Measurement of the branching ratio $\Gamma(\Lambda b^0 \rightarrow \psi(2S)\Lambda^0)/\Gamma(\Lambda b^0 \rightarrow J/\psi\Lambda^0)$ with the ATLAS detector

This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher’s version. Please see the URL above for details on accessing the published version.

Copyright and reuse:
Sussex Research Online is a digital repository of the research output of the University.

Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available.

Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

http://sro.sussex.ac.uk
Measurement of the branching ratio
$\Gamma(\Lambda_b^0 \to \psi(2S)\Lambda^0)/\Gamma(\Lambda_b^0 \to J/\psi\Lambda^0)$ with the ATLAS detector

The ATLAS Collaboration

Abstract

An observation of the $\Lambda_b^0 \to \psi(2S)\Lambda^0$ decay and a comparison of its branching fraction with that of the $\Lambda_b^0 \to J/\psi\Lambda^0$ decay has been made with the ATLAS detector in proton–proton collisions at $\sqrt{s} = 8$ TeV at the LHC using an integrated luminosity of 20.6 fb$^{-1}$. The J/ψ and $\psi(2S)$ mesons are reconstructed in their decays to a muon pair, while the $\Lambda^0 \to p\pi^-$ decay is exploited for the Λ^0 baryon reconstruction. The Λ_b^0 baryons are reconstructed with transverse momentum $p_T > 10$ GeV and pseudorapidity $|\eta| < 2.1$. The measured branching ratio of the $\Lambda_b^0 \to \psi(2S)\Lambda^0$ and $\Lambda_b^0 \to J/\psi\Lambda^0$ decays is $\Gamma(\Lambda_b^0 \to \psi(2S)\Lambda^0)/\Gamma(\Lambda_b^0 \to J/\psi\Lambda^0) = 0.501 \pm 0.033\text{(stat)} \pm 0.019\text{(syst)}$, lower than the expectation from the covariant quark model.
Contents

1 Introduction 2
2 The ATLAS detector, data and Monte Carlo simulation samples 2
3 Event and Λ_{b}^{0} candidate selection 4
 3.1 Charmonium candidate selection 4
 3.2 Λ_{0}^{0} and Λ_{b}^{0} candidate selection 4
 3.3 Λ_{b}^{0} reconstruction 4
4 Measurement of the Λ_{b}^{0} branching ratio \Gamma(Λ_{b}^{0} \rightarrow ψ(2S)Λ_{0}^{0})/\Gamma(Λ_{b}^{0} \rightarrow J/ψΛ_{0}^{0}) 8
5 Summary 10

1 Introduction

The Λ_{b}^{0} baryon properties have been extensively studied at the Large Hadron Collider (LHC) [1–7]. The decay channel Λ_{b}^{0} \rightarrow J/ψ(μ^{+}μ^{-})Λ_{0}^{0}(π^{+}π^{-}) has been primarily used by the LHC experiments in these studies, although a number of other Λ_{b}^{0} decay channels have been exploited by the LHCb experiment. In particular, a measurement of the differential branching fraction and angular analysis of the rare decay Λ_{b}^{0} \rightarrow μ^{+}μ^{-}Λ_{0}^{0} was performed by LHCb [8, 9] following observation of this decay by the CDF experiment [10] at the Tevatron collider. However, no results for the decay mode Λ_{b}^{0} \rightarrow ψ(2S)Λ_{0}^{0} have yet been reported, although a measurement of the decay properties would be useful for verification of theoretical predictions [11].

The Λ_{b}^{0} \rightarrow ψ(2S)Λ_{0}^{0} branching fraction should be of the same order as that of the decay Λ_{b}^{0} \rightarrow J/ψΛ_{0}^{0} as suggested by the branching fraction values of the B^{0}, B^{+} and B_{s}^{0} meson decays to ψ(2S)/J/ψ and either a pseudoscalar (K^{0}, K^{+}, η) or vector (K^{*0}, K^{*+}, φ) meson. The branching ratios of such B meson decays to ψ(2S)X and J/ψX are within the 0.5–0.8 range [12], and are generally reproduced by factorisation calculations [13]. The only available theoretical calculation of the branching ratio of the Λ_{b}^{0} \rightarrow ψ(2S)Λ_{0}^{0} and Λ_{b}^{0} \rightarrow J/ψΛ_{0}^{0} decays, performed in the framework of the covariant quark model [14], predicts 0.8 with an uncertainty of approximately 0.1 [11].

An observation of the Λ_{b}^{0} \rightarrow ψ(2S)Λ_{0}^{0} decay and a measurement of the branching ratio of the Λ_{b}^{0} \rightarrow ψ(2S)Λ_{0}^{0} and Λ_{b}^{0} \rightarrow J/ψΛ_{0}^{0} decays is reported in this Letter. The J/ψ and ψ(2S) mesons are reconstructed in their decays to a muon pair, while the Λ_{0}^{0} \rightarrow π^{+}π^{-} decay is exploited for the Λ_{0}^{0} baryon reconstruction. The Λ_{b}^{0} baryons are reconstructed with transverse momentum p_{T} > 10 GeV and pseudorapidity |η| < 2.1.

2 The ATLAS detector, data and Monte Carlo simulation samples

A detailed description of the ATLAS detector can be found elsewhere [15]. A brief outline of the components most relevant to this analysis is given below.

1 Hereafter, charge conjugation is implied, unless explicitly stated otherwise.
The ATLAS inner detector (ID) has full coverage in ϕ, covers the pseudorapidity range $|\eta| < 2.5$ and operates inside an axial magnetic field of 2 T. It consists of a silicon pixel detector (Pixel), a silicon microstrip detector (semiconductor tracker, SCT) and a transition radiation tracker (TRT). The inner-detector barrel (end-cap) parts consist of 3 (2×3) Pixel layers, 4 (2×9) double-layers of single-sided SCT strips and 73 (2×160) layers of TRT straws. The ATLAS muon spectrometer (MS) covers the pseudorapidity range $|\eta| < 2.7$. It consists of precision tracking chambers, fast trigger detectors and a large toroidal magnet system generating an average field of 0.5 T in the barrel region ($|\eta| < 1.05$) and 1 T in the end-cap regions ($1.05 < |\eta| < 2.7$).

The ATLAS detector has a three-level trigger system: the hardware-based Level-1 system and the two-stage High Level Trigger (HLT). For this measurement, dimuon triggers are used. At Level-1, the dimuon triggers search for patterns of MS hits corresponding to dimuons passing various p_T thresholds. Since the rate from the low-p_T dimuon triggers was too high, prescale factors were applied to reduce their output rates. The data sample used in this analysis was collected using three dimuon triggers with p_T thresholds of 4 GeV for both muons, 4 GeV and 6 GeV for the two muons, and 6 GeV for both muons. At the HLT, the dimuon triggers used require muons with opposite charges and dimuon mass in the range $2.5 < m(\mu^+\mu^-) < 4.3$ GeV.

This analysis uses 20.6 fb$^{-1}$ of proton–proton collision data with a centre-of-mass energy of 8 TeV recorded by the ATLAS detector at the LHC in 2012. The uncertainty on the integrated luminosity is $\pm 2.8\%$. It is derived following the same methodology as that detailed in [17]. The event sample is processed using the standard offline ATLAS detector calibration and event reconstruction code. There are typically a few primary vertex candidates in each event due to multiple collisions per bunch crossing. Only events with at least four reconstructed tracks with $p_T > 0.4$ GeV and at least one reconstructed primary vertex candidate are kept for further analysis.

To model inelastic pp events containing $\Lambda^0 \rightarrow J/\psi(\mu^+\mu^-)\Lambda^0$, $\Lambda^0_{b} \rightarrow \psi(\mu^+\mu^-)\Lambda^0$, $B^0 \rightarrow J/\psi(\mu^+\mu^-)K^0_S$ or $B^0 \rightarrow \psi(\mu^+\mu^-)K^0_S$ decays, four large samples of Monte Carlo (MC) simulated events are prepared using the PYTHIA 8.1 [18] MC generator. The B^0 MC samples are needed to control reflections from B^0 decays to the Λ^0_b signal distributions. The generation is based on leading-order matrix elements for all $2 \rightarrow 2$ QCD processes. Initial- and final-state parton showering is used to simulate higher-order processes. Generated events with both muons from J/ψ or $\psi(2S)$ decays having transverse momenta above 3.5 GeV and pseudorapidities within ± 2.5, and, for Λ^0_b MC samples, with the Λ^0 transverse momentum above 1 GeV are passed through a full simulation of the detector using the ATLAS simulation framework [19] based on GEANT4 [20,21] and processed with the same reconstruction program as used for the data. An emulation of the three triggers used for the data collection is applied to the MC samples. The angular decay distributions of the $\Lambda^0_{b} \rightarrow J/\psi(\mu^+\mu^-)\Lambda^0(p\pi^-)$ decay are modelled using the helicity amplitudes measured by ATLAS [2]. For the $\Lambda^0_{b} \rightarrow \psi(\mu^+\mu^-)\Lambda^0(p\pi^-)$ decay, the helicity amplitudes are set to the predicted values [11].

2 The ATLAS coordinate system is a Cartesian right-handed system, with the coordinate origin at the nominal interaction point. The anti-clockwise beam direction defines the positive z-axis, with the x-axis pointing to the centre of the LHC ring. Polar (θ) and azimuthal (ϕ) angles are measured with respect to this reference system. The pseudorapidity is defined as $\eta = -\ln \tan(\theta/2)$.

3 In this Letter, $\psi(2S)$ is referred to as ψ when its decay channel is indicated.
3 Event and Λ_0^b candidate selection

3.1 Charmonium candidate selection

Events are required to contain at least two muons identified by the MS with tracks reconstructed in the ID. The reconstructed muons are required to match the muon candidates identified by the trigger. The muon track parameters are taken from the ID measurement alone, since the MS does not significantly improve the precision in the momentum range relevant for the charmonium measurements presented here. To ensure accurate measurements, each muon track must contain at least six SCT hits and at least one Pixel hit. Muon candidates satisfying these criteria are required to have opposite charges and a successful fit to a common vertex with $\chi^2/N_{\text{dof}} < 10$, where χ^2 is the fit quality with the number of degrees of freedom $N_{\text{dof}} = 1$. Events with $m(\mu^+\mu^-)$ values within ±200 MeV intervals around the J/ψ and $\psi(2S)$ world average masses [12] are used to search for $\Lambda_0^0 \to p\pi^-$ candidates.

3.2 Λ^0 and $\bar{\Lambda}^0$ candidate selection

In all events with J/ψ or $\psi(2S)$ candidates, pairs of tracks from particles with opposite charge are combined to form Λ^0 candidates. Each track is required to have at least one Pixel or SCT hit. Only pairs successfully fitted to a common vertex with $\chi^2/N_{\text{dof}} < 5$ are kept. The track with larger momentum is assigned the proton mass hypothesis since the proton always has a larger momentum than the pion for Λ^0 baryons with momenta larger than 0.3 GeV. To suppress combinatorial background the following requirements are used:

- $p_T(p) > 1.7$ GeV.
- $|z_0(p)| < 25$ mm, where $z_0(p)$ is the proton longitudinal impact parameter with respect to the dimuon vertex. MC studies show the requirement produces no loss of signal.
- $L_{\text{T}y}^{\Lambda^0}(\Lambda^0) > 7$ mm, where $L_{\text{T}y}^{\Lambda^0}(\Lambda^0)$ is the transverse decay length of the Λ^0 candidate measured from the beam line.

Events with $m(p\pi^-)$ values within an interval of ±20 MeV around the Λ^0 world average mass [12] are kept for further analysis.

3.3 Λ^0_b reconstruction

Tracks of the selected charmonium and Λ^0 candidates are simultaneously refitted with the dimuon and dihadron masses constrained to the world average masses of J/ψ (m$_{J/\psi}$) or $\psi(2S)$ (m$_{\psi(2S)}$) and Λ^0 (m$_{\Lambda^0}$) [12], respectively. The combined momentum of the refitted Λ^0 track pair is required to point to the dimuon vertex. To control B^0 reflections to the Λ^0_b signal distributions, a B^0 decay topology fit is also attempted for each track quadruplet successfully fitted to the Λ^0_b topology, i.e. the pion mass is assigned to both hadron tracks and the dihadron mass is constrained to the world average mass of K^0_S [12]. To suppress combinatorial and B^0 backgrounds the following requirements are used:

4 The transverse decay length of a particle is the transverse distance between the primary or production vertex and the particle decay vertex projected along the transverse momentum of the particle.
Figure 1: The invariant mass distributions $m(J/\psi \Lambda^0)$ (left plot) and $m(J/\psi \bar{\Lambda}^0)$ (right plot) for selected Λ^0_b and $\bar{\Lambda}^0_b$ candidates, respectively. The solid histograms represent the fit results (see text). The Λ^0_b signals (dashed lines) and the B^0 reflections are also shown.

Figure 2: The invariant mass distributions for the combined sample of the selected Λ^0_b and $\bar{\Lambda}^0_b$ candidates obtained after their fits to the $\Lambda^0_b \rightarrow J/\psi \Lambda^0$ (left plot) and $B^0 \rightarrow J/\psi K^0_S$ (right plot) topologies. The solid histograms represent fit results (see text). The Λ^0_b and B^0 signals and their mutual reflections are also shown.
The invariant mass distributions of the selected Λ_b^0 and $\bar{\Lambda}_b^0$ candidates obtained after their fits to the $\Lambda_b^0 \rightarrow \psi(2S)\Lambda^0$ (left plot) and $B^0 \rightarrow \psi(2S)K_S^0$ (right plot) topologies. The solid histograms represent fit results (see text). The Λ_b^0 and B^0 signals and their mutual reflections are also shown.

- $\chi^2(\Lambda_b^0)/N_{\text{dof}} < 3$, where χ^2 is the quality of the fit to the Λ_b^0 topology with $N_{\text{dof}} = 6$.
- $L_{xy}(\Lambda_b^0) > 10$ mm, where $L_{xy}(\Lambda_b^0)$ is the transverse decay length of the refitted Λ_b^0 vertex measured from the Λ_b^0 (dimuon) vertex.
- $p_T(\Lambda_b^0) > 2.5$ GeV.
- $p_T(\pi^-) > 0.45$ GeV.
- $\tau(\Lambda_b^0) > 0.35$ ps, where $\tau(\Lambda_b^0) = L_{xy}(\Lambda_b^0) \cdot m_{\Lambda_b^0}/p_T(\Lambda_b^0)$ is the Λ_b^0 proper decay time, $L_{xy}(\Lambda_b^0)$ is the transverse decay length of the Λ_b^0 vertex measured from the primary vertex and $m_{\Lambda_b^0}$ is the Λ_b^0 world average mass [12]. The primary vertex candidate with at least three tracks and the smallest value of the three-dimensional impact parameter of the Λ_b^0 candidate is selected as the actual primary vertex.
- $P(\Lambda_b^0) > P(B^0)$, where $P(\Lambda_b^0)$ and $P(B^0)$ are the χ^2 probabilities of the quadruplet fits with Λ_b^0 and B^0 topologies, respectively.

The muon transverse momenta and pseudorapidities are required to be in the ranges with high values of the trigger and reconstruction acceptances:

$$p_T(\mu^+) > 4 \text{ GeV, } |\eta(\mu^+)| < 2.3.$$

The kinematic range of the Λ_b^0 measurement is fixed to

$$p_T(\Lambda_b^0) > 10 \text{ GeV, } |\eta(\Lambda_b^0)| < 2.1.$$

The invariant mass distribution $m(J/\psi\Lambda^0)$, calculated using track parameters from the Λ_b^0 topology fits, is shown in Figure 1 separately for the selected Λ_b^0 and $\bar{\Lambda}_b^0$ candidates. Clear signals with similar size are seen in the two distributions around the world average mass of the Λ_b^0 baryon. Figures 2 and 3 show the $m(J/\psi\Lambda^0)$ and $m(\psi(2S)\Lambda^0)$ distributions for the combined sample of the Λ_b^0 and $\bar{\Lambda}_b^0$ candidates. The invariant mass distributions $m(J/\psi K_S^0)$ and $m(\psi(2S)K_S^0)$ from the B^0 topology fits are also shown.
Clear signals are seen in the $m(J/\psi \Lambda^0)$ and $m(\psi(2S) \Lambda^0)$ distributions\(^5\) around the world average mass of the Λ_b^0 baryon. There are also signals in the $m(J/\psi K^0_S)$ and $m(\psi(2S) K^0_S)$ distributions near the world average mass of the B^0 meson [12]. The B^0 signals are smaller than the Λ_b^0 signals due to the selection requirements.

The $m(J/\psi \Lambda^0)$ and $m(J/\psi K^0_S)$ distributions are simultaneously fitted to sums of signal and two-component background distributions. The signals are described by modified Gaussian functions [22]. The modified Gaussian function is defined as

\[
\text{Gauss}^\text{mod} \propto \exp[-0.5 \cdot x^{1+1/(1+0.5 \cdot x)}],
\]

where $x = [(m - m_0)/\sigma]$. This functional form, introduced to take into account the non-Gaussian tails of resonant signals, describes both data and MC signals well. The signal position, m_0, and width, σ, as well as the number of the signal events are free parameters of the fit. The non-resonant backgrounds in the distributions are described by independent exponential functions. The mutual B^0 and Λ_b^0 reflections are described by MC templates normalised to the numbers of B^0 and Λ_b^0 hadrons obtained in the fit. The reflection normalisations are corrected for small losses (2–6%) of Λ_b^0 and B^0 hadrons that passed the Λ_b^0 reconstruction but failed the B^0 reconstruction. The corrections are obtained using MC simulation. A similar fit is performed for the $m(\psi(2S) \Lambda^0)$ and $m(\psi(2S) K^0_S)$ distributions. In the analysis of the combined Λ_b^0 and Λ_b^0 samples, the ratio of the MC Λ_b^0 and Λ_b^0 events is set to the data ratio obtained in the separate $\Lambda_b^0 \rightarrow J/\psi \Lambda^0$ and $\Lambda_b^0 \rightarrow J/\psi \Lambda^0$ fits (Figure 1). The Λ_b^0 and Λ_b^0 fitted yields are 3523 ± 89 and 3414 ± 92, respectively, providing the ratio 1.03 ± 0.04(stat).

The results of the fits for the combined Λ_b^0 and $\bar{\Lambda}_b^0$ samples are summarised in Table 1. The Λ_b^0 mass values obtained from the fits of the $m(J/\psi \Lambda^0)$ and $m(\psi(2S) \Lambda^0)$ distributions agree with each other and with the world average Λ_b^0 mass value [12]. The signal widths are different, reflecting the difference in charmonium masses in the two decay channels, in agreement with the MC expectations. The quality, χ^2/N_{dof}, of the $\Lambda_b^0 \rightarrow J/\psi \Lambda^0$ and $\Lambda_b^0 \rightarrow \psi(2S) \Lambda^0$ signal fits are 1.0 and 1.1, respectively.

<table>
<thead>
<tr>
<th></th>
<th>$\Lambda_b^0 \rightarrow J/\psi \Lambda^0$</th>
<th>$B^0 \rightarrow J/\psi K^0_S$</th>
<th>$\Lambda_b^0 \rightarrow \psi(2S) \Lambda^0$</th>
<th>$B^0 \rightarrow \psi(2S) K^0_S$</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_{sig}</td>
<td>6940 ± 130</td>
<td>854 ± 84</td>
<td>603 ± 38</td>
<td>124 ± 28</td>
</tr>
<tr>
<td>m_{sig} [MeV]</td>
<td>5620 ± 0.4</td>
<td>5274.7 ± 2.3</td>
<td>5618.2 ± 1.2</td>
<td>5272.4 ± 4.9</td>
</tr>
<tr>
<td>σ_{sig} [MeV]</td>
<td>19.7 ± 0.5</td>
<td>19.2 ± 2.2</td>
<td>14.3 ± 1.1</td>
<td>16.7 ± 4.1</td>
</tr>
</tbody>
</table>

Table 1: The numbers of signal events, N_{sig}, signal masses, m_{sig}, and signal widths, σ_{sig}, obtained by the fits (see text). Only statistical uncertainties are shown.

To verify that the observed Λ_b^0 signals correspond to the $\Lambda_b^0 \rightarrow J/\psi \Lambda^0$ and $\Lambda_b^0 \rightarrow \psi(2S) \Lambda^0$ decays the signal reconstruction is repeated with only one mass constraint for either the dimuon or the dihadron track pair in the cascade fit and the Λ_b^0 mass is calculated using the mass-difference method. In the case that the dihadron mass is fixed to the Λ^0 mass, the Λ_b^0 mass is calculated as $m(\mu^+ \mu^- \Lambda^0) - m(\mu^+ \mu^-) + m_{J/\psi}$ and $m_{\psi(2S)}$ for $m(\mu^+ \mu^-) < 3.4$ GeV ($m(\mu^+ \mu^-) > 3.4$ GeV). When the dimuon mass is fixed to the $J/\psi (\psi(2S))$ mass, the Λ_b^0 mass is calculated as $m(J/\psi \mu \pi^-) - m(\mu \pi^-) + m_{\psi(2S)}$. In both cases clean Λ_b^0 signals are reconstructed with numbers of signal events compatible

\(^5\) Studies with MC simulated events show that the fraction of reconstructed $\Lambda_b^0 \rightarrow J/\psi \Lambda^0$ decays which can contribute to the reconstructed $\Lambda_b^0 \rightarrow \psi(2S) \Lambda^0$ signal is $\sim 10^{-5}$.

7
with those in Table 1. Figure 4 shows the $m(\mu^+\mu^-)$ distributions for the $\Lambda_b^0 \rightarrow J/\psi \Lambda^0$ and $\Lambda_b^0 \rightarrow \psi(2S)\Lambda^0$ candidates reconstructed with the mass constraint for the dihadron pair and selected within $\pm 3\sigma_{\text{sig}}$ around the world average Λ_b^0 mass. Clear signals from J/ψ and $\psi(2S)$ are seen. The $m(\mu^+\mu^-)$ distributions are fitted to a sum of an exponential function describing the background and a modified Gaussian function describing the signal. The signal yields are found to be $N_{J/\psi} = 9770 \pm 120$ and $N_{\psi(2S)} = 724 \pm 45$. Figure 5 shows the $m(p\pi^-)$ distributions for the Λ_b^0 candidates reconstructed with the mass constraint for the dimuon pair and selected within $\pm 3\sigma_{\text{sig}}$ around the world average Λ_b^0 mass. Clear signals from Λ_b^0 are seen. The $m(p\pi^-)$ distributions are fitted to a sum of a threshold function describing the background and a modified Gaussian function describing the signal. The threshold function has the form

$$A \cdot (m - m_p - m_{\pi^-})^B \cdot \exp[C \cdot (m - m_p - m_{\pi^-}) + D \cdot (m - m_p - m_{\pi^-})^2],$$

where m_p and m_{π^-} are the proton and pion masses, respectively, and A, B, C, and D are free parameters. The Λ^0 signal yields are found to be 7710 ± 120 and 702 ± 38 for the $\Lambda_b^0 \rightarrow J/\psi \Lambda^0$ and $\Lambda_b^0 \rightarrow \psi(2S)\Lambda^0$ candidates, respectively. The numbers of signal charmonium and Λ_b^0 events are larger than the numbers of the corresponding Λ_b^0 signal events because the backgrounds are partly due to genuine charmonium and Λ^0 states.

4 Measurement of the Λ_b^0 branching ratio

$$\Gamma(\Lambda_b^0 \rightarrow \psi(2S)\Lambda^0)/\Gamma(\Lambda_b^0 \rightarrow J/\psi \Lambda^0)$$

The numbers of Λ_b^0 signal events in the two decay modes, reported in Table 1, are corrected for detector effects and selection efficiencies as $N_{\text{cor}} = N_{\text{sig}}/\mathcal{A}$, where N_{cor} is the corrected number and \mathcal{A} is the MC acceptance. The MC events with the $\psi(2S)/J/\psi$ muons having transverse momenta above 3.5 GeV and pseudorapidities within ± 2.5, and Λ^0 transverse momentum above 1 GeV, passed through the detector simulation and event reconstruction, are used to correct the numbers of signal events in the fiducial range, defined as follows:
The acceptances of the latter corrections are 4.16 ± 0.02(stat)% and 4.30 ± 0.03(stat)% for the $\Lambda_b^0 \rightarrow J/\psi \Lambda^0$ and $\Lambda_b^0 \rightarrow \psi(2S)\Lambda^0$ decays, respectively. In the fiducial range, the ratio of the corrected numbers of Λ_b^0 signal events in the two decay modes is 0.0841 ± 0.0055(stat).

Then the numbers are corrected, using generator-level MC samples with no requirements on the μ^+ and Λ^0 selection, from the above fiducial range to the kinematic range of the Λ_b^0 measurement

$$p_T(\Lambda_b^0) > 10 \text{ GeV}, |\eta(\Lambda_b^0)| < 2.1,$$

$$p_T(\mu^+) > 4 \text{ GeV}, |\eta(\mu^+)| < 2.3,$$

$$p_T(\Lambda^0) > 2.5 \text{ GeV}.$$
The measured branching ratio of the two Λ^0 at the LHC using an integrated luminosity of 20 fb$^{-1}$ exceeds the measured value. The only available calculation for the branching ratio of the two Λ^0 baryons in the range allowed by the separate data fits (Section 3),

• varying the lifetimes of the Λ^0 and Λ^0_b baryons in the ranges of their uncertainties [12].

• Dependence on the Λ^0_b production model ($\pm 0.1\%$). The uncertainty is obtained by

 • varying the MC $p_T(\Lambda^0_b)$ and $|\eta(\Lambda^0_b)|$ distributions while preserving agreement with the data distributions,

 • varying the MC ratio of Λ^0_b and $\bar{\Lambda}^0_b$ baryons in the range allowed by the separate data fits (Section 3),

 • varying the uncertainties of the charmonium branching fractions B^0_p of B^0 baryons in the range allowed by the separate data fits (Section 3),

• Dependence on the Λ^0_b polarisation model ($\pm 1.1\%$). The uncertainty is obtained by varying the MC $\Lambda^0_b \rightarrow J/\psi(\mu^+\mu^-)\Lambda^0(p\pi^-)$ helicity amplitudes in the range of their uncertainties [2], and by changing the MC $\Lambda^0_b \rightarrow \psi(\mu^+\mu^-)\Lambda^0(p\pi^-)$ helicity amplitudes to those measured by ATLAS for the $\Lambda^0_b \rightarrow J/\psi(\mu^+\mu^-)\Lambda^0(p\pi^-)$ decay [2].

• The uncertainty of the signal extraction procedures ($\pm 2.8\%$). The uncertainty is determined by changing the background parameterisations to second order polynomials and by reducing the ranges used for the signal fits by 20 MeV from either left or right side, independently for the two Λ^0_b signals. In addition, the corrections of the reflection normalisations, obtained from MC simulation, are varied by half of their values. This uncertainty is affected by statistical fluctuations.

• The uncertainty originating from the MC statistical uncertainty ($\pm 1.3\%$).

• The uncertainty of the charmonium branching fractions $\mathcal{B}(J/\psi \rightarrow \mu^+\mu^-)$ and $\mathcal{B}(\psi(2S) \rightarrow e^+e^-)$ ($\pm 2.2\%$).

The measured branching ratio of the two Λ^0_b decays is

$$\frac{\Gamma(\Lambda^0_b \rightarrow \psi(2S)\Lambda^0)}{\Gamma(\Lambda^0_b \rightarrow J/\psi \Lambda^0)} = 0.501 \pm 0.033({\text{stat}}) \pm 0.016({\text{syst}}) \pm 0.011(\mathcal{B}),$$

where the contributions from the first four groups of systematic uncertainty are added in quadrature. The uncertainty due to the uncertainties of the charmonium branching fractions \mathcal{B} is quoted separately. The luminosity uncertainty, uncertainties of the muon and hadron track reconstruction and the vertexing uncertainties cancel out in the ratio. The bias in the measured ratio due to contributions from the rare decay $\Lambda^0_b \rightarrow \mu^+\mu^-\Lambda^0$ is estimated using the LHCb measurement [9] of the rare decay’s differential branching fraction to be below 0.5% and thus neglected. Consistent ratio values are found when calculated in bins of $p_T(\Lambda^0_b)$ or separately for Λ^0_b and $\bar{\Lambda}^0_b$ baryons.

The measured ratio lies in the range 0.5–0.8 found for the branching ratios of analogous B meson decays [12]. The only available calculation for the branching ratio of the two Λ^0_b decays (0.8 ± 0.1 [11]) exceeds the measured value.

5 Summary

The $\Lambda^0_b \rightarrow \psi(2S)\Lambda^0$ decay has been observed with the ATLAS detector in pp collisions at $\sqrt{s} = 8$ TeV at the LHC using an integrated luminosity of 20.6 fb$^{-1}$. The branching ratio of the $\Lambda^0_b \rightarrow \psi(2S)\Lambda^0$ and $\Lambda^0_b \rightarrow J/\psi\Lambda^0$ decays has been measured to be $\Gamma(\Lambda^0_b \rightarrow \psi(2S)\Lambda^0)/\Gamma(\Lambda^0_b \rightarrow J/\psi\Lambda^0) = 0.501 \pm 0.033({\text{stat}}) \pm 0.016({\text{syst}}) \pm 0.011(\mathcal{B})$. The ratio falls into the range 0.5–0.8, as found for the branching
ratios of analogous B meson decays [12]. The only available theoretical expectation for the branching ratio of the two Λ_0^0 decays (0.8 ± 0.1 [11]) exceeds the measured value.

Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNNF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; RGC, Hong Kong SAR, China; ISF, MINERVA, GIF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRS, CEA-DSM/IRFU, France; FOM and NWO, Netherlands; BR and RCN, Norway; MNI SW and NCN, Poland; GIMCES and FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR, MSTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

References

The uncertainty of the branching fraction ratio $\Gamma(\Lambda_b^0 \rightarrow \psi(2S)\Lambda^0)/\Gamma(\Lambda_b^0 \rightarrow J/\psi\Lambda^0)$ has been provided privately by the authors.

High Energy Physics Division, Argonne National Laboratory, Argonne IL, United States of America
Department of Physics, University of Arizona, Tucson AZ, United States of America
Department of Physics, The University of Texas at Arlington, Arlington TX, United States of America
Physics Department, University of Athens, Athens, Greece
Physics Department, National Technical University of Athens, Zografou, Greece
Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
Institut de Física d’Altes Energies and Departament de Física de la Universitat Autònoma de Barcelona, Barcelona, Spain
Institute of Physics, University of Belgrade, Belgrade, Serbia
Department for Physics and Technology, University of Bergen, Bergen, Norway
Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley CA, United States of America
Department of Physics, Humboldt University, Berlin, Germany
Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
Department of Physics, Bogazici University, Istanbul; (b) Department of Physics Engineering, Gaziantep University, Gaziantep; (c) Department of Physics, Doğuş University, Istanbul, Turkey
INFN Sezione di Bologna; (b) Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna, Italy
Physikalisches Institut, University of Bonn, Bonn, Germany
Department of Physics, Boston University, Boston MA, United States of America
Department of Physics, Brandeis University, Waltham MA, United States of America
(a) Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro; (b) Electrical Circuits Department, Federal University of Juiz de Fora (UFIF), Juiz de Fora; (c) Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei; (d) Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil
Physics Department, Brookhaven National Laboratory, Upton NY, United States of America
National Institute of Physics and Nuclear Engineering, Bucharest; (b) National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj Napoca; (c) University Politehnica Bucharest, Bucharest; (d) West University in Timisoara, Timisoara, Romania
Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
Department of Physics, Carleton University, Ottawa ON, Canada
CERN, Geneva, Switzerland
Enrico Fermi Institute, University of Chicago, Chicago IL, United States of America
(a) Departamento de Física, Pontificia Universidad Católica de Chile, Santiago; (b) Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
(a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Department of Modern Physics, University of Science and Technology of China, Anhui; (c) Department of Physics, Nanjing University, Jiangsu; (d) School of Physics, Shandong University, Shandong; (e) Department of Physics and Astronomy, Shanghai Key Laboratory for Particle Physics and Cosmology, Shanghai Jiao Tong University, Shanghai; (f) Physics Department, Tsinghua University, Beijing 100084, China
Laboratoire de Physique Corpusculaire, Clermont Université et Université Blaise Pascal and CNRS/IN2P3, Clermont-Ferrand, France
Nevis Laboratory, Columbia University, Irvington NY, United States of America
Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark
(a) INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati; (b) Dipartimento di Fisica,
Università della Calabria, Rende, Italy
38 (a) AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow; (b) Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland
39 Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland
40 Physics Department, Southern Methodist University, Dallas TX, United States of America
41 Physics Department, University of Texas at Dallas, Richardson TX, United States of America
42 DESY, Hamburg and Zeuthen, Germany
43 Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
44 Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany
45 Department of Physics, Duke University, Durham NC, United States of America
46 SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
47 INFN Laboratori Nazionali di Frascati, Frascati, Italy
48 Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany
49 Section de Physique, Université de Genève, Geneva, Switzerland
50 (a) INFN Sezione di Genova; (b) Dipartimento di Fisica, Università di Genova, Genova, Italy
51 (a) E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi; (b) High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
52 II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
53 SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
54 II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
55 Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS/IN2P3, Grenoble, France
56 Department of Physics, Hampton University, Hampton VA, United States of America
57 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge MA, United States of America
58 (a) Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (b) Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (c) ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany
59 Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
60 (a) Department of Physics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong; (b) Department of Physics, The University of Hong Kong, Hong Kong; (c) Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
61 Department of Physics, Indiana University, Bloomington IN, United States of America
62 Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
63 University of Iowa, Iowa City IA, United States of America
64 Department of Physics and Astronomy, Iowa State University, Ames IA, United States of America
65 Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
66 KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
67 Graduate School of Science, Kobe University, Kobe, Japan
68 Faculty of Science, Kyoto University, Kyoto, Japan
69 Kyoto University of Education, Kyoto, Japan
70 Department of Physics, Kyushu University, Fukuoka, Japan
71 Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
72 Physics Department, Lancaster University, Lancaster, United Kingdom
73 (a) INFN Sezione di Lecce; (b) Dipartimento di Matematica e Fisica, Università del Salento, Lecce, Italy
74 Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
Department of Physics, Jožef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia
School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom
Department of Physics, Royal Holloway University of London, Surrey, United Kingdom
Department of Physics and Astronomy, University College London, London, United Kingdom
Louisiana Tech University, Ruston LA, United States of America
Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
Fysiska institutionen, Lunds universitet, Lund, Sweden
Departamento de Fisica Teorica C-15, Universidad Autonoma de Madrid, Madrid, Spain
Institut für Physik, Universität Mainz, Mainz, Germany
School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
Department of Physics, University of Massachusetts, Amherst MA, United States of America
Department of Physics, McGill University, Montreal QC, Canada
School of Physics, University of Melbourne, Victoria, Australia
Department of Physics, The University of Michigan, Ann Arbor MI, United States of America
Department of Physics and Astronomy, Michigan State University, East Lansing MI, United States of America
(a) INFN Sezione di Milano; (b) Dipartimento di Fisica, Università di Milano, Milano, Italy
B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Republic of Belarus
National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Republic of Belarus
Department of Physics, Massachusetts Institute of Technology, Cambridge MA, United States of America
Group of Particle Physics, University of Montreal, Montreal QC, Canada
P.N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia
Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia
National Research Nuclear University MEPhI, Moscow, Russia
D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany
Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany
Nagasaki Institute of Applied Science, Nagasaki, Japan
Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya, Japan
(a) INFN Sezione di Napoli; (b) Dipartimento di Fisica, Università di Napoli, Napoli, Italy
Department of Physics and Astronomy, University of New Mexico, Albuquerque NM, United States of America
Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands
Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands
Department of Physics, Northern Illinois University, DeKalb IL, United States of America
Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia
Department of Physics, New York University, New York NY, United States of America
Ohio State University, Columbus OH, United States of America
Faculty of Science, Okayama University, Okayama, Japan
113 Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman OK, United States of America
114 Department of Physics, Oklahoma State University, Stillwater OK, United States of America
115 Palacký University, RCPTM, Olomouc, Czech Republic
116 Center for High Energy Physics, University of Oregon, Eugene OR, United States of America
117 LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France
118 Graduate School of Science, Osaka University, Osaka, Japan
119 Department of Physics, University of Oslo, Oslo, Norway
120 Department of Physics, Oxford University, Oxford, United Kingdom
121 (a) INFN Sezione di Pavia; (b) Dipartimento di Fisica, Università di Pavia, Pavia, Italy
122 Department of Physics, University of Pennsylvania, Philadelphia PA, United States of America
123 National Research Centre "Kurchatov Institute" B.P.Konstantinov Petersburg Nuclear Physics Institute, St. Petersburg, Russia
124 (a) INFN Sezione di Pisa; (b) Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
125 Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh PA, United States of America
126 (a) Laboratório de Instrumentação e Física Experimental de Partículas - LIP, Lisboa; (b) Faculdade de Ciências, Universidade de Lisboa, Lisboa; (c) Department of Physics, University of Coimbra, Coimbra; (d) Centro de Física Nuclear da Universidade de Lisboa, Lisboa; (e) Departamento de Física, Universidade do Minho, Braga; (f) Departamento de Física Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada (Spain); (g) Dep Fisica and CEFITEC of Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
127 Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic
128 Czech Technical University in Prague, Praha, Czech Republic
129 Faculty of Mathematics and Physics, Charles University in Prague, Praha, Czech Republic
130 State Research Center Institute for High Energy Physics, Protvino, Russia
131 Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
132 (a) INFN Sezione di Roma; (b) Dipartimento di Fisica, Sapienza Università di Roma, Roma, Italy
133 (a) INFN Sezione di Roma Tor Vergata; (b) Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy
134 (a) INFN Sezione di Roma Tre; (b) Dipartimento di Matematica e Fisica, Università Roma Tre, Roma, Italy
135 (a) Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies - Université Hassan II, Casablanca; (b) Centre National de l’Energie des Sciences Techniques Nucléaires, Rabat; (c) Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakech; (d) Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda; (e) Faculté des sciences, Université Mohammed V-Agdal, Rabat, Morocco
136 DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat à l’Energie Atomique et aux Energies Alternatives), Gif-sur-Yvette, France
137 Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz CA, United States of America
138 Department of Physics, University of Washington, Seattle WA, United States of America
139 Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
140 Department of Physics, Shinshu University, Nagano, Japan
141 Fachbereich Physik, Universität Siegen, Siegen, Germany
142 Department of Physics, Simon Fraser University, Burnaby BC, Canada
143 SLAC National Accelerator Laboratory, Stanford CA, United States of America
(a) Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava; (b) Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic

Department of Physics, University of Cape Town, Cape Town; (b) Department of Physics, University of Johannesburg, Johannesburg; (c) School of Physics, University of the Witwatersrand, Johannesburg, South Africa

Department of Physics, Stockholm University; (b) The Oskar Klein Centre, Stockholm, Sweden

Physics Department, Royal Institute of Technology, Stockholm, Sweden

Departments of Physics & Astronomy and Chemistry, Stony Brook University, Stony Brook NY, United States of America

Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom

School of Physics, University of Sydney, Sydney, Australia

Institute of Physics, Academia Sinica, Taipei, Taiwan

Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel

Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel

Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece

International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan

Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan

Department of Physics, Tokyo Institute of Technology, Tokyo, Japan

Department of Physics, University of Toronto, Toronto ON, Canada

(a) TRIUMF, Vancouver BC; (b) Department of Physics and Astronomy, York University, Toronto ON, Canada

Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan

Department of Physics and Astronomy, Tufts University, Medford MA, United States of America

Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia

Department of Physics and Astronomy, University of California Irvine, Irvine CA, United States of America

(a) INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine; (b) ICTP, Trieste; (c) Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy

Department of Physics, University of Illinois, Urbana IL, United States of America

Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden

Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia, Spain

Department of Physics, University of British Columbia, Vancouver BC, Canada

Department of Physics and Astronomy, University of Victoria, Victoria BC, Canada

Department of Physics, University of Warwick, Coventry, United Kingdom

Waseda University, Tokyo, Japan

Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel

Department of Physics, University of Wisconsin, Madison WI, United States of America

Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany

Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany

Department of Physics, Yale University, New Haven CT, United States of America

Yerevan Physics Institute, Yerevan, Armenia

Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules (IN2P3),
Villeurbanne, France

\footnote{a Also at Department of Physics, King’s College London, London, United Kingdom}
\footnote{b Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan}
\footnote{c Also at Novosibirsk State University, Novosibirsk, Russia}
\footnote{d Also at TRIUMF, Vancouver BC, Canada}
\footnote{e Also at Department of Physics, California State University, Fresno CA, United States of America}
\footnote{f Also at Department of Physics, University of Fribourg, Fribourg, Switzerland}
\footnote{g Also at Departamento de Fisica e Astronomia, Faculdade de Ciencias, Universidade do Porto, Portugal}
\footnote{h Also at Tomsk State University, Tomsk, Russia}
\footnote{i Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France}
\footnote{j Also at Universita di Napoli Parthenope, Napoli, Italy}
\footnote{k Also at Institute of Particle Physics (IPP), Canada}
\footnote{l Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom}
\footnote{m Also at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg, Russia}
\footnote{n Also at Louisiana Tech University, Ruston LA, United States of America}
\footnote{o Also at Institutio Catalana de Recerca i Estudis Avancats, ICREA, Barcelona, Spain}
\footnote{p Also at Graduate School of Science, Osaka University, Osaka, Japan}
\footnote{q Also at Department of Physics, National Tsing Hua University, Taiwan}
\footnote{r Also at Department of Physics, The University of Texas at Austin, Austin TX, United States of America}
\footnote{s Also at Institute of Theoretical Physics, Ilia State University, Tbilisi, Georgia}
\footnote{t Also at CERN, Geneva, Switzerland}
\footnote{u Also at Georgian Technical University (GTU), Tbilisi, Georgia}
\footnote{v Also at Manhattan College, New York NY, United States of America}
\footnote{w Also at Hellenic Open University, Patras, Greece}
\footnote{x Also at Institute of Physics, Academia Sinica, Taipei, Taiwan}
\footnote{y Also at LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France}
\footnote{z Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan}
\footnote{aa Also at School of Physics, Shandong University, Shandong, China}
\footnote{ab Also at Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia}
\footnote{ac Also at Section de Physique, Université de Genève, Geneva, Switzerland}
\footnote{ad Also at International School for Advanced Studies (SISSA), Trieste, Italy}
\footnote{ae Also at Department of Physics and Astronomy, University of South Carolina, Columbia SC, United States of America}
\footnote{af Also at School of Physics and Engineering, Sun Yat-sen University, Guangzhou, China}
\footnote{ag Also at Faculty of Physics, M.V.Lomonosov Moscow State University, Moscow, Russia}
\footnote{ah Also at National Research Nuclear University MEPhI, Moscow, Russia}
\footnote{ai Also at Department of Physics, Stanford University, Stanford CA, United States of America}
\footnote{aj Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary}
\footnote{ak Also at University of Malaya, Department of Physics, Kuala Lumpur, Malaysia}
\footnote{* Deceased}