced by bending is inversely proportional to the bending radius and approximately proportional to substrate thickness (see Equation (2.1)). Given the same maximum strain (TFT strain resistance), thinner substrates directly lead to smaller bending radii. Although thin substrates can be difficult to handle and require more complicated fabrication processes, n-type vacuum-processed metal oxide semiconductor TFTs manufactured on a 0.7 μm thick hydrogel/PI hybrid substrate, 23 1 μm thick parylene,80,141 5 μm thick glass,179 and 15 μm thick PI161 have been reported. Fig. 27 shows a flexible IGZO TFTs fabricated on a 1 μm thick parylene membrane while wrapped around a human hair (radius of 50 μm). Due to the thin substrate, the devices are fully operational at 50 μm tensile bending radius, which corresponds to a strain of ≈0.4%.80

It is also possible to reduce the strain induced in the TFTs by placing the devices in their neutral strain axis thanks to the use of a suitable encapsulation layer. The bending performance of flexible IGZO TFTs fabricated on a 50 μm thick PI substrate and encapsulated with an additional 50 μm thick structured PI foil (+5 μm epoxy glue) is shown in Fig. 28. By encapsulating the devices, a reduction of the minimum bending radius from ≈4 mm to 0.125 mm was possible.140 Additionally, Park et al. fabricated TFTs on 17 μm thick PI and encapsulated them between layers of PET, which enabled the bending radii down to 1 mm.137 Here, different distances between the TFTs and the neutral strain axis (caused by different encapsulation layer thicknesses) have been investigated. It was confirmed that the TFTs placed on the neutral strain axis exhibit smaller performance parameter shifts that TFTs placed up to 50 μm away from the neutral strain axis. The drawback of this method is that the additional encapsulation layer (with similar thickness as the substrate) increases also the total stiffness of the final device. At the same time, an encapsulation is anyway necessary in order to increase the robustness of the final device for applications like flexible displays.39,40

5. Additional features

Electrical and mechanical performance are the two most investigated characteristics of flexible n-type vacuum-processed metal oxide semiconductor TFTs. Nevertheless, the
unique physical properties of metal oxide semiconductors also enable devices which are transparent, stretchable, dissolvable, mechanically active, and even biomimetic and biodegradable.

a. Transparency. Together with flexibility and stretchability, also transparency is an important requirement to seamlessly embed electronic devices into everyday objects, especially to enable applications such as electronic windshields or smart glasses. To realize transparent devices, metal oxide semiconductor TFTs are ideal candidates, due to the intrinsic transparency of the active layer and of nearly all available gate dielectrics (both metal oxides and polymers). To fabricate an entirely transparent device, also the metallic (and therefore opaque) gate and source/drain contacts have to be replaced by transparent conductors. To manufacture transparent conductors, ITO is the most commonly used material,\(^{29,78,80,106,135,137,139,155,158,180,188,189,202,204,205}\) together with IZO,\(^ {133,160,171,184,208}\) AZO,\(^ {93,134}\) and \(\text{In}_2\text{O}_3\).\(^ {171}\) Nevertheless, compared with the metallic contacts, conductive metal oxide contacts reduce the TFT bendability. An alternative to brittle metal oxide contacts is the use of graphene which combines flexibility, transparency, and high specific conductivity.\(^ {36}\) For transparent applications, it is essential that not only the device itself but also the substrate is transparent. Unfortunately, the most common material (standard PI) is only partially transparent and exhibits a yellowish to brownish color. Nevertheless, a variety of fully transparent substrates compatible with the fabrication of flexible metal oxide semiconductor TFTs are available,\(^ {29,79,96,106,135,137,139,155,158,180,188}\) including: PET,\(^ {29,79,96,106,135,137,139,155,158,180,188}\) PEN,\(^ {38,40,41,134,136,139,149,153,158,163,166–168,173,181}\) PC,\(^ {154,157}\) transparent PI and PI-based nano silica composites,\(^ {133,142,144,159}\) parylene,\(^ {80,141}\) PDMS,\(^ {78,132,147,205}\) PVA,\(^ {82}\) and finally glass and glass-fabric reinforced composites.\(^ {93,160,169,174}\) The combination of only transparent materials in one device stack results in fully transparent devices.\(^ {78,80,139,188,205}\) To quantify the transparency of the n-type vacuum-processed metal oxide semiconductor TFTs, some groups have also measured the lucency of the devices in the visible wavelength range, reporting average transmittance values between 70% and 85%\(^ {133,134,139,160,170,180,184}\) for the complete device stack, as well as 80% (measured on IGZO film only)\(^ {29}\) or 85% of the devices itself in combination with \(\approx 90\%\) transmittance of the substrate.\(^ {78}\) The layout and optical performance of IGZO TFTs fabricated on thin flexible glass substrate are illustrated in Fig. 29, where a transmittance value of 80% was reported.\(^ {160}\) It is worth mentioning that, if designed and fabricated properly, transparent n-type vacuum-processed metal oxide semiconductor TFTs can also exhibit excellent mechanical properties like bendability down to radii of 50 \(\mu\text{m}\),\(^ {80}\) and stretchability by up to 5%.\(^ {78}\)

b. Stretchability. To enable the integration of electronics into soft, elastic, or even 3D deformable objects, n-type vacuum-processed metal oxide semiconductor TFTs need to be also stretchable. Biomedical implants and artificial electronic skins are good examples demonstrating the need for microelectronic devices yielding mechanical properties similar to human skin or other organic tissues. Skin is indeed not only bendable but also stretchable by up to 70%.\(^ {81}\) N-type vacuum-processed metal oxide semiconductor TFTs cannot be directly stretched to such large values, as they can withstand maximum strain values of 1.89%.\(^ {202}\) However, recently several approaches have been proposed to realize stretchable n-type vacuum-processed metal oxide semiconductor TFTs with the use of advanced substrates or geometries:

(I) First of all, stretchability can be achieved by using composite elastomeric substrates. These composite substrates can be engineered in order to present a globally low elastic modulus, which is locally increased in specifically designated device islands. By limiting the strain in these stiff islands, it is possible to protect the devices from the extensive strain they are subject to during stretching. Nevertheless, it is essential to realize a smooth transition between the areas with high and low stiffness, since abrupt stiffness changes are more prone to stress localization (and therefore also to delamination during stretching). At this aim, Erb \textit{et al.} used particle reinforcement to increase the stiffness of polyurethane (PU),\(^ {162}\) as well as to realize a smooth transition between the stiff and stretchable areas. By adding 20 vol.\% of magnetically responsive anisotropic alumina microparticles, an increase of 478% of the stiffness of the PU has been achieved.\(^ {162}\) On top of this composite substrate, IGZO TFTs have been manufactured. Due to the shadow mask-based fabrication process (PU has only limited resistance against photolithographic chemicals) and the high surface roughness of around 200 nm, the IGZO TFTs show only limited device resolution and performance. Furthermore, stretching experiments of the resulting devices have not been reported. Another stretchable composite substrate with mechanically graded patches has been fabricated.
by welding layers of PU-based materials with gradually increasing elastic moduli. In this case, the elastic moduli of the layers have been adjusted at molecular, nano- and microscale by changing the concentration of the PU hard domains, laponite, and alumina platelets, respectively. The resulting elastic moduli span from 40 MPa to 5150 MPa. Given the incompatibility also of this substrate with photolithographic chemicals, IGZO TFTs have been fabricated on a 1 mm thick parylene membrane and afterward transferred to the reinforced islands (Fig. 30(a)). The resulting IGZO TFTs are fully functional while the substrate is strained by 300% and after 4000 cycles of stretching and relaxation. Fig. 30(b) shows the evolution of the TFT transfer characteristic under increasing global strain.

Moreover, full device operation on the 3D surface of a sphere (R = 14 mm) is also possible. In addition to composite PU substrates, recently also engineered elastomeric substrates constituted by PDMS with micro-fabricated and embedded stiff SU-8 device islands have been reported. The smooth stiff-to-soft transition between SU-8/PDMS and PDMS allows stretching the IGZO TFTs manufactured directly on the so-formed device islands to 20%. (II) Alternatively, stretchable TFTs can be realized using “wavy” geometries. The idea is to realize devices with mechanical properties similar to those of an accordion and at the same time mimic the behavior of human skin. To obtain such wavy devices, the elastomeric substrate needs to be wrinkled while relaxed and subsequently re-flattened during stretching. The fabrication can be done by manufacturing or transferring the TFTs onto a pre-stretched elastomeric substrate. The subsequent release of the pre-induced strain leads to the formation of out-of-plane wrinkles on the substrate surface. The TFTs transferred/manufactured on such “wavy” substrates do not need to be stretchable but have to survive to the harsh bending conditions they are subject to while wrinkled (typical bending radii are ≈100 μm). Using this approach, IGZO TFTs have been fabricated on a 1 μm thick parylene membrane and then transferred to a pre-stretched elastomer (VHB tape from 3 M) has been demonstrated. The resulting devices are visualized in Figs. 31(a) and 31(b), where TFT operation at substrate strain of up to 210% is demonstrated (Fig. 31(c)). Finally, there is one single report on wrinkled IGZO TFTs directly fabricated on PDMS. In this work, the PDMS has been spin coated on a Si wafer and backed at 150 °C. Due to the different CTE of the Si wafer and the PDMS, tensile strain is induced into the PDMS. The following TFT fabrication and release of the PDMS from the wafer causes a bi-directional relaxation of the PDMS of ≈3.5% and the formation of wrinkles in the device layers. Thanks to the so-formed wrinkles, the resulting IGZO TFTs can be stretched by up to 2.3%.

(III) It is also possible to combine wavy geometry and composite substrate. In the works of Park et al. and Sharma et al., ZnO or IGZO TFTs have been fabricated on a rigid substrate, covered with an epoxy cap and afterward transferred to a bi-axially pre-stretched PDMS substrate. Release of the pre-formed strain results in the formation of wrinkles in the interconnection lines, while the epoxy reinforced TFTs stay flat. These devices show no significant influence...
to strain of 5%, and after more than 100 cycles of compression and stretching.

c. **Dissolubility.** Recently, also completely water-soluble metal oxide semiconductor TFTs have been demonstrated. These devices are based on Mo contacts, SiO$_x$ gate dielectric, and IGZO semiconductor. The fabrication takes place on a Si wafer coated with a Ni sacrificial layer; subsequently, the complete devices are transferred to a water-soluble 20 µm thick PVA substrate. The complete layer stack can be dissolved in 60°C heated de-ionized (DI) water. The PVA substrate, for example, can be completely dissolved after 1800 s.

d. **Mechanical activity.** Kamashenko et al. have recently demonstrated a unique combination of mechanical and electrical performance by fabricating IGZO TFTs on a highly cross-linked hydrogel/PI composite substrates. In this work, the hydrogel acts as a swelling layer, whereas the PI serves as a stiff and chemically robust substrate for the TFT fabrication. In response to different chemicals, the resulting devices are able to reversibly self-assemble into micro tubes with radii ranging from the millimeter range down to 25 µm. As shown in Fig. 32, the TFTs are not significantly affected by this self actuated deformation.

C. **Flexible n-type solution-processed TFTs**

In this subsection, the materials and fabrication techniques involved in the realization of flexible n-type solution-processed metal oxide semiconductor TFTs are discussed. Subsequently, the electrical performance and the mechanical properties of the resulting devices are presented.

1. **Materials**

As already done for flexible n-type vacuum-processed metal oxide semiconductor TFTs, in the following we describe the substrates, dielectric layers (barrier, gate dielectric, and passivation), and conductive materials (gate and source/drain) employed to manufacture flexible n-type solution-processed metal oxide semiconductor devices.

a. **Substrates.** Flexible metal oxide semiconductor TFTs fabricated by vacuum- and solution-processed processes share common substrate requirements, such as low surface roughness, flexibility, compatibility with the required process temperatures, as well as resistance against the needed solvents. Compared with vacuum processing of metal oxide semiconductors, solution-deposition techniques typically require higher temperatures (≥250°C). As a result, substrates with high temperature resistance (T$_G$ ≥ 300°C) are necessary. Due to their high T$_G$ ≈ 360°C, PI substrates with thickness ranging from ≈3 to 50 µm are widely used. Polyarylate (PAR) foils have also been employed, given their good temperature stability (T$_G$ ≈ 330°C), combined with a colorless transparency in the visible range. If the semiconductor deposition is performed at lower temperatures (≤150°C), also PES foils (T$_G$ around 200°C) can be utilized. In an attempt to reduce the substrate cost, especially when cost-effective high throughput fabrication processes are targeted, less expensive (but also less thermally resistance) polymer substrates like PEN, PET, and PES foils have been employed. Additionally, the use of paper substrates for flexible solution-processed ZnO TFTs has been investigated. Finally, flexible glass substrates have been utilized to allow high annealing temperatures (500°C) in solution-processed IGZO TFTs.

b. **Barrier layers.** The use of barrier layers for flexible n-type solution-processed metal oxide semiconductor devices is not very common. A few examples include c-PVP layers applied to planarize and smoothen the surface of PES or PI, as well as PVP films utilized to reduce the surface roughness of PI foils from 3.6 nm down to 0.3 nm (root mean square). Also, inorganic barrier layers (e.g., Al$_2$O$_3$ and SiO$_2$) have been utilized to planarize, reduce the water permeation, and improve the wettability of PI substrates. Finally, for the purpose of promoting adhesion between PI and either Cr gate contacts or various oxide materials, both SiN$_x$ and zirconium oxysulphate have been employed.

c. **Gate dielectrics.** As for flexible n-type vacuum-processed metal oxide semiconductor TFTs, also in this case metal oxide gate dielectrics grown from vacuum deposition techniques are widely used, especially SiO$_2$, Al$_2$O$_3$, and Al$_2$O$_3$. Nevertheless, for solution-deposited metal oxide semiconductors, it is preferable to solution process also the gate dielectric, in order to further benefit from the low-cost large-area approach offered by solution-deposition processes. Within solution-processed gate dielectrics, polymeric materials are especially suitable due to the moderate annealing temperatures needed, as well as the high bendability that can be achieved. In particular, poly(methyl methacrylate) (PMMA) and PVA gate dielectrics have been evaluated in combination with flexible solution-processed ZnO, In$_2$O$_3$, or...
IZO TFTs.194,229,233,234 Nevertheless, compared with metal oxide dielectrics, polymers yield a lower ε_R and thus result in devices with higher operational voltages. To combine the advantages of metal oxide dielectrics and solution-processing, recently increasing efforts have been devoted to grow metal oxide dielectrics with low temperature solution-processing techniques. Main breakthrough in this direction has been achieved by Pal et al., who demonstrated the first solution-processed amorphous Al$_2$O$_3$ gate dielectric on PI using an annealing temperature of only 200 °C.235 Since then, many other groups reported solution-processed Al$_2$O$_3$ dielectrics on flexible PI or PAR substrates.192,220,221 Zirconium oxide (ZrO$_2$)191,195,198 and tantalum oxide (Ta$_2$O$_5$)201 are other promising metal oxide dielectrics that can be solution-processed on flexible substrates. In this context, it has been shown that the use of high-ε_R metal oxide dielectrics (e.g., Al$_2$O$_3$, ZrO$_2$, or Ta$_2$O$_5$) not only allows lowering the device voltage operation but also leads to better TFT performance if compared with devices employing dielectrics with lower ε_R (e.g., SiO$_2$, PMMA, or PVA).83,192,195,200,224 This improvement is generally ascribed to a reduction of the interfacial trap density and thus to an enhancement of the semiconductor-dielectric interface. Another promising class of dielectric materials comprises ionic liquid/gels and polymer electrolytes. As already reported in Sec. II B, electrolyte dielectrics allow achieving high C_{ox} values and therefore low operation voltage typically below ±2 V. Examples of electrolyte gated n-type solution-processed metal oxide semiconductor TFTs have been successfully demonstrated on PEN, PI, and paper substrates.190,193,231 Due to the good conformal coating, electrolyte gate dielectrics facilitate also the deposition of structured/rough metal oxide semiconductors, especially nanoparticles (NPs) and nanorods (NRs).

d. Contacts. The contact materials used in n-type solution-processed metal oxide semiconductor TFTs are generally similar to those employed for their vacuum-processed counterparts. Source/drain and gate electrodes are mostly made of Al and Au,145,193,231 but also of transparent conducting metal oxides, such as ITO,76,83,190,196,197 IZO,220,221 or zinc indium tin oxide (ZITO).192 In addition to the above mentioned materials, gate contacts are also made of Cr,145 or dual layers of Cr/Au,220,221 which yield a good adhesion. Aiming towards completely solution-processed TFTs, contact materials have also been processed from solution, employing solution-processed poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) gate electrodes193 or solution-deposited ITO source/drain and gate contacts.83

e. Passivation layers. The application of passivation layers in flexible n-type solution-processed metal oxide semiconductor TFTs is not very common. The few available examples include Al$_2$O$_3$196,197 and PMMA layers.192,220,221 In particular, 400 nm thick PMMA layers have been utilized to encapsulate flexible solution-processed In$_2$O$_3$ and IGZO TFTs fabricated on thin spin coated PI.220,221 In particular, PMMA encapsulations allow reducing the mechanical stress (and therefore crack formation) during the release of the PI foil from the rigid glass carrier.

2. Fabrication techniques

Like flexible n-type vacuum-processed metal oxide semiconductor TFTs, solution-processed devices employ similar fabrication techniques (especially for the substrate preparation, layer structuring, and device configuration). Main difference between vacuum and solution-processed TFTs is constituted by the deposition methods, which focus on solution-processes (for the active layers and sometimes also for the gate dielectrics and contacts).87,236,237 After a brief presentation of the substrate preparation methods, the main focus is on solution-processing techniques (i.e., general remarks, deposition methods, and approaches to lower the process temperatures).

a. Substrate preparation. As for vacuum-processed devices, also in this case it is common to employ free-standing polymer foils with thickness of ≥50 µm.145,191,193,197,199,222 Alternatively, polymers can be spin coated onto a carrier substrate (thickness of ≈3–18 µm) and subsequently peeled off after the device fabrication has been completed.83,220,221

b. General remarks on solution-processing. Contrary to most organic semiconducting materials, typical metal oxide semiconductors are not at all or only poorly soluble in common solvents. This is why solution-processing of metal oxide semiconductors cannot occur by simply dissolving the selected materials but requires a chemical reaction (synthesis) between suitable reagents (the so-called precursors). In general, two approaches can be used to solution-deposit metal oxide semiconducting materials:236 (A) The material is first synthesized and tailored into nanoparticles, nanorods, or nanowires.76,190,226,227,230,231,238 These nano-scaled shapes are then dispersed in suitable solvents and subsequently deposited and dried. (B) Alternatively, the precursor solution is first deposited and then converted to the final metal oxide semiconductor material, most commonly via thermal annealing at temperatures in the range of 200 to 500 °C, or alternatively via UV irradiation.87,116,197,200,224,239

The benefit of approach (A) is that the deposition is decoupled from the synthesis, and therefore also from potentially high process temperatures. Using approach (A), crystalline metal oxide semiconductors can thus be easily synthesized and further tailored through their size and shape.240 There are, however, a number of drawbacks connected to approach (A). First of all, often a stable dispersion of the materials requires the use of additives or ligands (mainly insulating), which then need to be removed from the final film to improve the contact between particles.241 This removal process usually involves thermal annealing above 300 °C, which is in conflict with the use of temperature-sensitive flexible substrates. Alternative, the high temperature annealing can be substituted by additional low temperature treatments such as UV irradiation, vacuum annealing, or plasma treatments, which anyway complicate the fabrication process.195,242,243 Additionally, an active channel layer

References:

1. Pal, et al., who demonstrated the first solution-processed amorphous Al$_2$O$_3$ gate dielectric on PI using an annealing temperature of only 200 °C.
2. Zirconium oxide (ZrO$_2$) and tantalum oxide (Ta$_2$O$_5$) are other promising metal oxide dielectrics that can be solution-processed on flexible substrates. In this context, it has been shown that the use of high-ε_R metal oxide dielectrics (e.g., Al$_2$O$_3$, ZrO$_2$, or Ta$_2$O$_5$) not only allows lowering the device voltage operation but also leads to better TFT performance if compared with devices employing dielectrics with lower ε_R (e.g., SiO$_2$, PMMA, or PVA).
3. Electrolyte dielectrics allow achieving high C_{ox} values and therefore low operation voltage typically below ±2 V.
4. Examples of electrolyte gated n-type solution-processed metal oxide semiconductor TFTs have been successfully demonstrated on PEN, PI, and paper substrates.
5. Due to the good conformal coating, electrolyte gate dielectrics facilitate also the deposition of structured/rough metal oxide semiconductors, especially nanoparticles (NPs) and nanorods (NRs).
6. Contacts. The contact materials used in n-type solution-processed metal oxide semiconductor TFTs are generally similar to those employed for their vacuum-processed counterparts. Source/drain and gate electrodes are mostly made of Al and Au, but also of transparent conducting metal oxides, such as ITO, IZO, or zinc indium tin oxide (ZITO).
7. In addition to the above mentioned materials, gate contacts are also made of Cr or dual layers of Cr/Au, which yield a good adhesion. Aiming towards completely solution-processed TFTs, contact materials have also been processed from solution, employing solution-processed poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) gate electrodes or solution-deposited ITO source/drain and gate contacts.
8. Passivation layers. The application of passivation layers in flexible n-type solution-processed metal oxide semiconductor TFTs is not very common. The few available examples include Al$_2$O$_3$ and PMMA layers. In particular, 400 nm thick PMMA layers have been utilized to encapsulate flexible solution-processed In$_2$O$_3$ and IGZO TFTs fabricated on thin spin coated PI. In particular, PMMA encapsulations allow reducing the mechanical stress during the release of the PI foil from the rigid glass carrier.
9. Substrate preparation. As for vacuum-processed devices, also in this case it is common to employ free-standing polymer foils with thickness of ≥50 µm. Alternatively, polymers can be spin coated onto a carrier substrate (thickness of ≈3–18 µm) and subsequently peeled off after the device fabrication has been completed.
10. General remarks on solution-processing. Contrary to most organic semiconducting materials, typical metal oxide semiconductors are not at all or only poorly soluble in common solvents. This is why solution-processing of metal oxide semiconductors cannot occur by simply dissolving the selected materials but requires a chemical reaction (synthesis) between suitable reagents (the so-called precursors). In general, two approaches can be used to solution-deposit metal oxide semiconducting materials: (A) The material is first synthesized and tailored into nanoparticles, nanorods, or nanowires. These nano-scaled shapes are then dispersed in suitable solvents and subsequently deposited and dried. (B) Alternatively, the precursor solution is first deposited and then converted to the final metal oxide semiconductor material, most commonly via thermal annealing at temperatures in the range of 200 to 500 °C, or alternatively via UV irradiation.
11. The benefit of approach (A) is that the deposition is decoupled from the synthesis, and therefore also from potentially high process temperatures. Using approach (A), crystalline metal oxide semiconductors can thus be easily synthesized and further tailored through their size and shape. There are, however, a number of drawbacks connected to approach (A). First of all, often a stable dispersion of the materials requires the use of additives or ligands (mainly insulating), which then need to be removed from the final film to improve the contact between particles. This removal process usually involves thermal annealing above 300 °C, which is in conflict with the use of temperature-sensitive flexible substrates. Alternative, the high temperature annealing can be substituted by additional low temperature treatments such as UV irradiation, vacuum annealing, or plasma treatments, which anyway complicate the fabrication process. Additionally, an active channel layer...
constituted by nanoparticles inherently features a high number of (grain) boundaries, each one acting as a potential barrier against charge transport. Furthermore, high film porosity and roughness at the interface semiconductor/gate dielectrics have been demonstrated to be detrimental for the TFT performance. The impact of residual ligands, grain boundaries, as well as interfacial roughness generally limit the carrier mobility of flexible n-type solution-processed metal oxide semiconductor NP TFTs in approach (A) to below 1 cm² V⁻¹ s⁻¹. Compared with NPs, NWs with lengths of several micrometer can lead to unhindered transport all over the active channel (even with only a single wire) and consequently result in drastically increased μ_{FE} of over 120 cm² V⁻¹ s⁻¹. Nevertheless, difficulties of alignment and accurate placement of the NWs with respect to the source/drain electrodes are a drawback for more widespread applications. In approach (B), the conversion step takes place after the precursor deposition and therefore in direct contact with the substrate material. Depending on the precursor material, temperatures in excess of 300°C are typically required to achieve a full material conversion, as well as good layer properties. The commonly high thermal budget required in approach (B) strongly limits the choice of the flexible substrates to materials such as PI or PAR. Nevertheless, recent efforts have been devoted to the reduction of the annealing temperatures required to solution-process metal oxide semiconductors (and also gate dielectrics) which consequently allows selecting a wider range of substrate materials, including PEN and PET.

c. Deposition methods. As for vacuum-processed devices, also for flexible n-type solution-processed metal oxide semiconductor TFTs, standard vacuum deposition techniques are widely used, especially to manufacture the conductive and insulating materials. To grow barrier, gate dielectrics, and passivation layers, vacuum-deposition tools like ALD (for Al_2O_3) and PECVD (for SiO_2 and SiN_x) are commonly utilized. For source/drain and gate contact deposition, thermal and e-beam evaporation are mainly employed. With regards to solution-deposition processes on flexible substrates, there are several techniques in use. For most of these techniques, both approaches (A) and (B) can be employed:

(I) Spin coating is the most common coating method used in research environments: the film is formed from a liquid precursor ink as a result of the substrate’s rotational motion. The layer thickness can be precisely controlled by parameters like spin speed and duration, as well as precursor concentration. Main advantages of spin coating are process simplicity and low investment costs. Additionally, spin coated films yield homogeneous and reproducible film properties. As a drawback, however, spin coating can only be carried out in batch processes and becomes more challenging when the substrate size is increased. Spin coating technique is commonly utilized for flexible metal oxide semiconductor TFTs to grow In_2O_3, ZnO, ZTO and IGZO active layers. Additionally, many dielectric layers have also been spin coated on flexible substrates, such as organic EVP barrier layers or Al_2O_3 and ZrO_2 dielectrics.

(II) Drop casting is probably the simplest deposition technique in which a defined volume of solution is manually dispensed at the desired location. To control the drying behaviour of the droplet, the substrate can be kept at elevated temperatures. Subsequent annealing steps allow improving the film quality. Especially, TFTs based on nanowires and nanorods following approach (A) have been demonstrated with this technique.

(III) It is also possible to solution deposit metal oxide semiconductors on flexible substrates at low temperatures using hydrothermal growth. Here, the metal oxide formation takes place directly on the substrate surface during the substrate submersion in a heated precursor solution. Growth conditions can be configured to achieve compact films, or NW growth. The deposition time and precursor concentration define the final layer thickness.

(IV) A more sophisticated method is ink-jet printing, which is a digitally controlled drop-on-demand deposition technique. During ink-jet printing, the metal oxide semiconductor is deposited only where needed, preventing waste of material and need for subsequent patterning steps. As ink-jet patterns can easily be controlled digitally (without the need of a physical mask/template), design alterations and prototyping can be carried out easily. However, due to the patterned deposition, the ink drying conditions need to be specially controlled, in order to avoid irregularities and effects such as the coffee ring formation. Examples of ink-jet printed metal oxide semiconductors include ITO nanoparticles [approach (A)], as well as ZnO, In_2O_3, or ZTO from a precursor solution [approach (B)].

(V) In the process of spray pyrolysis, a fine spray of the precursor solution is created (using an air-blast or an ultrasonic nozzle) and directed onto a heated substrate. Given a sufficiently high substrate temperature, the precursor immediately undergoes the conversion reaction and forms the final film material. In addition to the specific precursor material and concentration, parameters such as substrate temperature, droplet size and distribution, as well as solvent type and feed rate present the toolbox to fine tune the material parameters. Good film properties of metal oxide semiconductors processed via spray pyrolysis are normally only achieved for temperatures in excess of 300–400°C, thereby ruling out plastic substrates.
However, recent advances have enabled the realization of spray coated In$_2$O$_3$ TFTs at 250°C on PI substrates.145 Main advantage of spray pyrolysis is the possibility to automate the spraying process, thus ensuring repeatability of the film characteristics. In addition, the spray pyrolysis deposition can be further up-scaled, and potentially run in a continuous process.

(VI) Aerosol-jet printing combines attributes from spray pyrolysis and ink-jet printing. In aerosol-jet printing, a fine mist is created and then shaped (by an inert carrier gas and a special nozzle design), in order to allow localized and digitally controlled deposition with feature sizes in the order of a few tens of μm (see Fig. 33(a)). Aerosol-jet printing has recently been utilized to realize the semiconductor (ZnO), the dielectric (ionic gel), and the gate electrode (PEDOT:PSS) in flexible TFTs fabricated on PI at temperatures ≤250°C (see Fig. 33).193

(VII) Other solution-processing techniques such as blade/bar coating, slot-die casting, gravure, or flexographic printing are traditionally more in use for organic semiconductor devices and/or solar cells. However, such techniques are currently emerging and their suitability for the fabrication of flexible metal oxide semiconductor TFTs is being investigated. For example, Leppåniemi et al. showed the successful flexographic printing of In$_2$O$_3$ patterns on PI substrates with a maximum process temperature of 300°C.250 Similarly, in a recent study by Lee et al., the bar coating method has been employed to fabricate semiconductor (IGZO) and dielectric films (Al$_2$O$_3$, HfO$_2$) in low voltage TFTs. This technique allows precise thickness control over large areas (4in. wafer) and, using self-assembled monolayers the creation of selective wetting contrasts, including the possibility of direct patterning during the printing process. Although full devices with good performance ($μ_{FE} \approx 5$ cm2 V$^{-1}$ s$^{-1}$ at 380°C) have only been presented on rigid Si substrates, the successful film formation on PI is promising in view of future optimization.251

d. Approaches for low temperature solution-processing. Especially for precursor-based methods [approach (B)], there is a wide range of possible techniques to reduce the temperatures needed to solution-process the materials:

(I) First of all, the choice of the precursor material is essential. Thermogravimetric studies of different chloride, acetate, and nitrate precursors generally showed that nitrates react at the lowest temperatures.237 As a consequence, indium nitrate [In(NO$_3$)$_3$] has been used in many studies to form either In$_2$O$_3$, IZO, or IGZO at temperatures between 200 and 300°C.145,191,224 The same applies for Al$_2$O$_3$, which can be formed from aluminum nitrate [Al(NO$_3$)$_3$] using thermal annealing at 200°C.224

(II) In addition to the precursor material itself, the selected solvent can also directly influence the conversion temperature. A study by Hwang et al. compared the effect of water and 2-methoxyethanol (2-ME) as solvents for In(NO$_3$)$_3$ precursors.197 The decomposition temperature for 2-ME was found to be >230°C, whereas water only requires ≈170°C (see Fig. 34). The lower decomposition temperature of water solvent is attributed to the formation of an [In(OH)$_2$]$^{5+}$ complex, whose relatively weak coordination bonds can be broken without excessively high annealing temperatures.

(III) The combination of precursor and solvent is also important. To allow solution-processing of ZnO active layers at temperatures down to 150°C, Meyers et al. proposed to form zinc (Zn) ammine complexes in aqueous solution.239 The precursor preparation was achieved by dissolution of Zn nitrate in water, followed by precipitation of Zn(OH)$_2$ after the addition of NaOH. Several centrifugation and washing steps...
were applied to remove Na\(^{+}\) and NO\(_3\)^{−} ions in the solution before the final complex was created by addition of aqueous ammonia. This laborious process has been simplified by several research groups by directly dissolving ZnO, Zn(OH)\(_2\), or ZnO · H\(_2\)O powder in ammonia solution.\(^{195,222,233,252}\) In particular, Fleischhaker, Wloka, and Hennig employed a process temperature of \(\leq 150\) °C to fabricate BG ZnO TFTs on flexible PEN substrates with different polymeric dielectrics.\(^{233}\) Interestingly, Lin et al. combined the Zn ammine approach with a low temperature solution-processable high-\(\varepsilon_R\) ZrO\(_2\) gate dielectric to realize low-voltage ZnO TFTs fabricated on PEN at a maximum process temperature of 160 °C.\(^{195}\)

(IV) Another possibility to lower the process temperatures is to locally induce a hydrolysis reaction on the surface of as-deposited films. This approach (so-called sol-gel on chip) has been utilized by Banger et al. to obtain low temperature solution-processed amorphous IZO and IGZO.\(^{253}\) The sol-gel on chip process uses mixed metal alkoxide solutions spin coated in nitrogen (N\(_2\)) atmosphere and subsequently annealed at 230–275 °C under controlled water vapor environment. Nevertheless, the application of this approach on flexible substrates (even if possible due to the low processing temperatures) has not been demonstrated yet.

(V) Another effective method to lower the temperatures of solution-processed metal oxide semiconductors is the so-called combustion chemistry approach introduced by Kim et al.\(^{224}\) The idea behind combustion chemistry is to utilize an exothermic reaction that takes place inside the precursor on the as-deposited film. The locally self-generated energy is then able to further carry on the conversion reaction. In this way, only a small amount of external energy supply (i.e., a low annealing temperature) is required to surmount the energy barrier that activates and carries out the following reaction. The precursor composition was chosen by Kim et al. to include a fuel component, either acetylacetone or urea, as well as metal nitrates (acting as oxidizing agents). Using this technique and limiting the annealing temperature to 200 °C, Kim et al. were able to demonstrate flexible In\(_2\)O\(_3\) devices on PAR substrates.\(^{224}\)

(VI) Another way to create metal oxide semiconducting materials at low temperatures has been proposed by Kim et al.\(^{200}\) In their work, Kim et al. employed a mercury lamp with peak performance at 184.9 nm and 253.7 nm to photo-activate an UV-absorbing precursor containing In, Ga, and Zn salts under nitrogen environment.\(^{200}\) The authors described the process as a UV-assisted photochemical cleavage of metal alkoxide groups followed by metal-oxide-metal network formation and further densification. An unintentional heating of the substrate to 150 °C was demonstrated to be necessary for a successful precursor conversion. The so-formed IGZO films were embedded into TFTs on PAR substrates.\(^{200}\) Furthermore, similar UV irradiation approaches have been used for low temperature solution-processed gate dielectrics (ZrO\(_x\) and HfO\(_2\)).\(^{195,220,254}\) A schematical overview of the UV photoactivation process is shown in Fig. 35.

(VII) Finally, it is possible to combine UV illumination and combustion chemistry.\(^{33}\) In the work by Rim et al., solution-deposited IGZO was formed from a precursor solution containing metal salts (necessary to grow IGZO), as well as additives of acetylacetone and ammonium hydroxide. On one hand, both additives, respectively, act as fuel and oxidizer component for the combustion reaction. On the other hand, the additives enable the formation of metal chelate complexes...
TABLE III. Set of performance parameters extracted from recently demonstrated flexible n-type solution-processed metal oxide semiconductor TFTs, together with fabrication details (i.e., maximum process temperature and semiconductor deposition technique).

<table>
<thead>
<tr>
<th>Semiconductor deposition</th>
<th>Maximum temperature (°C)</th>
<th>Mobility (cm² V⁻¹ s⁻¹)</th>
<th>Threshold voltage (V)</th>
<th>Current on/off ratio</th>
<th>Substrate thickness (μm)</th>
<th>Bending radius (mm)</th>
<th>Strain (%)</th>
<th>Bending cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZnO NR TFT with ion-gel electrolyte gate dielectric</td>
<td>Drop-casting</td>
<td>150</td>
<td>0.03</td>
<td>0.8</td>
<td>10²</td>
<td>...</td>
<td>1.1</td>
<td>...</td>
</tr>
<tr>
<td>In₂O₃ NP TFT with electrolyte gate dielectric</td>
<td>Ink-jet printing</td>
<td>RT</td>
<td>0.8</td>
<td>0.55</td>
<td>2 × 10⁴</td>
<td>125</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>ZnO TFT with PVP gate dielectric</td>
<td>Spin coating</td>
<td>200</td>
<td>0.09</td>
<td>5.4</td>
<td>10⁴</td>
<td>12</td>
<td>4.3</td>
<td>...</td>
</tr>
<tr>
<td>ZnO TFTs with ion-gel electrolyte gate dielectric</td>
<td>Aerosol-jet printing</td>
<td>250</td>
<td>1.6</td>
<td>0.97</td>
<td>10³</td>
<td>50</td>
<td>25</td>
<td>1</td>
</tr>
<tr>
<td>Quasi-superlattice metal oxide semiconductor TFTs with ZrO₂/Al₂O₃ gate dielectrics</td>
<td>Spin coating</td>
<td>175</td>
<td>11</td>
<td>0.5</td>
<td>10³</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>In₂O₃ TFTs</td>
<td>Spray pyrolysis</td>
<td>250</td>
<td>0.2</td>
<td>5.29</td>
<td>6 × 10⁴</td>
<td>50</td>
<td>4</td>
<td>0.65</td>
</tr>
<tr>
<td>IGZO TFTs with Al₂O₃/Zr gate dielectric</td>
<td>Spin coating</td>
<td>150</td>
<td>7.7</td>
<td>1.26</td>
<td>10⁴</td>
<td>3</td>
<td>1</td>
<td>...</td>
</tr>
<tr>
<td>IGZO TFTs</td>
<td>Spin coating</td>
<td>350</td>
<td>84</td>
<td>0.6</td>
<td>10³</td>
<td>18</td>
<td>10</td>
<td>...</td>
</tr>
</tbody>
</table>

with enhanced UV absorption. Consequently, UV irradiation can be used to initiate the metal oxide semiconductor formation with the support of an exothermic combustion reaction. The authors employed the same processing scheme to solution-deposit ITO and Al₂O₃ as contact materials and dielectric, respectively.

e. Layer structuring. As for flexible n-type vacuum-processed metal oxide semiconductor TFTs, similar layer structuring methods can be employed for flexible n-type solution-processed metal oxide semiconductor devices. In addition to the standard patterning methods, depending on the specific deposition technique used, additional means to structure the solution-processed layers are possible. Both ink-jet and aerosol jet printing are direct-write methods, meaning that the liquid deposition is carried out only where desired. This reduces material waste and avoids further patterning steps. Due to the digital designs and computer-controlled deposition, both ink-jet and aerosol printing allow a flexible and fast patterning. Feature sizes from a few tens up to several hundreds of microns can be easily achieved with these techniques. Although not inherently a direct-write method, spray pyrolysis can be combined with shadow masking, as demonstrated for flexible In₂O₃ TFTs on PI. This technique, however, so far is limited to line widths above ≈100 μm. The specific process of combining UV illumination and combustion chemistry shown by Rim et al. renders irradiated areas insoluble. In this way, UV treatment through a shadow mask can be used to pattern the layers with line widths down to 3 μm. This deposition and patterning method (so-called direct light pattern integration) has been employed for IGZO, ITO, and Al₂O₃ layers. Recently, promising results of the first roll-to-roll compatible fabrication of In₂O₃ patterns on PI substrates via flexographic printing have also been demonstrated.

f. Device configuration. The majority of the reported flexible n-type solution-processed metal oxide semiconductor TFTs are fabricated in BG staggered configuration with only few devices in BG coplanar, TG staggered, or TG coplanar setup. Only electrolyte gated devices present a configuration where source/drain and gate electrodes are all in the same plane (in-plane configuration).

3. Electrical properties

Flexible solution-processed TFTs based on n-type metal oxide semiconductors show a broad range of electrical performance parameters, depending on the materials, the deposition approaches, and the techniques, as well as the maximum process temperature. An overview of the performance parameters extracted from recently demonstrated flexible n-type solution-processed metal oxide semiconductor TFTs is presented in Table III.

First of all, the performance strongly depends on the solution-deposition approach utilized, based on nano-scaled shapes (A) or on precursors (B). As regards devices based on approach (A), a wide range of performance parameters can be obtained in dependence of the employed shape (NPs, NRs, or NWs). On one hand, flexible NP TFTs typically yield a low μFE ≪ 1 cm² V⁻¹ s⁻¹. The limited performance of flexible NP-based devices can be attributed to the large surface roughness of flexible foils (if compared with rigid Si or glass substrates), which challenges the realization of high-quality nanoparticles. On the other hand, NWs allow realizing longer TFT channels (extending over several microns) based on long range and undisturbed crystalline metal oxide semiconductors. Therefore, flexible NW metal oxide semiconductor devices exhibit higher μFE up to 120 cm² V⁻¹ s⁻¹ (for In₂O₃ NW TFTs on PET), if compared with NP TFTs. Nevertheless, the random orientation and placement of NWs currently hinder their integration in large-area substrates. Especially for integration purposes, TFTs based on n-type metal oxide semiconductors solution-processed from precursors [Approach (B)] are preferable. Flexible TFT based on metal oxide semiconductor solution-processed from precursors can be roughly sorted into three main categories, according to their performance:

(I) This group includes devices with μFE ≤ 1 cm² V⁻¹ s⁻¹.
(II) The second group contains TFTs with $\mu_{\text{FE}} = 1-10 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$.

(III) The third and last group presents a few examples of devices with $\mu_{\text{FE}} \geq 10 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$.

It is noticeable that with only one exception, all the TFTs in group (I) use either polymeric or SiO$_2$ gate dielectrics, whereas all the devices in group (II) and (III) predominantly employ metal oxide gate dielectrics (e.g., Al$_2$O$_3$ and ZrO$_2$) with high ε_R. Due to the widespread usage of gate dielectrics with high ε_R in groups (II) and (III), the device operational voltages are overall small, with threshold voltages $\leq 5 \text{ V}$.

a. Device optimization. As for flexible n-type vacuum-processed metal oxide semiconductor TFTs, also in the case of flexible n-type solution-processed metal oxide semiconductor TFTs, the electrical performance can be enhanced by properly selecting the device materials and deposition processes (especially for the semiconductor and the gate dielectric), the maximum process temperature, as well as the device configuration. Additionally, for solution-processed metal oxide semiconductors, there are special approaches to improve the device performance. First of all, in the case of TFTs with nano-scaled shapes [approach (A)], several post-deposition techniques can be applied, for example, to enhance the inter-particle contact. In particular, Bubel and Schmechel used a mechanical layer compaction technique to increase the carrier mobility of ZnO NP-based TFTs from 5×10^{-5} to $\approx 7 \times 10^{-3} \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$. Another approach consists in removing the ligand layer of the nanoparticle film via plasma treatment or UV irradiation. Lin et al. used room temperature UV treatment to convert formerly unresponsive nanoparticle films into functional active layers, resulting in TFTs with a μ_{FE} of $\approx 10^{-3} \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$. In the case of precursor-based metal oxide semiconductor devices [approach (B)], higher process temperature typically results in enhanced device performance. However, a higher process temperature is only beneficial within a given material system and TFT configuration. In some cases, the choice of the semiconductor composition and of the gate dielectric is more important. For example, TFTs based on Ga-doped In$_2$O$_3$ annealed at 300 °C and SiO$_2$ gate dielectric exhibit $\mu_{\text{FE}} = 0.4 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$, whereas devices based on In$_2$O$_3$ annealed at only 150 °C and Al$_2$O$_3$ gate dielectric yield $\mu_{\text{FE}} = 7.7 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$. Combining low temperature solution-processed Al$_2$O$_3$ and combustion synthesized In$_2$O$_3$ at a maximum temperature of 225 °C, Yu et al. demonstrated neat crystalline In$_2$O$_3$ TFTs on PAR with a μ_{FE} as high as 22 cm2 V$^{-1}$ s$^{-1}$. Another interesting approach to realize low temperature high-performance devices has been recently reported by Lin et al. In the work by Lin et al., instead of relying on the bulk mobility of a specific semiconductor, multiple ultra-thin ($\leq 10 \text{ nm}$) layers of individual metal oxide semiconductors (either In$_2$O$_3$, Ga$_2$O$_3$ or ZnO) were deposited in different stacking sequences to form quasi-superlattice structures. The best results were obtained using a solution-processed high-ε_R ZrO$_2$ gate dielectric with an active layer sequence of In$_2$O$_3$/Ga$_2$O$_3$/ZnO/Ga$_2$O$_3$/In$_2$O$_3$. Using this approach and a maximum process temperature of 175 °C, flexible TFTs with a μ_{FE} of 11 cm2 V$^{-1}$ s$^{-1}$ could be realized on PEN substrates. It was found that the high μ_{FE} obtained is a result of electron confinement at the metal oxide semiconductor hetero-interfaces of the low-dimensional films. The direct light pattern (DLP) integration process proposed by Rim et al. has also proved to be a successful technique to realize high-performance flexible devices. Using DLP and a process temperature of 350 °C, fully transparent and solution-processed TFTs with IGZO semiconductor, ITO contacts, and Al$_2$O$_3$ gate dielectric layers, and (b) scanning electron micrographs of resulting devices. Reproduced with permission from Rim et al., ACS Nano 8, 9680 (2014). Copyright 2014 American Chemical Society.

4. Mechanical properties

Given the recent advances in low temperature solution-processing of metal oxide semiconductors, an increasing number of works on flexible n-type solution-processed TFTs has been published. However, as the field is still rather premature, often mechanical bending tests are not reported. Nevertheless, some groups have presented single bending tests (tensile and compressive) at radii between 25 and 1 mm, as well as cyclic bending up to 10 000 cycles. In the case of flexible TFTs with nano-scale shapes, it has been demonstrated that the application of mechanical bending causes a deformation of the particle network. In particular, tensile strain slightly increases the distance between individual particles, resulting in a lower μ_{FE}. For example, tensile bending at a radius of $\leq 8.5 \text{ mm}$ leads to crack formation and early device failure in ZnO NR TFTs, whereas the same devices are fully operational down to compressive bending
radius of 1.1 mm. In flexible TFTs with precursor-based solution-processed semiconductors, strain-induced device failure is mainly attributed to the formation of cracks or voids in the less ductile device layers. Device failure is often caused by strain-induced breakdown in the gate dielectric layers, e.g., in SiO$_2$ in combination with amorphous In$_2$O$_3$:Ga or thin ZnO (8 nm) metal oxide semiconductor. While solution-processed Al$_2$O$_3$ layers can withstand up to 320 bending cycles without failure, polymeric (PVP), polymer-oxide hybrids (PVP with 15 nm ZrO$_2$), or electrolyte gate dielectrics are fully functional up to 10,000 repetitions. The contacts can also originate device failure, especially in the case of brittle ITO electrodes. For example, Song et al. attributed the failure of ZnO TFTs (50 μm PI/50 nm ITO/270 nm SiO$_2$/8 nm ZnO/50 nm Al) during real time bending tests (e.g., manual crumpling of the devices) to the formation of fractures in either the electrodes or the gate dielectric. Device degradation in the active layer is mostly attributed to the use of crystalline metal oxide semiconductors, or to a high number of bending cycles paired with a small bending radius. The difference between amorphous and crystalline metal oxide semiconductors is illustrated in a study by Yu et al., where crystalline In$_2$O$_3$ and amorphous In$_2$O$_3$:PVP were compared (see Fig. 37). Compared with crystalline devices, the PVP-In$_2$O$_3$ TFTs result in improved mechanical properties: the μ_{FE} is reduced to \approx18% instead of \approx98% at a tensile bending radius of 10 mm. The difference in behavior is attributed to crack formation within the neat In$_2$O$_3$, whereas the doped layers remain crack free. Additionally, in the work by Dai et al., it was shown that blending an IGZO precursor with graphene nanosheets allows improving the strain resistance. While TFTs with neat IGZO result in a μ_{FE} degradation of 70% over 100 bending cycles, the μ_{FE} of IGZO/graphene devices only varies by 8%.

5. Transparency

Due to the wide band gap (E_g) of metal oxide semiconductors, the realization of flexible and transparent n-type solution-processed devices is well established. Aside from polyimide, common plastic substrate materials, metal oxide semiconductors, and also most of the gate dielectrics are transparent in the visible range. To fabricate fully transparent flexible TFTs, ITO or IZO electrodes need to be used. Visible light transmittance of entire device stacks yields values between 76% and 81% for In$_2$O$_3$:PVP blends on PAR, and In$_2$O$_3$ NW on PET substrate, respectively.

III. P-TYPE OXIDE SEMICONDUCTOR TFTs

To complete the analysis of flexible metal oxide semiconductor TFTs started in Section II, in this section we present the ongoing research on flexible p-type devices based on metal oxide semiconductors. First, in Sec. III A, the available p-type metal oxide semiconducting materials are presented. Next, in Secs. III B and III C, the state-of-the-art flexible p-type TFTs based on vacuum- and solution-processed metal oxide semiconductors are reported.

A. P-type metal oxide semiconductors

In general, p-type metal oxide semiconductors are characterized by a band gap E_g ranging from 1.3 eV to 2.7 eV high transmittance in the visible range (>85%), and carrier density (N) from 108 cm$^{-3}$ (for NWs) to 1015 cm$^{-3}$ (for high-quality single crystals). Already since 2005 when the first p-type TFT based on Zn-doped Ga$_2$O$_3$ (Ga$_2$O$_3$:Zn) NWs was realized by Chang et al., it was clear that the main limitation of p-type metal oxide semiconductors is linked to their electronic structure. As already explained in Sec. II A, the majority of metal oxide semiconductors are characterized by CBM with spatially spread metal orbitals and VBM with rather localized oxygen orbitals (2p). This electronic structure guarantees a good electron conduction and therefore a large electron mobility and at the same time a bad hole transporting path (low hole mobility due to hopping conduction). To date, only a few metal oxide semiconductors (e.g., SnO$_2$, Cu$_2$O, CuO) present a slightly different electronic structure. In particular, SnO$_2$ is an interesting p-type semiconductor, because its VBM is formed by hybridized orbitals of localized oxygen (2p) and spatially spread Sn metal (5s). SnO$_2$-based TFTs were first introduced in 2008–2009 by Ogo et al., with a $\mu_{\text{FE}} = 1.3 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$ and an $I_{\text{ON}}/I_{\text{OFF}} \approx 10^2$ (at a process temperature of 575 °C). Following extensive improvements of the deposition techniques combined with deep material analysis, SnO$_2$ devices with μ_{FE} ranging from 1 to 10 cm2 V$^{-1}$ s$^{-1}$ can now be reliably realized at process temperatures of $\leq 300^\circ \text{C}$, and Cu$_2$O has an interesting electronic structure, with a VBM and CBM filled by hybridized orbitals of localized oxygen (2p) and Cu metal (3d). First, p-type Cu$_2$O TFTs were demonstrated by Matsuzaki et al. in 2008 with a $\mu_{\text{FE}} = 0.26 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$ and an $I_{\text{ON}}/I_{\text{OFF}} \approx 6$ (at a process temperature above 650 °C). Nowadays, p-type Cu$_2$O TFTs with a μ_{FE} up to 4.3 cm2 V$^{-1}$ s$^{-1}$ can be manufactured at process temperatures ranging from room temperature to 500 °C. Interestingly, p-type TFTs based on bi-layers of SnO and
Cu₂O have also been shown. Additionally, devices based on solution-processed SnO²⁶⁸ and Cu₂O²⁹¹,²⁹₃,²⁹⁷ have been presented. Besides SnO₂ and Cu₂O, also NiO has been utilized to realize rigid p-type TFTs with modest carrier mobility. Moreover, doping of n-type metal oxide semiconductors has enabled the demonstration of p-type TFTs based on P- and N-doped ZnO²⁵⁹,³⁰⁰ as well as Ga₂O₃:Zn.⁷⁰ Among all the reported p-type metal oxide semiconductor TFTs, only few devices have been fabricated on flexible substrates.³⁶,⁷⁹,₂⁵⁷,₂⁶⁷,₂⁷²,₂⁷³,₂⁸⁵,₂⁸⁹ This is mainly due to the high deposition and annealing temperatures (typically >200°C) that are required, which are incompatible with flexible temperature-sensitive substrates. This is why alternative p-type active layers that allow room temperature processing are under investigation. An interesting p-type semiconducting inorganic molecular compound is copper (I) thiocyanate (CuSCN), which is characterized by wide E_g (3.7–3.9 eV) and high optical transparency. The first CuSCN devices presented by Chen and Konenkamp in 2003 were based on a flexible NW VTFT geometry. Subsequently, TFTs with spin coated CuSCN layers have been demonstrated on both glass and Si rigid substrates (μFE up to 0.5 cm² V⁻¹ s⁻¹).³⁰¹,³⁰³

1. Metal oxide semiconductors for flexible TFTs

Not all of the above mentioned metal oxide semiconductor materials have been employed as active layers in flexible p-type TFTs.

a. Vacuum-processed metal oxide semiconductors. For flexible devices, only SnO₂,⁷⁹,₂⁵⁷,₂⁶⁷,₂⁷²,₂⁷³ and Cu₂O²⁸⁵,²⁸⁹ active layers have been employed. Flexible SnO₂ TFTs exhibit a μFE up to 5.87 cm² V⁻¹ s⁻¹,²⁸⁵ whereas Cu₂O devices yield significantly lower performance (μFE ≤ 0.0022 cm² V⁻¹ s⁻¹).²⁸⁵

b. Solution-processed metal oxide semiconductors. Even if solution-processed p-type SnO₂,²⁶⁸ Cu₂O,²⁹¹,²⁹₃,²⁹⁷ and NiO²⁹⁸ TFTs have been fabricated on rigid substrates, there is no report on flexible p-type solution-processed metal oxide semiconductor devices. As already mentioned above, CuSCN offers a valid inorganic alternative and can be easily deposited by spin-coating. In Sec. III C, we present unpublished results on flexible p-type TFTs based on spin coated CuSCN films.

B. Flexible p-type vacuum-processed TFTs

In this subsection, the materials and fabrication techniques involved in the realization of flexible p-type vacuum-processed metal oxide semiconductor TFTs are discussed. Subsequently, the electrical performance and the mechanical properties of the resulting devices are presented.

1. Materials

As already done in Section II for flexible n-type metal oxide semiconductor TFTs, here we describe the substrates, dielectric layers (barrier and gate dielectric), and conductive materials (gate and source/drain) employed to fabricate flexible p-type vacuum-processed metal oxide semiconductor TFTs.

a. Substrates. Also in this case, the substrates need to fulfill several requirements, such as compatibility with the fabrication process (high T_G and T_m, reduced outgassing, and chemical stability) and good mechanical properties, sometimes even combined with specific features like high transparency. Most common substrate materials are PI,²⁵⁷,²⁷³,²⁸⁵ PET,²⁸⁵ and PES.²⁸⁵ Furthermore, also cellulose fiber-based paper (thickness of ~75 μm) acting as both substrate and gate dielectric has been used (Fig. 38),⁷⁹,₂⁶⁷,₂⁷²

b. Barrier layers. In this case, the use of barrier layers to encapsulate and electrically insulate the substrate is rare. Indeed, only Caraveo-Frescas, Khan, and Alshareef presented a PI substrate covered by 200 nm Si₃N₄.²⁷³

c. Gate dielectrics. The most common gate dielectric are HfO₂,²⁵⁷ Al₂O₃,²⁸⁵ AlN,²⁸⁹ ferroelectric P(VDF-TrFE),²⁷³ as well as cellulose fiber-based paper.⁷⁹,₂⁶⁷,₂⁷²

d. Contacts. For the gate contact, Al²⁷³ as well as multi-layer metals (like Ni/Au/Ni²⁸⁵) and transparent compounds (ITO²⁵⁷,²⁸⁵ and IZO²⁷³,²⁸⁵) have been used. At the same time, for source/drain metals, single (Al²⁶⁷ and Au²⁸⁵) and multi-layer contacts (Ti/ITO²⁵⁷,²⁷³ Ti/Au²⁷³ and Ni/Au²⁷³,²⁸⁵) have been chosen.

2. Fabrication techniques

The fabrication techniques employed for p-type vacuum-processed metal oxide semiconductor TFTs are very similar to those used for n-type devices.

a. Substrate preparation. The most common substrate preparation approach is the use of free-standing flexible substrates.⁷⁹,₂⁵⁷,₂⁶⁷,₂⁷²,₂⁷³,₂⁸⁵

b. Deposition methods. The main deposition technique employed for p-type vacuum-processed metal oxide semiconductors is sputtering. SnO₂ and Cu₂O are deposited by both DC²⁵⁷,₂⁷³,₂⁸⁵ and RF sputtering.⁷⁹,₂⁶⁷,₂⁷²,₂⁸⁵ One of the main concerns to ensure full compatibility of p-type metal oxide semiconductors with flexible substrates is the post-deposition annealing temperature that needs to be kept...
typically below 160 °C. As shown in Table IV, there is only one report where the annealing is performed at room temperature, whereas all other devices require higher temperatures. The deposition of gate dielectrics has been performed using ALD, magnetron sputtering, or spin-coating. For the metal contacts, the main deposition techniques are e-beam evaporation, thermal evaporation, and sputtering. The only barrier layer reported (Si3N4) has been grown by PECVD.

c. Layer structuring. The patterning of the different device layers is strictly related to the substrate nature. In case of large feature sizes and chemically unstable substrates, shadow masking is used. For chemically stable substrates (e.g., PI and PET), UV photolithography is chosen.

d. Device configuration. Two main device configurations have been employed for flexible p-type vacuum-processed metal oxide semiconductor TFTs:

(I) Due to an easier processing, BG structures are very common. For both coplanar and staggered configurations, the passivation layer is omitted.

(II) TG (typically coplanar) TFTs are used when fragile layers such as P(VDF-TrFE) are implemented in the device structure, with the advantage of having an already passivated active layer.

3. Electrical properties

Table IV compares the electrical performance obtained for recently reported flexible p-type vacuum-processed metal oxide semiconductor TFTs. As shown in Table IV, the best DC performance (μ_{FE} up to $5.87 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$) has been achieved in fully transparent SnO TFTs on PI. Such record value (achieved at a low process temperature of 180 °C) has been possible by carefully engineering the SnO phase and controlling the Sn residuals (Fig. 39). The highest current on/off ratio is of 4×10^4, whereas the threshold voltage ranges from -11.73 V (Ref. 273) to 1.4 V. To date, no AC performance of flexible p-type vacuum-processed metal oxide semiconductor TFTs has been reported.

4. Mechanical properties

Due to the small number of publications on flexible p-type vacuum-processed metal oxide semiconductor devices, there is only one report by Caraveo-Frescas, Khan, and Alshareef on the TFT mechanical properties. In particular, in their work, Caraveo-Frescas, Khan, and Alshareef showed flexible SnO ferroelectric devices bent at a radius of 10 mm for 200 bending cycles, yielding a μ_{FE} decrease of about 20% (see Fig. 40).

C. Flexible p-type solution-processed TFTs

As already explained in Secs. III A and III B, the field of flexible p-type metal oxide semiconductor TFTs is pretty

<table>
<thead>
<tr>
<th>Semiconductor deposition</th>
<th>Deposition/annealing temperature (°C)</th>
<th>Mobility (cm² V⁻¹ s⁻¹)</th>
<th>Threshold voltage (V)</th>
<th>Current on/off ratio</th>
<th>Substrate thickness (µm)</th>
<th>Bending radius (mm)</th>
<th>Bending cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu₂O TFT with Al₂O₃ gate dielectric on PES</td>
<td>RF sputtering Room/150</td>
<td>0.0022</td>
<td>-4.75</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>SnO₂ TFT with and on paper (substrate and gate dielectric)</td>
<td>RF sputtering Room/150</td>
<td>1.3</td>
<td>-1.4</td>
<td>10^2</td>
<td>75</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>SnO₂ TFT with and on paper (substrate and gate dielectric)²⁷²</td>
<td>RF sputtering Room/160</td>
<td>1.2</td>
<td>...</td>
<td>10^2</td>
<td>75</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Nano-crystalline Cu₂O TFT with AlN gate dielectric on PET²⁸⁹</td>
<td>DC sputtering Room/-</td>
<td>0.8</td>
<td>...</td>
<td>4×10^4</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>SnO₂ TFT with and on paper (substrate and gate dielectric)²⁷²</td>
<td>RF sputtering Room/160</td>
<td>1.3</td>
<td>1.4</td>
<td>10^2</td>
<td>60</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>SnO₂ TFT with HfO₂ gate dielectric on PI²⁵⁷</td>
<td>DC sputtering Room/150</td>
<td>5.87</td>
<td>-1</td>
<td>6×10^3</td>
<td>...</td>
<td>10</td>
<td>200</td>
</tr>
<tr>
<td>SnO₂ TFT with ferroelectric P(VDF-TrFE) gate dielectric on PI²⁷³</td>
<td>DC sputtering Room/200</td>
<td>2.51</td>
<td>-11.73</td>
<td>10^2</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Table IV. Performance parameters extracted from recently reported flexible p-type vacuum-processed metal oxide semiconductor TFTs, together with fabrication details (i.e., semiconductor deposition technique and deposition/annealing temperature).
unexplored, and there are still many challenges to be solved. No wonder that to date there is no report on flexible p-type solution-processed metal oxide semiconductor TFTs. To this aim, CuSCN represents a valid inorganic alternative to p-type metal oxide semiconductors (especially if solution-deposited). In this subsection, we present the preliminary results we have recently achieved with flexible p-type TFTs based on spin coated CuSCN.

1. Materials and fabrication techniques

Flexible BG coplanar and TG staggered CuSCN TFTs have been fabricated on 50 μm free-standing PI foils. Prior to the TFT fabrication, 50 nm SiNx adhesion and barrier layers have been deposited by PECVD on both sides of the substrate. Two different gate dielectrics have been employed: for the BG devices Al₂O₃ (25 nm) grown by ALD and for the TG TFTs spin coated 160 nm-thick poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) [P(VDF-TrFE-CFE)]. In particular, P(VDF-TrFE-CFE) is a high-C₁₅R₀ relaxor ferroelectric polymeric dielectric that can be easily solution-processed at low temperatures. For the solution-processed gate dielectric preparation, the P(VDF-TrFE-CFE) at 56/36.5/7.5 mol. % has been first synthesized and then dissolved in methyl-ethyl-ketone (MEK). As spin coated P(VDF-TrFE-CFE) films have subsequently been annealed at 60°C. For both BG and TG TFTs, the active layer solution has been prepared by dissolving the CuSCN precursor in dipropylsulfide. The resulting solution has then been stirred, centrifugated, filtered, spin coated at room temperature, and annealed at 80°C, resulting in a 15 nm thick CuSCN film. The gate electrodes have been formed by evaporated Cr (for the BG TFT) and Al (for the TG TFT), whereas the source/drain contacts have been made of evaporated Ti/Au (for the BG) and Au (for the TG). BG TFTs have been left unpassivated, while TG devices have been intrinsically passivated by the P(VDF-TrFE-CFE) gate dielectric. For the CuSCN BG TFTs, the structuring of all layers (except for the unpatterned SiNₓ and CuSCN) has been performed by standard UV photolithography. In the case of the TG devices, layer patterning of the gate and source/drain electrodes has been performed by shadow masking, whereas the P(VDF-TrFE-CFE) gate dielectric has been left unstructured.

2. Electrical properties

The flexible CuSCN BG TFTs with Al₂O₃ dielectric yield a μFE = 0.0013 cm² V⁻¹ s⁻¹, a VTₜₜ = −1 V, and an ION/I_OFF = 5 × 10². The flexible CuSCN TG devices with solution—deposited P(VDF-TrFE-CFE) gate dielectric exhibit a μFE = 0.0012 cm² V⁻¹ s⁻¹, a VTₜₜ = −3 V, and an ION/I_OFF = 2 × 10³, combined with a small gate-induced
hysteresis (as visible from Fig. 41). Due to the high-\(\varepsilon_F\) gate dielectrics, both BG and TG devices can be operated at low voltages of \(-3.5\) V and \(-10\) V, respectively. Even if the achieved \(\mu_F\) is lower than the values presented for rigid devices,\(^{201}\) these preliminary results are very promising especially in view of future process and device optimization.

3. Mechanical properties

Both BG and TG CuSCN devices are operational when bent down to 5 mm tensile radius and show only small strain-induced shifts (displayed in Fig. 41 for a flexible TG device). In particular, the \(V_{TH}\) changes by only \(-10\) mV and \(-30\) mV for BG and TG, respectively. Additionally, the hole mobility is reduced by 23\% (BG TFTs) and 16\% (TG TFTs).

IV. METAL OXIDE SEMICONDUCTOR-BASED CIRCUITS

In this section, metal oxide semiconductor-based electronic circuits are introduced. In Sec. IV A, an overview on basic analog and digital circuit configurations and operation is given. Next, in Sec. IV B, the state-of-the-art electronic circuits based on unipolar metal oxide semiconductors are reported. Finally, Sec. in IV C, complementary circuits based on hybrid organic/metal oxide semiconductors, as well as only on metal oxide semiconductors, are presented.

A. Circuit configuration and operation

In this subsection, the most common circuit configurations are presented, followed by an explanation of digital and analog circuit basic operation.

1. Circuit configuration

As already explained, n-type metal oxide semiconductor TFTs, compared with p-type metal oxide semiconductor devices, yield a better performance and can also be easier deposited at low process temperatures. This is why the majority of flexible (and also rigid) metal oxide semiconductor-based circuits are unipolar operating with only n-type TFTs,\(^{94,119,127,133,143,148,159,164,166,212,213,218,305–329}\) whereas flexible complementary circuits based on both n- and p-type devices are less frequent.\(^ {9,103,172,272,330–332}\) Such disparity between n- and p-type devices renews an old challenge encountered in Si technology back in the 1970s and 1980s when the circuits were built using only one semiconductor polarity (n-type or p-type MOSFETs).\(^ {335}\) Fig. 42 displays the two main configurations using n-type TFTs (shown in the case of a logic inverter): (a) the first one is unipolar with only an n-type device and a passive (resistive) pull-up load, whereas (b) the second one is complementary with both n- and p-type devices. The main difference between the two setups occurs when a digital high level (‘1’) is applied at the inverter input (IN) and the n-type TFT is turned on. In this situation, there is always a current flowing through the supply voltage (\(V_{DD}\)) and the ground (GND) of the unipolar circuit (Fig. 42(a)), whereas there is no DC flow in the complementary inverter (Fig. 42(b)) due to the switched off p-type TFT.\(^ {333}\) The absence of a DC for a high digital input

![Fig. 42. The two main circuit configurations using n-type TFTs displayed in the case of a logic inverter (nor gate): (a) unipolar with n-type TFT and passive (resistive) pull-up load and (b) complementary with both n- and p-type TFTs.](image)

![Fig. 43. Unipolar circuit configurations employing n-type TFTs and active pull-up loads displayed in the case of a nor gate: (a) diode load, (b) pseudo-CMOS, and (c) DG.](image)
overview of the main performance parameters of digital and analog circuits.

a. Digital circuits. Fig. 44 displays the simplest and most straightforward example of a digital circuit, a voltage inverter (also known as NOT gate). The NOT gate is given in its complementary configuration, with both n- and p-type TFTs, but it can be realized in all the other unipolar circuit configurations shown in Figs. 42(a) and 43. The inverter function consists of taking the voltage signal applied at its input, inverting its voltage levels, and providing the inverted signal at its output (OUT), as illustrated by its IN-OUT curve (see Fig. 44(b)), also known as DC voltage transfer characteristics (VTC). From the VTC of a NOT gate, several specific DC parameters can be defined (see Fig. 44(b)):

- Voltage input low (\(V_{IL}\)), which is the lowest input voltage where the slope of the VTC equals \(-1\).
- Voltage input high (\(V_{IH}\)), which is the highest input voltage where the slope of the VTC equals \(-1\).
- Voltage output high (\(V_{OH}\)), which corresponds to the output voltage at \(V_{IL}\).
- Voltage output low (\(V_{OL}\)), which corresponds to the output voltage at \(V_{IH}\).
- Maximum output swing (\(V_{M}\)), which is given by \(V_{OH} - V_{OL}\), and
- Midpoint voltage (\(V_{M}\)), which is the input voltage at which the NOT gate yields the same input and output level. Ideally, \(V_{M}\) should be equal to \(V_{DD}/2\).

Additionally, from the VTC also the maximum and the minimum output voltages, \(V_{MAX}\) and \(V_{MIN}\), respectively, can be extracted. Other important parameters are the DC noise margins (NMs): the high (\(NM_{H}\)) and the low (\(NM_{L}\)) noise margin, which are the voltage ranges ensuring that a logic “0” or “1” is interpreted correctly also by a second inverter connected in cascade to the first one. They are defined as follows:

\[
NM_{L} = (V_{IL} - V_{OL}),
\]

\[
NM_{H} = (V_{OH} - V_{IH}).
\]

Another important DC parameter is the gain (G), which is the slope of the VTC when \(V_{IN} = V_{M}\). High noise margins and gain, together with a nearly “rail-to-rail” output (\(V_{L} \approx V_{DD}\), are desirable. Together with the DC voltage transfer characteristics, also the transient behaviour is important to determine various time constants, such as the rise and fall times (\(t_{r}\) and \(t_{f}\), respectively), as well as the propagation delay \(t_{p}\) (Fig. 45). As visible in Fig. 45, in a NOT gate (and in any other digital circuit), there is always a delay between the switching of the input and the output signal. For instance, \(t_{r}\) (\(t_{f}\)) is defined as the time needed for the output signal to switch from a logic “0” (“1”) to a logic “1” (“0”) (usually measured between the 10% and 90% of the output levels). The \(t_{p}\) is the time required for an output signal to change given a specific input transition (usually measured at the 50% levels of input and output voltage). The maximum switching speed of a larger digital gate is typically measured with ring oscillators (ROs), i.e., digital test circuits comprising an odd number of NOT gates (the so-called delay stages) connected in a closed loop chain. Such configuration results in an output signal oscillating between the two limits (HIGH and LOW) at an oscillation frequency (\(f_{o}\)) that depends on the number of delay stages (m) and the propagation delay \(t_{p}\) of each stage:

\[
f_{o} = \frac{1}{2 \cdot m \cdot t_{p}}. \tag{4.3}\]

Another important parameter is the ring oscillator stage delay, which is simply the double of the \(t_{p}\). Finally, the dynamic power consumption \(P\) is given by:

\[
P = f_{o} \cdot C \cdot V_{DD}^{2}. \tag{4.4}\]

where \(C\) is the sum of the capacitances at the output node.

b. Analog circuits. The simplest flexible metal oxide semiconductor-based analog circuit is a single-stage common-source (CS) amplifier (see Fig. 46(a)), which acts as a voltage or transconductance amplifier. Flexible metal oxide semiconductor-based common-source amplifiers (as well as all other amplifier types) are usually designed in an unipolar configuration with an active n-type TFT (mainly IGZO) and different pull-up loads (see Figs. 42(a) and 43). The dynamic performance of a common-source amplifier (and of any other type of amplifier) is evaluated using the so-called Bode plot (amplitude and phase) shown in Figs. 46(a) and 46(b), which is a standard format for plotting the circuit frequency response. On the horizontal axis, the frequency of the input voltage is in logarithmic scale, whereas on the vertical axis the amplitude and phase of the output voltage are, respectively, in decibel (dB) and degrees (deg). The amplitude of the amplifier in dB (\(A_{dB}\)) is given by following formula:

![Fig. 44](image-url)

FIG. 44. Complementary NOT gate: (a) device schematic and (b) static (DC) voltage transfer characteristics (VTC).

![Fig. 45](image-url)

FIG. 45. Transient characteristics of a complementary NOT gate with an ideal input voltage.
a. Simulation and modeling. The development of fully flexible TFT-based circuits requires a complete simulation of the AC and DC electrical performance, together with a precise modeling of the device mechanical properties. To this aim, the device DC characteristics needs to be extracted from the transfer and output curves measured for the fabricated TFTs. Additionally, it is also important to obtain the AC characteristics of the TFTs by measuring the device S-parameters and subsequently extracting the f_T, as explained in Section II. In this way, by fitting the coefficients of a TFT model to the measured DC and AC characteristics, the performance of the circuits can be simulated before fabrication. Typical models used for such simulations are HSpice templates, which can then be used in commercial circuit design tools for circuit analysis. One example of such a HSpice model is shown by Perumal et al., who fitted the model coefficients to the input, output, and frequency measurements of a fabricated IGZO TFT (see Fig. 21). Nevertheless, the model by Perumal et al. is only valid for channel lengths down to 3.6 μm, with smaller channels needing an adaption of the coefficients. To prove the validity of this model, Perumal et al. also demonstrated that a simulated 2-stage cascode amplifier behaves like the measured one. Similarly, Zysset et al. used a HSpice model to predict the performance of an IGZO-based operational amplifier prior to circuit fabrication. In particular, Zysset et al. also noticed the importance of modeling the parasitic capacitances caused by the pads and trace crossings at different layers of the circuit. In contrast to the electrical modeling of the circuits (which has been extensively investigated), the influence of mechanical bending has rarely been taken into consideration in the circuit design. Nevertheless, strain-induced effects should definitively be included in the TFT modeling, especially considering that μ_{FE} and V_{TH} change by $\approx 2.5\%$ and $\approx 30\%$, respectively. Such changes can impact especially the performance of analog circuits and should be taken into consideration during the design process. To date, only Ma et al. have shown a HSpice-based simulator, which is able to include the threshold voltage variations induced by mechanical strain, as well as by process modifications and aging.

b. Digital circuits. The majority of flexible metal oxide semiconductor-based circuits is constituted by NOT gates and test structures like ring oscillators. Flexible unipolar vacuum-processed IGZO NOT gates on PI employing diode load pull-ups can typically achieve gains up to 2.5 V/V at 2 V supply (voltage output swing $V_T \approx 17.5$ V). Similarly, vacuum-processed ZnO NOT gates on PI foils with gains of 1.5 V/V at supply voltages of only 9 V have also been demonstrated. Additionally, also NOT gates with resistive pull-up loads employing solution-processed metal oxide semiconductors have been reported, like ion-gel gated ZnO NR NOT gates on paper yielding gains of 2 V/V at supply voltages of 1.3 V, and aerosol-jet printed ZnO NOT gates on PI with gains up to 8 V/V ($V_{DD} = 2$ V). Interestingly, Karnaushenko et al. demonstrated that IGZO-based NOT (and NAND) gates able...
to roll up to a radius of 25 μm after fabrication and release.23 Recently, also 2 TFT/1 Capacitor (2T1C) display drivers based on IGZO devices on PEN or PI foils and capable of driving OLED pixels at a frame rate of >60Hz have been shown.127,316 Compared with NOT (and NAND) gates and 2T1C drivers, ring oscillators typically employ a larger number of TFTs. Fig. 47 displays the stage delay (with respect to the supply voltage) obtained for a number of published flexible ring oscillators based on vacuum-deposited metal oxide semiconductors. As shown in Fig. 47, the lowest stage delay has been reported for ZnO ring oscillators, which yield a 16 ns delay at 18 V supply voltage.328 Already at 2 V supply voltage, the delay of the same ring oscillators increases to ≈300 ns.328 The smallest ring oscillator is composed of 3 stages of IGZO TFTs on a metal foil and oscillates at f0 = 360 kHz (stage delay of 926 ns) with a supply voltage of 15 V.314 Increasing the supply voltage to 50 V raises the oscillation frequency to 1.14 MHz and results in a stage delay of 291 ns.314 A larger IGZO ring oscillator (5 stages) oscillating at 182 kHz at 20 V (stage delay of 550 ns) and at f0 = 572 kHz at 30 V (stage delay of 350 ns) has been reported by Hsieh and Wu on PI foil.159 Such a low stage delay is partially a result of the use of a substrate with a high Tg ≈350 °C, allowing a high temperature annealing of the IGZO film (and therefore an improved TFT performance).159 For display applications, flexible metal oxide semiconductor-based shift registers are also commonly utilized. Mativenga et al. reported a 5 IGZO TFT shift register (operated at 19.7 V) yielding a rise time τr of 0.9 μs and a fall time τf of 0.8 μs based on 15 μm colorless PI.135 Interestingly, Nelson and Tutt presented 7-stage ring oscillators based on flexible ZnO TFTs with 400 ns stage delay at 5.5 V supply voltage (and 6 μs at 1.5 V).94 Flexible 7-stage ring oscillators based on solution-processed metal oxide semiconductors have also been reported recently,119,220,221 with the smallest delay of ≈100 ns (at 15 V VDD) obtained for sol-gel In2O3 ring oscillators on PI.220 Even more stages (11) have been shown by Mativenga et al., who demonstrated an IGZO ring oscillator working at 94.8 kHz at 20 V, resulting in a stage delay of 480 ns on PI or PET substrates.164 The same publication also presented a two clock shift register with 10 TFTs and 1 Capacitor per stage, which is suitable for display applications.164 Further increasing the number of stages, Zhao, Mourey, and Jackson showed a ZnO 15-stage ring oscillator with 16 ns delay at 18 V and 300 ns delay at 2 V.328 The realization of a flexible 19-stage IGZO ring oscillator with a stage delay of 19 ns at 20 V has only been possible due to the low TFT contact resistance achieved between source/drain and IGZO.316 Even more TFTs have been utilized for an AMOLED line driver based on IGZO capable of 45 frames/s at 11 V on PEN foil, which has also been integrated with an optical display (64 × 160 pixels) and a 2T1C pixel driver circuit.309,310 At a supply voltage of 15 V, the flexible line driver consumes a power of ≈97 μW.309,310 Similarly, Zhang et al. reported a 48 stage scan driver based on IGZO with a output swing of 16 V at 100 kHz.187 Even larger TFT count has been reported in combination with RFID or near field communication (NFC) applications. For example, Myny et al. demonstrated an IGZO-based NFC tag consisting of a high frequency (HF) capacitor, a 19-stage ring oscillators acting as a clock source, a 4-bit modulo-12 counter, a 12-bit decoder, and a several out registers and buffers all integrated on the same foil and laminated on top of an antenna coil.155 The flexible NFC code generator is capable of transmitting data at 71 kB s⁻¹, given enough supply voltage.315 Based on this design, three different pull-up load configurations (diode load, pseudo-CMOS, and DG) have been compared, as shown in Fig. 48.315 The TFT count ranges between 218 and 436 TFTs.315 Similarly, Tripathi et al. demonstrated an IGZO-based RFID code generator (8-bit) operating at 6.4 kHz s⁻¹ (2 V supply voltage) fabricated on PEN foil. The RFID code generator by Tripathi et al. is constituted by 300 flexible IGZO TFTs, resulting in an occupied area of 51.7 mm².325 The most recent work on RFID circuits by Myny and Steudel demonstrated an
NFC transponder with 438 IGZO TFTs on a polyimide foil (occupied area of 10.884 mm²). With a data rate larger than 14.3 kB s⁻¹ and at most 396.5 kB s⁻¹, the circuit by Myny and Steudel complies with the ISO 14443 NFC standard.138

c. Analog circuits. Compared with the digital metal oxide semiconductor-based circuits, analog circuits present a completely different TFT count and total area: the largest number of TFTs is of 16 (reported for an IGZO operation amplifier)308 whereas the largest occupied area is of 9.83 mm² (also shown for an operational amplifier constituted by 13 IGZO TFTs).313 To date, the variety of flexible metal oxide semiconductor-based analog circuits reported ranges from single- to multiple-stage (e.g., common-source,113 transimpedance,329 differential,80,323 cascode,318,321 operational,212,313 and Cherry-Hooper319) amplifiers, which at the same time often also include biasing circuits like current mirrors.212 Similarly, new analog functions such as antenna channel select circuits,337 X-ray read-out circuits,338 and digital to analog converters (DAC)339 have been implemented recently. However, the majority of the published circuits are amplifiers. Fig. 49 shows a comparison of the GBWPs (with respect to the DC gain) of recently reported flexible metal oxide semiconductor-based analog amplifiers. As shown in Fig. 49, the highest DC gain of 44.67 V/V (33.3 dB) and GBWP of 18.5 MHz have been achieved by Shabanpour \textit{et al.} for a self-aligned IGZO TFT-based Cherry-Hooper amplifier on PI foil.319 Apart from this example,319 all other metal oxide semiconductor-based amplifiers show DC gains of ≤20 V/V (10 dB) and GBWP of ≤2.2 MHz. Flexible IGZO-based common-source amplifiers yield a DC gain of 6.8 dB and a cutoff frequency \(f_c = 1.2\) MHz.113 Similarly, transimpedance amplifiers (with a single active IGZO TFT) yield a DC gain of 86.5 dB \(\Omega\) at a cut-off frequency of 8.38 kHz (when supplied at 5 V).329 Tai \textit{et al.} utilized 2 flexible IGZO DG TFTs to realize a flexible differential amplifier with 20 DC gain at a cut-off frequency of \(\approx300\) Hz (\(V_{DD} = 10.5\) V).323 A similar IGZO amplifier with lower DC gain of 2 dB and higher cutoff frequency of \(\approx1\) MHz has also been fabricated on a 1 \(\mu\)m parylene foil.300 Similarly, Shabanpour \textit{et al.} presented a flexible IGZO-based cascode amplifier with a DC gain of 10.5 dB and a cutoff frequency of \(2.62\) MHz (GBWP \(\approx8.8\) MHz) at 6 V supply. The cascode amplifier by Shabanpour \textit{et al.} consumes 762 \(\mu\)W power during standard operation.318 A second version of this cascode amplifier shows a higher DC gain (25 dB) at the cost of a lower cut-off frequency of 220 kHz, consuming 2.32 mW power at 6 V.321 Even more TFTs (13 IGZO devices) have been utilized in an operational amplifier with a GBWP of 31 kHz and an open-loop gain \(G_{OL}\) of 22.5 dB, resulting in a \(f_c = 5.6\) kHz.313 Furthermore, this operational amplifier consumes 160 \(\mu\)W power during standard operation.113 Similarly, Shabanpour \textit{et al.} showed a 2-stage Cherry-Hooper amplifier yielding a DC gain of 33 dB at a cutoff frequency of 400 kHz, resulting in a GBWP of 18.5 MHz based on IGZO TFTs.319 The Cherry-Hooper amplifier (supplied at 6 V) consumes 4.96 mW power.319 Chung \textit{et al.} realized an alpha particle detecting circuit by AC coupling 4 different stages of amplification with 14 active IGZO TFTs.308 The circuit by Chung \textit{et al.} yields a linear DC gain of 14.9–20 V/V and a band-pass characteristic.308 In a similar fashion, simulations of different band-pass topologies have been shown by Bahubalindruni \textit{et al.} with DC gains of up to 75 dB and cut-off frequencies in the order of 25 MHz.305 The flexible metal oxide semiconductor-based analog circuit with the largest TFT count is an operational amplifier with 16 IGZO TFTs. This amplifier is supplied at 5 V and presents a DC gain of 18.2 dB at a cut-off frequency of 108 kHz (see Fig. 50).212

\textbf{3. Mechanical properties}

The realization of reliable flexible (and bendable) metal oxide semiconductor-based circuits is challenged by the dimensional instability of the flexible substrates (e.g., expansion/shrinking occurring during the fabrication process). Due to the substrate deformation, large tolerances are necessary while aligning the different device layers (especially gate with respect to source/drain electrodes). Therefore, the maximum operating frequency of the circuit, as well as the total circuit area, is limited. Another key challenge in the
realization of flexible circuits is constituted by the mechanical strain that is induced in the flexible TFT channels when the substrate is bent. As already explained, the goal is the fabrication of flexible metal oxide semiconductor-based circuits as strain resistant as possible, and at the same time also with the smallest strain-induced performance parameter variations. Regarding strain resistance, as shown in Equation (2.1), the minimum bending radii depend directly on the thickness of the substrate, as well as on the other device layers (materials and thicknesses). Depending on the device layer stack and thickness, the typical bending radii range from 30 mm (Ref. 159) down to 50 μm (demonstrated for a differential amplifier on 1 μm parylene substrate).30 While strain resistance limits the application range of the circuits, strain-induced TFT performance parameters can severely compromise the circuit functionality, especially when the occupied area is large (as for digital circuits). Prior to the circuit fabrication, it is indeed important to account for the bending-induced variations each single TFT is subjected to by simulating the mechanical TFT behaviour and by modeling/designing the circuit topologies. In particular, there are several approaches that allow mitigating strain-induced performance variations. First, all the TFTs can be aligned parallel to each other in order to present the same strain-induced variations, as well as resistance for bending all over the circuit structure.143 This approach has been first proposed by Münzenrieder et al., who demonstrated that 5-stage ring oscillators constituted by IGZO devices all aligned parallel to each other show only small performance decrease when mechanically bent to ε = 0.72%.143 By aligning parallel to each other all the 40 TFTs of a 8-stage 5 TFT shift register, Mativenga et al. demonstrated an almost negligible parameter shift of the circuit down to radii of 4 mm.133 Moreover, by employing a 25 μm-thick PEN foil and an encapsulation layer shifting the neutral strain axis close to the TFT stack, Tripathi et al. realized an 8 bit code generator yielding negligible parameter shift for tensile bending at a radius of 2 mm.126 Additionally, also the circuit design can be selected in a way to achieve a performance based on the ratio of the same TFT performance parameters. Such approach applies especially for analog circuits, which can be designed to yield a gain depending only on the ratio of the transconductance of the different TFTs and not on a single transconductance. Using this technique for an operational amplifier based on 16 IGZO all aligned parallel to each other, Zysset et al. realized a flexible circuit yielding a strain-independent DC gain and bandwidth (at a radius R = 5 mm).212

C. Flexible complementary circuits

All the results presented in Sec. IV B have been obtained with unipolar circuits, employing mainly flexible n-type vacuum-processed metal oxide semiconductor TFTs. Even if excellent performance can be achieved with unipolar circuitry, key issues such as low-power consumption, as well as easy and compact circuit design can only be accomplished by complementing n- with p-type TFTs. Nevertheless, to realize flexible metal oxide semiconductor-based complementary circuits, flexible n- and p-type devices with similar performance (especially mobility) are required. This is particularly challenging in the case of metal oxide semiconductors, due to the typically low carrier mobility values obtained for flexible p-type devices (see Section III). For this reason, only few groups have reported flexible complementary circuits (mainly digital gates) based on both n- and p-type metal oxide semiconductor TFTs.79,177,272,285 To overcome this bottleneck, other technologies have been considered to realize the p-type channel. For instance, organic semiconductors have well-known hole transporting properties, with sufficient carrier mobility. Thus, different combinations of p-type organic TFTs with n-type metal oxide semiconductor devices have so far been demonstrated on flexible substrates.103,172,330–342 In the following, the materials and fabrication techniques, the electrical and the mechanical properties of flexible complementary circuits based on both fully metal oxide semiconducting materials, as well as hybrid organic-metal oxide semiconductors are reviewed.

1. Materials and fabrication techniques

The materials and fabrication processes employed for flexible complementary metal oxide semiconductor-based circuits are similar to the materials and techniques mentioned previously, except that the channel is made by two different semiconducting materials. Common substrates used for flexible complementary circuits include: paper,79,172,272,285 PI,103,172,177,332,344 PET,143,342 and PDMS.332 In addition to the substrate, sometimes a barrier, buffer, or encapsulation layer is deposited in order to improve electrical isolation, decrease surface roughness, and increase stability, like inorganic SiNx adhesion layers103 and organic Cytop103 or AZ1518 (Ref. 103) encapsulation films. Most widely used gate dielectrics for flexible complementary circuits are AlOx,330,331,340,343,344 Al2O3,177,272,285,331,340,343,344 PES,285,330,331,340 PVP172,332,343,344 SiOx,311,332,343,344 and HfO2.177 As metal oxide semiconductors provide good n-type transport, the n-channel is always made of a metal oxide semiconductor deposited via RF-magnetron sputtering79,103,172,177,272,285,330–342,344 or spray pyrolysis103,145 on flexible substrates at compatibility low temperatures. Best performing n-type metal oxide semiconductors include IGZO79,172,272,285,330–342,344 ZnO177,330 and In2O3.103,145 On the other hand, the p-channel is either formed by a metal oxide92,272,285 or an organic semiconducting material.103,172,330–342,344 As p-channel metal oxide semiconductor materials, till now only SnO92,177,272 and Cu2O285 deposited by RF-magnetron sputtering have been employed. In the case of organic p-type semiconductors, several materials have been used, employing solution-processable, low temperature, scalable, and cost-effective techniques such as ink-jet printing,341,342 spin-coating,103 and dip-coating,332,343,344 in addition to the widely used thermal evaporation with shadow masking.172,330,331,340 Different groups have so far demonstrated the potential of integrating p-type pentacene,72,330,331,340 poly-(9,9-diocylfluorene-co-bithiophene) (F8T2),341,342 and semiconducting single walled carbon nanotubes (SWCNTs)103,332,343,345 with n-type ZnO.330 In2O3,145 and IGZO.103,172,331,332,340–344
2. Electrical properties

Compared with unipolar circuits, the range of the reported flexible complementary metal oxide semiconductor-based circuits is smaller. The majority of the published complementary circuits are digital, especially NOT, NAND, and NOR gates, and ring oscillators based both on p- and n-type metal oxide semiconductors and on hybrid p-type organic and n-type metal oxide semiconducting materials. Additionally, also two common-source amplifiers and one differential amplifier have been reported.\(^{272,343}\)

a. Digital circuits. The first example of flexible complementary metal oxide semiconductor-based circuit is dated 2008, when Oh et al. demonstrated the integration of pentacene and ZnO TFTs to realize a complementary NOT gate on PES with a gain of 100 V/V and a low voltage operation.\(^{330}\)

The dynamic behavior of the hybrid pentacene/ZnO complementary NOT gate shows an \(f_o\) of 5 Hz.\(^{330}\) In 2010, Kim et al. demonstrated a pentacene/IGZO NOT gate on PES with a gain up to 165 V/V centered at \(V_M = 14\) V (\(V_{DD} = 30\) V).\(^{331}\) In 2011, Kim et al. reported vertically stacked pentacene/IGZO NOT gates.\(^{340}\) Furthermore, the same group also showed bendable pentacene/IGZO NOT gates.\(^{172}\) Alternatively to pentacene devices, Nomura et al. explored p-type F8T2 TFTs in a vertically stacked geometry on top of ZnO devices, employing a common gate electrode on PET.\(^{342}\) The F8T2/IGZO NOT gate shows a gain \(G = 100\) V/V at a maximum supply of 30 V.\(^{342}\) The same group realized also vertically stacked F8T2/IGZO NAND gates on PET.\(^{341}\) In 2011, the first fully metal oxide semiconductor-based NOT gates have been presented, employing n-type IGZO and either p-type CuO\(_x\)\(^{285}\) or SnO\(_x\).\(^{79}\) In particular, Dindar et al. presented vertically stacked CuO/IGZO NOT gates on PES, yielding a high gain of 120 V/V with a nearly “rail-to-rail” output swing.\(^{285}\) Employing n-type IGZO and p-type SnO\(_x\) TFTs on a flexible paper substrate (acting also as gate dielectric), Martins et al. showed NOT gates with a maximum \(G = 4.5\) V/V at \(V_M = 3.6\) V (\(V_{DD} = 17\) V).\(^{79}\) This structure has been later improved with an optimized geometric aspect ratio \((W/L)_g/(W/L)_n\), which enabled also the realization of NAND and NOR logic gates.\(^{272}\) Li et al. recently demonstrated a flexible 5-stage ring oscillator based on n-type ZnO TFTs and p-type SnO\(_x\) TFTs, with a maximum oscillation frequency of 18.4 kHz.\(^{177}\) Recently, solution-processed semiconducting SWCNTs have also been explored as p-type TFTs\(^{345}\) and integrated into flexible complementary circuits with n-type sputtered IGZO\(^{103,332,343,344}\) or spray coated In\(_2\)O\(_3\) TFTs.\(^{145}\) Bendable hybrid SWCNT/IGZO NOT gates on PI show a maximum gain of 87 V/V, a nearly perfectly centered \(V_M\), and a “rail-to-rail” \(V_M\) (Fig. 51).\(^{103}\) In addition, Petti et al. exploited also the use of spray coated In\(_2\)O\(_3\) as n-type semiconductor and presented SWCNT/In\(_2\)O\(_3\) NOT gates with a lower gain of 22 V/V.\(^{145}\) The reduced performance of the SWCNT/In\(_2\)O\(_3\) NOT gates is attributed to the poorer performance of the solution-deposited In\(_2\)O\(_3\) active layers. Using SWCNT and IGZO TFTs, Chen et al. successfully realized large-scale complementary circuits (NOT, NAND, and NOR gates, as well as ROs) on PDMS comprising a large TFT count.\(^{332}\) Figs. 52(a) and 52(b) show the optical micrograph and output characteristic at an oscillation frequency of 294 Hz. Reproduced with permission from Chen et al., Nat. Commun. 5, 4097 (2014). Copyright 2014 Nature Publishing Group.

b. Analog circuits. As regards flexible metal oxide semiconductor-based analog circuits, Martins et al. reported common-source and differential amplifiers (see Fig. 53), respectively, with gains of 16.3 V/V and 4.1 V/V, based on the same optimized device structure employed to realize the SnO\(_x\)/IGZO NOT, NAND, and NOR gates on (and with) paper.\(^{272}\)
Based on the previously mentioned 3D vertically integrated SWCNT/IGZO TFT structure shown by Honda et al., common-source amplifiers with a gain $G > 5 \text{ dB}$ have also been fabricated.343

3. Mechanical properties

In addition to the electrical DC and AC characterization, also bendability influences the device performance. Several groups 103,172,177,330,343,344 have characterized hybrid complementary NOT gates under tensile bending, down to radii of 2.6 mm ($\epsilon = 1.25\%$).343 showing only minor variations. Oh et al. reported mechanical bending tests of pentacene/ZnO NOT gates at bending radii of 56 mm with high gains of 100 V/V.330 The hybrid pentacene/IGZO complementary NOT gate demonstrated by Kim et al. yields a maximum gain of 60 V/V at a bending radius of 6 mm.172 Furthermore, hybrid SWCNT/IGZO complementary NOT gates have proven to be functional, with a maximum gain of 87 V/V even when bent to a tensile radius of 10 mm ($\epsilon = 0.29\%$), as shown in Fig. 51.103 Additionally, Honda et al. proved also the functionality of both the planar and the 3D vertically integrated SWCNT/IGZO NOT gates down to tensile bending radii of 2.6 mm, with a maximum gain of 50 V/V and a low voltage operation.343,344 Finally, Li et al. successfully characterized ZnO/SnO$_2$ CMOS inverters under tensile and compressive strains.177 In particular, a small gain reduction has been observed under tensile strain, while the influence of compressive strain has been demonstrated to be negligible.177

V. METAL OXIDE SEMICONDUCTOR-BASED SYSTEMS

The improvements recently achieved in the electrical (DC and AC) and mechanical performance of flexible metal oxide semiconductor TFTs, combined with special features like transparency, stretchability, conformability, dissolubility, and mechanical activity, envision a wide range of possible applications that go beyond optical displays. Even if the research in this area has only shown significant advances in the last years, already quite a few systems have been developed and brought at least to a prototype stage. This section exemplary lists the progresses achieved in the field of flexible metal oxide semiconductor-based electronics, covering systems for optical displays, sensors, power transmission, as well as data storage and transmission.

A. Optical display systems

Optical displays are still the main driving application for metal oxide semiconductor TFTs. Recently, many prototypes of flexible optical displays, especially AMOLED, based on metal oxide semiconductor TFT-based backplanes have been published. The majority of the reported display systems employ vacuum-processed IGZO TFTs39,40,127,158,175,176,203,310,316,346–352 on PEN,40,127,158,310,348–352 PL316,346–348 or PEEK foils.203,348 Besides IGZO, also other multicomponent vacuum-processed metal oxide semiconductors like ITZO have been utilized to realize flexible displays.127 Among the various demonstrated systems, in 2013 Chida et al. reported a mechanically flexible 3.4-in. top-emitting AMOLED display yielding 326 pixels per inch (ppi) resolution and consuming 570 mW power.39 Additionally, the display by Chida et al. is operational after 1000 bending cycles at 5 mm bending radius. One year later, Genoe et al. proposed the use of a digital pulse width modulation (PWM) to drive a flexible top-emitting AMOLED display (0.54-in., 320 ppi).310 The PWM concept presented by Genoe et al. allows reducing the DC power consumption down to 102.4 mW.310 Recently, Motomura, Nakajima, and Takei proposed the use of air-reactive electrode-free inverted OLEDs (iOLEDs) in flexible IGZO TFT-driven AMOLEDs (8-in., 100 ppi) to suppress typical undesired effects like dark spot growth and achieve longer lifetimes.127 Although the iOLED characteristics are inferior to those of conventional OLEDs, the flexible display by Motomura, Nakajima, and Takei yields stable and clear moving images even while bent.127 Recently, Nag et al. successfully demonstrated the integration of a flexible quarter-quarter-video-graphics-array (QQVGA) AMOLED display (85 ppi) driven by self-aligned TG IGZO TFTs.316 The resulting flexible display requires only five lithographic mask steps and results in a total thickness of ≈150 μm.316 Fig. 54(a) displays a photograph of the entire system on PI, whereas Fig. 54(b) shows the display with an image applied.116 Komatsu et al. demonstrated a flexible AMOLED displays (3.4-in., 249 ppi) with a CAAC IGZO TFT backplane. The flexible display by Komatsu et al. is functional after ≤70.000 folding cycles at 1 mm radii.176 Employing this structure, Komatsu et al. fabricated a 5.9-in. foldable book-type AMOLED display, as well as a 5.9-in.
B. Sensoric systems

Several sensoric systems, based on metal oxide semiconductor TFTs, have been demonstrated, e.g., for biochemical, temperature, and image sensing applications.

1. Biochemical sensors

Flexible and stretchable metal oxide semiconductor devices are attracting an increasing interest especially in the field of epidermal electronics,13,15 smart implants,353 artificial electronic skins for robots,19 as well as food safety and water monitoring.166 In order to enable these applications, biochemical sensors are necessary. Recently, Liu \textit{et al.} reported a metal oxide semiconductor TFT-based pH sensor on PET (Fig. 55).185 The pH sensor is based on an electrolyte gated IZO neuron device, i.e., a TFT with multiple input gates that are capacitively coupled to a floating gate, as proposed by Shibata and Ohmi.354 In the work by Liu \textit{et al.}, the V_{TH} shift of the flexible IZO neuron TFT is employed to detect pH changes with a sensitivity of around 105 mV/pH.185 Fig. 55 shows the sensor structure, together with a micrograph and a photograph of the bent device. Also, Shah \textit{et al.} presented a low-cost flexible pH sensoric system (sensitivity: 50 mV/pH) based on an ITO sensing layer fully integrated on top of a flexible IGZO TFT.166

![FIG. 55. Flexible pH sensor based on IZO neuron TFT on polyethylene terephthalate (PET) substrate: (a) device cross-section, (b) schematic, as well as (c) micrograph and (d) macrograph of the system. Reproduced with permission from Liu \textit{et al.}, Sci. Rep. \textbf{5}, 1 (2015). Copyright 2015 Nature Publishing Group.]

2. Temperature sensors

To continuously monitor the temperature of temperature-sensitive AMOLEDs or AMFPDs (Active-Matrix Flatpanel Displays), flexible metal oxide semiconductor TFT-based temperature sensors are required. To this regard, an interesting approach has been proposed by Honda \textit{et al.}, who vertically integrated a printed temperature sensor constituted by a SWCNT and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) conductive sensor ink on top of a SWCNT/IGZO CMOS NOT gate, as shown in Fig. 56.343 The flexible temperature sensing system yields a sensitivity of 0.68% °C-1 and a resolution of ≤0.3°C and is functional while bent to 2.6 mm tensile radius.343 The high density integration (only 4 μm passivation layer) paves the way to highly integrated and high-performance flexible devices, e.g., for wearable health monitoring.

![FIG. 56. Flexible three-dimensional vertically integrated temperature sensor and complementary SWCNT/IGZO NOT gate on PI substrate: (a) device cross-section and (b) photograph of the entire system. Reproduced with permission from Honda \textit{et al.}, Adv. Mater. \textbf{27}, 4674 (2015). Copyright 2015 John Wiley and Sons.]

3. X-ray detectors

Another interesting and novel field of application for metal oxide semiconductor TFTs is represented by flexible x-ray detectors.355 In 2012, Lujan and Street reported a flexible flat panel (FP) x-ray detector array based on flexible IGZO TFTs on PET.355 The device operates in indirect detection mode and is based on the integration of a phosphor layer, an a-Si continuous photodiode, and an IGZO TFT backplane. In the device, the x-rays incident on the phosphor layer excited fluorescence, which is subsequently detected and imaged by the a-Si photodiode and TFT backplane. In this way, images with a resolution of 160×180 pixel and pixel size of 200 μm can be recorded. Fig. 57 shows an image recorded with the flexible FP x-ray detector array. Few years later, also Smith \textit{et al.} reported large-area flexible x-ray detectors based on a-Si continuous photodiodes and IGZO TFT backplanes on 125 μm PEN foils. In this work, Smith \textit{et al.} proposed a novel assembly technique that allows connecting single flexible x-ray detectors to create a larger composite x-ray detector (Fig. 58).322 As visible from Fig. 58, 9 x-ray detectors (each with 16×16 pixel resolution) are overlapped to create a larger detector array. The assembly technique can be scaled up to even larger x-ray imaging arrays enabling applications in the medical imaging, e.g., single-exposure and low-dose digital radiography. In 2015, Gelinck \textit{et al.} presented a flexible x-ray detector based...
on an organic photodetector (OPD) layer and an IGZO TFT backplane all integrated on a 25 μm PEN foil.356 The use of a solution-processed OPD instead of an a-Si photodiode allows reducing the number of photolithographic steps, opening the way to lower production costs. Using this flexible OPD/IGZO TFT x-ray detector, images with a resolution of 120 l/μm can be recorded at a high-resolution (10 frames/s).356 The flexibility of all these x-ray imaging systems allows realizing curved detectors for applications such as computed tomography, where a round detector is more beneficial.

C. Power transmission systems

Flexible wireless power transmission systems can be realized by utilizing two coils (source and receiver) and a rectifier circuit, which can be either implemented with p-n diodes81 or with TFTs in diode load configuration (i.e., shorted gate-drain nodes).315 In the following, we introduce the basic structure and operating principle of p-n diodes, followed by an overview of the state-of-the-art flexible p-n diodes based on metal oxide semiconductors. Finally, we introduce two wireless power transmission systems developed, based on elastic NiO/IGZO diodes315 and flexible diode load IGZO TFTs.315

1. Diodes

Diodes are electronic components with two terminals that conduct primarily in one direction. A p-n diode is realized by a p- and an n-type semiconductor brought in contact with each other to form a p-n junction.97 The p-n junction facilitates the current conduction exclusively in one direction and suppresses the current flow in the other direction, acting thus as a rectifying element.97 Instead of a semiconductor-semiconductor junction, a Schottky diode possesses a metal-semiconductor junction. Here, a Schottky barrier is formed, allowing the device to have a very high switching speed and a low forward voltage drop.97 At the same time, also a diode-connected TFT with shorted drain and gate electrodes acts as a diode.357

2. Metal oxide semiconductor diodes

Flexible metal oxide semiconductor-based p-n diodes have been realized by employing n-type IGZO and either Cu$_2$O or NiO p-type semiconductors.81,358,359 In particular, Chen et al. reported a mechanically flexible Cu$_2$O/IGZO p-n diode on PEN.358 The authors demonstrated also the rectification characteristics of the Cu$_2$O/IGZO diode by converting an AC voltage of 4 V into a DC voltage of around 2.5 V.358 The -3 dB frequency of around 27 MHz (even while bent to 20 mm radii) allows employing the rectifier even for HF applications.358 Utilizing IGZO and NiO semiconductors, Münzenrieder et al. presented a mechanically bendable p-n diode fabricated at room temperature on PL.359 The rectification properties of the NiO/IGZO diode have been shown even down to a radius of 10 mm. The 4.7% increased rectified voltage for the bent NiO/IGZO rectifier is attributed to the enhanced conductivity of the bent diode compared with the flat one.359 Flexible Schottky diodes based on metal oxide semiconductors have been demonstrated with both ZnO and IGZO.360-363 Specifically, Zhang et al. reported a mechanically flexible Cu$_2$O/IGZO p-n diode on ITO-coated PEN substrates bendable down to a radius of 30 mm.360 Notably, in a follow-up work, Zhang et al. further successfully increased the cutoff frequency to 6.3 GHz, which is well beyond the critical speed of 2.45 GHz needed for principal frequency bands for smartphones.362 Another work by Chasin et al. showed IGZO-based Schottky diodes converting 3 V AC voltage into a 1.7 V DC voltage at a cutoff frequency of 1.1 GHz.361 Only recently, Semple et al. showed solution-processed Schottky diodes based on ZnO, which have a cutoff frequency well beyond 20 MHz.363

3. Diode-based power transmission systems

Utilizing a rectifier circuit constituted by 4 NiO/IGZO p-n diodes in a bridge configuration, Münzenrieder et al. realized an elastic and conformable wireless power transmission system (Figs. 59(a) and 59(b)). In the system by
Münzenrieder et al., an AC voltage is first transferred wirelessly via inductive coupling of two coils (source and receiver) and subsequently rectified by the diode bridge (Fig. 59).81 The transmitted DC power of 450 μW is sufficient to supply standard metal oxide semiconductor-based circuits. Furthermore, the wireless power transmission system is functional while conformably wrapped around an artificial hip joint (at a radius of 14 mm), as shown in Fig. 59(c).

4. TFT-based power transmission systems

It is also possible to rectify a wireless transmitted AC voltage utilizing flexible IGZO TFTs in diode load configuration, as demonstrated by Myny et al.315 In this particular example, Myny et al. employed the rectified voltage to power an NFC tag on PET (typical transmitted power of \approx10 μW).

D. Data transmission systems

Aside optical displays, one of the main application areas of flexible metal oxide semiconductor TFT is that of large-scale, cheap, and disposable data transmission systems, such as RFID/NFC tags and smart labels.87 In this field, special features like transparency would even enable new application frontiers, such as flexible and transparent RFID/NFC tags seamlessly embedded in food and water packages, mirrors, windows, or even books.

1. NFC tags

Myny et al. demonstrated a flexible NFC tag based on at least 218 IGZO TFTs on PET.315 Details of the circuit block diagram can be found in Sec. IV B. The flexible NFC tag is powered by inductively coupling it to a commercial USB-connected NFC reader (operating at 13.56 MHz and at a maximum distance of 5.2 cm).315 As a main result, Myny et al. demonstrated that the flexible IGZO-based NFC tag can meet the key requirements for RFID/NFC applications (e.g., power consumption, data rates, and signal encoding).315

E. Data storage systems

Storing data is also essential for flexible electronic systems. As already seen in Sections II and III, ferroelectric P(VDF-TrFE)132,136,146,149,167,273 or chicken albumen204 gate dielectrics allow realizing non-volatile 1-bit memory elements. To this regard, Van Breemen et al. demonstrated a non-volatile memory array [16 \times 16 IGZO TFTs with P(VDF-TrFE) gate dielectrics on PEN] with retention times of up to 12 days.167 The same group reported also the integration of a similar flexible non-volatile memory array (4 \times 4) with a TFT addressing circuit (based on standard BG IGZO devices) that can read and write each single memory element of the array.136 It was shown that the IGZO TFT-based addressing circuit is able to successfully program/erase the non-volatile memory array using 10 ms per memory element. Furthermore, a suitable margin of 4 V between the “0” and “1” states allows a fast and reliable read-out of the stored data.

VI. CONCLUSIONS

Flexible metal oxide semiconductor-based TFTs have not only made their entry in the market of optical displays30 but also shown to be suitable for other novel electronic systems, e.g., for sensorics, power supplies, as well as data storage and transmission. This wide range of applicability of flexible metal oxide semiconductor technology is owed to its excellent electrical and mechanical properties, combined with unique features like transparency, light-weight, 3D conformability, stretchability, and/or solution-processability. In this paper, we have reviewed the state-of-the-art of flexible TFTs, circuits, and systems based on metal oxide semiconductors. Significant attention has been devoted to aspects especially important for flexible devices: from the materials (i.e., substrates that are flexible, temperature- and chemical-resistant, etc.), the fabrication techniques (i.e., substrate preparation, low temperature deposition methods, layer structuring on dimensionally unstable substrate, etc.), the electrical performance, the mechanical properties (i.e., bendability and improvement of bendability) to special features (i.e., transparency, stretchability, dissolubility, etc.). The main part of the review has described the currently available approaches to realize flexible TFTs based on vacuum-deposited n-type metal oxide semiconductors. However, also novel topics like solution-processing and hole conduction in flexible metal oxide semiconductor TFTs have been...
thoroughly reported. Given the recent progresses achieved in the large-area integration of flexible devices, a relevant part of the review has focused on circuits, as well as on systems based on metal oxide semiconductor TFTs. Examples of novel large-area flexible electronic systems include flexible, textile-integrated, rollable and/or foldable optical displays, wireless power transmission, as well as non-volatile storage and NFC transmission of data. Despite the advances that flexible metal oxide semiconductor TFTs have witnessed in the last decade, there are still some bottlenecks that prevent the commercialization of this technology in new areas of application beyond optical displays. To broaden the field of application of flexible metal oxide semiconductor TFTs, future work should focus first of all on the optimization and establishment of the developed technology. In particular, specifically complete TFT models simulating both electrical and mechanical TFT properties are necessary to predict the performance under every circumstance, e.g., substrate fabrication, peeling and/or transferring, as well as bending and/or stretching. In addition to the development of suitable models, further advances in the material technology are also necessary. This means combining advanced flexible substrates (i.e., ultra-thin, lightweight, transparent, conformable, stretchable, biocompatible, biodegradable, and/or cheap) with suitable device layers (i.e., thin, ductile, transparent, biocompatible, and/or biodegradable) to realize a broad range of flexible devices: from TFTs, circuits, sensors, display elements, actuators to power supplies. Furthermore, with the help of suitable models, many efforts need to be devoted also in the heterogeneous integration of all these devices over large-area flexible substrates in order to achieve electrically and mechanically robust and reliable systems. Finally, future commercialization of flexible metal oxide semiconductor electronics calls for a reduction of the manufacturing cost. To this regard, scalable and high-throughput solution-processing fabrication techniques on large-area flexible substrates need to be optimized and established, aiming especially at fully printed or roll-to-roll manufacturing processes. Once these issues will be solved, flexible metal oxide semiconductor-based devices promise to be integrated into everyday objects, such as disposable and inexpensive consumer products like smart labels for food, water, and plant monitoring, autonomous textile-integrated systems for healthcare, sport, and automotive, conformable and stretchable devices for robotic artificial skins, as well as imperceptible and implantable prostheses or diagnostic tools. Even if at present there is still work to be done, the speed of development that this field has undergone in the last years lets us foresee that flexible metal oxide semiconductor-based technology will play a key role in tomorrow’s electronic scenario.

ACKNOWLEDGMENTS

We acknowledge great input and fruitful discussions on the topic of flexible metal oxide semiconductor TFTs of Dr. C. Zysset, Dr. T. Kinkeldei, Dr. G. A. Salvatore, A. Daus, S. Knobelhsips (all ETH Zurich), Dr. K. Ishida, Dr. T. Meister, R. Shabanpour, Dr. B. Kherdmad-Boroujeni, Dr. C. Carta, Professor Ellinger (all TU Dresden), Dr. P. Pattanasattayavong, Dr. Y.-H. Lin, Dr. N. Yaacobi-Gross (all Imperial College), and Professor S. Bauer (JKU Linz). This work was funded, in part, by the European Commission through the Seventh Framework Projects (FP7): Flexible multifunctional bendable integrated light-weight ultra-thin systems (FLEXIBILITY), Grant Agreement No. FP7-287568. This work was also partially funded by the SNF/DFG DACH FFlexcom project: Wireless Indium-Gallium-Zinc-Oxide Transmitters and Devices on Mechanically Flexible Thin-Film Substrates (WISDOM), SNF Grant No. 160347.
362J. Zhang, Y. Li, B. Zhang, H. Wang, Q. Xin, and A. Song, Nat. Commun. 6, 7561 (2015).