Active shape discrimination with compliant bodies as reservoir computers

Article (Submitted Version)

Johnson, Chris, Philippides, Andrew and Husbands, Philip (2016) Active shape discrimination with compliant bodies as reservoir computers. Artificial Life, 22 (2). ISSN 1064-5462

This version is available from Sussex Research Online: http://sro.sussex.ac.uk/id/eprint/60516/

This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher’s version. Please see the URL above for details on accessing the published version.

Copyright and reuse:
Sussex Research Online is a digital repository of the research output of the University.

Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available.

Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

http://sro.sussex.ac.uk
Active Shape Discrimination with Compliant Bodies as Reservoir Computers

Chris Johnson1, Andrew Philippides1 and Philip Husbands1

1Centre for Computational Neuroscience and Robotics
University of Sussex
c.a.johnson@sussex.ac.uk

April 13, 2016

Abstract

Compliant bodies with complex dynamics can be used both to simplify control problems and lead to adaptive reflexive behaviour when engaged with the environment in the sensorimotor loop. By revisiting an experiment introduced by Beer [3] and replacing the continuous-time recurrent neural network (CTRNN) therein with reservoir computing networks abstracted from compliant bodies, we demonstrate that adaptive behaviour can be produced by an agent in which the body is the main computational locus. We will show that bodies with complex dynamics are capable of integrating, storing and processing information in meaningful and useful ways, and furthermore that with the addition of the simplest of nervous systems such bodies can generate behaviour which could equally be described as reflexive or minimally cognitive.

Keywords: morphological computation, reservoir computing, adaptive behaviour, active perception, minimal cognition

1 Introduction

The importance of embodiment in both generating and understanding adaptive behaviour has been increasingly recognised over recent years [6, 7, 28, 29]. This has resulted in a renewed focus on the form and function of the body. Repeated successes in the exploitation of inherent, often passive, dynamics in automata and robots have demonstrated that much can be gained, in terms of efficiency and simplification of control, when body-brain-environment interactions are balanced and harmonious [24, 15, 32, 36, 31]. Pfeifer and Iida [30] introduced the term morphological computation to refer to the way in which a judiciously selected body morphology can be shown to simplify the task of a controller and might therefore be considered to be performing a function analogous to the computational work it renders redundant. An interesting, and as yet under-explored, extension of this line of thought is to consider how much explicit and active information processing the body might be capable of, further blurring the line between the nervous system and the body. This paper describes research intended as a first step towards exploring the information processing potential of networks of simplified muscle-like units acting within an embodied agent engaged in adaptive behaviour. In this work we follow Hauser et al. [11, 12], who have reframed morphological computation in compliant bodies as a branch of reservoir computing (RC) [22, 20], an approach they demonstrated with simulations of recurrent networks of mass-spring-damper (MSD) elements.

The passive dynamic walker [24] is an early exemplar of what later became known as morphological computation. McGeer’s automaton was capable of walking down a gentle incline under the sole force and control of gravity by means of a pendulum-based design. While the walker can only perform one action, and that only in a narrow niche, it still stands out as it exhibits action entirely without control. Since the notion of morphological computation was introduced, the majority of robotic studies in this area have been in a similar vein and have focused on minimisation of control and increase in robustness via the exploitation of carefully designed bodily dynamics. Often this is achieved by designing the robot morphology to be both compliant and self-stable [15, 30, 31].

An issue still at large is whether what is referred to as morphological computation should properly be considered computational. The basis of morphological computation is not formal logic, nor, except in special and rare cases [27, 33], does it operate in a binary domain. It is in no way in keeping with Turing’s definition of what is computable and has no affinity with classical automata theory [10]. However, running parallel to what has, perhaps irreversibly, become the mainstream of computing, is a tradition of analogue computing [21, 18]. For decades, analogue computation was the only feasible option for the simulation and control of complex systems in applications such as aeronautics and spaceflight [18]. In general, analogue electronic computers are dynamical systems and therefore suitable for the simulation and control of other dynamical systems. We believe that morphological computation, as first presented by Pfeifer and Iida [30] is of the same kind and so legitimised as computational
as long as it is clear which tradition we refer to. In fact the name “analogue electronics” is derived from analogy, due to the isomorphism between a mass-spring-damper system and an RLC electronic circuit (a circuit including a resistor, capacitor and inductor) [18, 1]. Therefore there is a direct connection between an MSD network and the very origin of analogue computing. In the remainder of this paper, where we use the word ‘computation’, we will be referring to analogue computation.

Hauser et al. [11] presented networks of mass-spring-damper elements, and showed that with the addition of a simple linear readout, theoretically consistent with reservoir computing, these spring networks can perform complex computation requiring non-linear transformation and integration, such as the approximation of filters and inverse kinematics for robot control. These networks are of special interest because they are physically realisable and because of their similarity to biomechanical muscle models [13, 9, 2].

In Hauser et al. [12] it was further shown that when the model was extended to include a feedback loop the networks could be trained to perform pattern generation without the need for external stimulation. Nakajima et al. [26] extended the spring network to a biologically-inspired three-dimensional structure and it was shown that this body could also approximate filters and generate limit cycles. Finally, Zhao et al. [36] replaced the spring network with the body of a spine-driven quadruped robot, referred to as ‘Kitty’, and used it to generate both locomotion and its own control signals. This robot stands out because the reservoir consists of force sensors embedded within the spine, the element of the body which is actuated, thereby negating any meaningful distinction between body and control.

In the above examples, morphological computation has been demonstrated to make difficult problems such as locomotion both easier and cheaper. However, filtering, pattern generation, and gait control have a character which is more automatic than intelligent. For example, although different gaits may be programmed into Kitty it is still essentially an automaton - its gait may be robust to some variation in the environment but it is incapable of responding to any stimuli which do not reach its proprioceptive force sensors.

We will show that morphological computation can go further. If continuous-time neural networks (CTRNNs) [35], GasNets [14] and other dynamical neural models can generate adaptive behaviour, then why not these dynamical networks also? And if these networks, constructed of muscle-like units, can do so, then we are led to interesting speculations about the extent of muscle properties in determining behaviour, rather than merely being in the service of a central controller.

In order to test whether MSD networks can generate adaptive behaviour we selected an experiment introduced by Beer [3], in which an agent controlled by a small continuous-time recurrent neural network (CTRNN) was shown to be capable of discriminating between objects of different shapes through active perception. We replaced the bilaterally symmetric CTRNN used by Beer with a symmetrical pair of MSD networks. Previously the minimal cognitive aspect of the task has been made much of [4, 8, 25]. We consider this a point well enough made, and approach the experiment from a specifically morphological computation point of view. The MSD network is essentially an abstracted passive compliant body, and the readout can be interpreted as analogous to either a primitive or a peripheral nervous system. In this context we consider the behaviour exhibited by our agents as being of the reflexive variety, with the choice made by the agent being to either initiate escape behaviour or not in response to different patterns of stimuli.

In the rest of the paper we show that we can evolve MSD networks that are capable of generating adaptive behaviour, and through a number of analyses we show that, in principle, bodies are capable of integrating, storing and processing information in meaningful and useful ways. In what follows it will be made clear that the domain of MSD networks affords a broad variety of behaviours for this task and that the evolutionary process exploits an informational structure in the agent’s visual field. However, we will also demonstrate that a distinction must be made between the quantity and quality of information. We will close with an examination of how the networks actually perform their function with perturbation and lesion tests, and with case studies of two controllers which generate behaviour which is representative of the two far ends of the observed behavioural spectrum.

2 Methods

2.1 The experiment

The simulated experiment is closely based on that described by Beer [3, 4]. The required behaviour is to dynamically discriminate between a circular object and a diamond-shaped object. Discrimination is manifested as catch and avoidance behaviours for circles and diamonds, respectively (see Figure 1 for a depiction of the agent and its controller).

The arena is a rectangular area 200 wide by 275 high. Circular objects are of diameter 30 and diamonds have side length 30. Objects fall straight down from the top of the arena towards the agent with speed 3. In theory both behaviours are tested at 24 equispaced points in the x-axis interval $[-50, 50]$. However, the use of a symmetrical controller means that only the left-hand 12 tests need be conducted as behaviour on the right-hand side of the arena is identical to that on the left. The agent has an antagonistic motor pair aligned to the horizontal axis. The network outputs set the two motor speeds, and the agent’s horizontal velocity is the sum of the two opposing motor outputs. The transfer function for the motor pair is given by:
Figure 1: The agent-environment coupled dynamical system. The agent in the environment, including falling objects, is shown in the panel, and the connected controller is shown below. The agent moves left and right, to catch objects which are circle shaped and avoid those which are diamond shaped. Falling objects are detected by seven sensor rays. Seven sensor neurons each receive an input from a single sensor, and output to a single node in the MSD network. The weighted sum, Σ, of the network spring extensions, and in some cases also the spring extension velocities, represents a network’s output. That output is passed through a motor neuron with a sigmoidal transfer function, σ, followed by a gain of 5. An identical pair of networks receive their inputs from the sensor neurons in reverse order to one another, and the output of each drives one of an antagonistic pair of motors. Note that the circle shaped object, shown superimposed on the diamond shaped object, is narrower than its counterpart from the agent’s point of view.

Figure 2: An MSD network. The nodes of the network are point masses, connected by parallel springs and dampers. The two most distant nodes, marked with squares, are fixed, while other nodes are free to move. Inputs to the network take the form of forces applied to all or a subset of the free nodes, parallel to the vertical axis. (Dampers and some springs and nodes are omitted for clarity.)

Figure 3: Topologies of the first successful evolved controllers. From left to right, the top row shows controllers A, B and C, and the bottom row shows controllers D and E. (Dampers and some springs and nodes are omitted for clarity.)
\[5[\sigma(N_r + \theta) - \sigma(N_l + \theta)] \]
\[\sigma(x) = 1/(1 + e^{-x}) \]

(1)

(2)

where \(N_l\) and \(N_r\) are the outputs from the left and right MSD network readouts, respectively, and \(\theta\) is a constant which biases the motor activation points. Due to the use of the logistic function \(\sigma\), each motor saturates at 0 for its minimum and 1 for its maximum. This and the use of a multiplier of 5 on the result of the sum specifies a horizontal velocity in the range of \([-5, 5]\).

The agent’s sensors are 7 rays uniformly spaced across an angle of \(\pi/6\) and centred about the vertical axis. A sensor is activated if the sensor ray intersects an object. The sensor transfer function, \(I\), is an inverse linear one between the distances of 220 and 0, with its output in the range \([0, 10]\). Objects are not detected beyond distances of 220. To reduce evaluation time the sensor model was used to construct lookup tables which were then used in the simulation. The sensor neuron activations lag behind the values of the linear function, as determined by the sensory layer function:

\[\tau_i s_i = -s_i + I_i(x, y) \quad i = 1, \ldots, 7, \]

(3)

where \(s\) is the sensor neuron activation, \(\tau\) is the time constant for the sensor response, \(I\) is the sensor function, and \((x, y)\) is the vector from sensor to object.

Network states, sensor activations and the position of the agent are all integrated using forward Euler integration. As in Beer’s original experiment an interval of 0.1 is used to integrate sensor activations and the agent’s position. In their experiments Hauser et al. used an interval of 0.001 and made use of a solver function to integrate the spring network activity. However the computational cost of such an approach is prohibitive when evaluating large numbers of candidate controllers in evolution, so a compromise was made here. We found that an interval of at most 0.01 is required to achieve stability in the network model with the parameters used here, so the spring network is integrated 10 times for each 0.1 interval.

2.2 Mass-spring-damper networks

Although the elements in these networks are in fact modelled mass-spring damper systems, for the sake of convenience they will henceforth be referred to simply as springs.

The spring networks used here are based upon those in Hauser et al. [11] (Figure 2). The springs are connected to each other in a 2-dimensional plane. Effects such as gravity and friction are neglected in order to simplify the model. The two outermost nodes in a selected axis are fixed while the rest move freely. A subset of the free nodes receive inputs in the form of applied forces. Input forces are applied in a single axis, although this is also for simplification and is by no means a requirement of the model. Reservoir elements were modelled as non-linear springs, defined by the state equations:

\[x_2 = \dot{x}_1 \]
\[p(x_1) = k_3 x_3^3 + k_1 x_1 \]
\[q(x_2) = d_3 x_3^3 + d_1 x_2 \]
\[\dot{x}_2 = -p(x_1) - q(x_2) + u, \]

(4)

(5)

(6)

(7)

where \(x_1\) is the spring extension, \(k_1\) and \(k_3\) represent linear and non-linear stiffness coefficients, respectively, \(d_1\) and \(d_3\) represent the corresponding damping coefficients, and \(u\) represents an input unused in the experiment. In this work we followed the network model of Hauser et al. [11] in all respects except that the above nonlinear spring model was not used in all networks. In some networks a linear second order spring model was used, with the state equations:

\[\dot{x}_2 = \frac{k}{m} x_1 - \frac{d}{m} x_2 + \frac{1}{m} u, \]

(8)

(9)

where \(k\) is a stiffness coefficient, \(d\) is a damping coefficient, \(m\) is the mass on the end of the spring, and, as in Equation (7), \(u\) is an unused input term. For convenience all nodes are given \(m = 1kg\). This means that, from Newton’s second law of motion, \(F = ma\), forces and accelerations may be treated as equivalent in this network model and Equation (9) is simplified to a form similar to Equation (7).
At the beginning of each simulation step the spring extensions are obtained by calculating the distances between the nodes they connect. The rates of change of spring extensions are estimated by the difference between the current extensions and those at the previous step. From these states the instantaneous forces applied to the nodes by the springs can be found, by the use of either Equation (7) or Equation (9). The spring forces and input forces are then summed for each node, and the node positions are updated by integration of the resultant accelerations. Inputs are applied to nodes as vertical forces, as shown in Figure 2. In this experiment each network had a total of nine nodes, with two fixed nodes and seven free nodes which each received an input from one of the sensor neurons (Figure 1). An untreated input range of \([0, 10] \) from the sensor neurons was found to give poor results, and so the sensor neuron outputs were scaled and shifted to be in the range \([-0.5, 0.5] \). The spring network output is a weighted sum of the extensions of all springs in the network, and in some cases also the extension velocities. There are two departures from Hauser et al. [11] here. We use the spring extension in the output sum where they used the overall length, and added extension velocities as a computationally cheap way to potentially increase the information encoded in the network output. The outputs of the two networks are fed into the motor function Equation (2) in the same way as the CTRNN motor neuron outputs were in Beer [3]. The CTRNN controller in Beer [3] was bilaterally symmetric. In this case symmetry of control is achieved by having two identical networks of springs, one of which receives its inputs from the sensory neurons in the reverse order to the other. The CTRNN controller consisted of a layer of five fully interconnected recurrent interneurons, and two feedback motor neurons. The spring network pair replaces these seven neurons.

2.3 The evolutionary search algorithm

Some network parameters are generated randomly and others are set through a search with a Macroevolutionary Algorithm (MA) [23]. The MA was selected over a Genetic Algorithm (GA) because it was found to be less prone to premature convergence to local optima in the search space for this task. In short, whereas a GA models microevolution, with individual pitted against individual, the MA models macroevolution, at the level of species. Each member of the population of the MA is a species, and selection proceeds not just based on fitness, but also on the similarity between the species. Essentially, the more similar a pair of species are, the more they are in competition. On every generation a matrix is built of the scores of all members of the population against each other using the following function:

\[
W_{i,j} = \frac{f(p_i) - f(p_j)}{|p_i - p_j|}
\]

where \(W_{i,j}\) is the score for individual \(i\) against individual \(j\), \(p_i = (p_{i1}, \ldots, p_{it})\) are the genes of the \(i\)-th individual, and \(f(p_i)\) is the fitness of the phenotype which is mapped from \(p_i\). The overall score for a species is the sum of its scores against all other species, and all species with a negative total score become extinct. This means that the number of evaluations per generation is dynamic; often as small a proportion as around \(\frac{1}{4}\) of the population will be selected for replacement.

With probability \(\tau\), an extinct species, \(p_i\) is replaced with a randomly generated one. Otherwise it is replaced with a species recombined from the genes of the extinct species and a randomly selected survivor, \(p_b\). The function for replacement by recombination is:

\[
p_i(t + 1) = p_b(t) + \rho \lambda [p_b(t) - p_i(t)]
\]

where \(\lambda \in [-1, 1]\) is selected randomly, and \(\rho\) sets the radius around the extinct species in parameter space for placement of the new species.

The algorithm was implemented as described in [23], except for the setting of the two dynamic constants, \(\rho\) and \(\tau\). The genetic radius for reproduction, \(\rho\), was set by the function \(\rho = 0.3 (1 - f_{max})\), where \(f_{max}\) is the current maximum fitness, subject to a minimum value of \(\rho = 0.1\). The temperature parameter \(\tau\) was set by the function \(\tau = (1 - f_{max})\), subject to a minimum value of \(\tau = 0.2\). In addition, a constraint was set such that at least one of each generational offspring was randomly generated, in order to promote diversity in later stages. For the same reason, a mutation operator was added such that on average one gene per genotype would be mutated. Mutated genes are moved by a random amount drawn from a uniform distribution in the range of \(\pm 10\%\) of the total genetic interval with a probability of 0.9, and replaced with a random value from a uniform distribution across the entire range of the gene with a probability of 0.1.

A single network topology generated at random at the beginning of each run of the MA is employed by all members of the population. The node coordinates are generated randomly in an area \(10 \times 10\), and then connected with springs by the use of a Delaunay triangulation [19]. The use of this triangulation method tends to maximise the triangle angles, but also leads to a variable number of springs in the network. Parameters which may be determined by the search are: spring coefficients
for stiffness and damping, weights on the sensory inputs to the networks, weights on the spring states for the linear readout, feedback gains, and the bias term for the motor function in Equation (2). All parameters are evolved as double-precision real numbers in the interval $[0, 1]$ and scaled to appropriate values in the genotype to phenotype mapping. Genotype length is highly variable, as will be explained in Section 3.

For the purpose of evaluation the horizontal distance, d_i, between the agent and the object is clipped to a maximum of 45 and then normalised between 0 and 1. Hence for a catch trial the controller scores $1 - d_i$ and for an avoid trial the score is equal to d_i. The final score for a controller is the mean of its individual trial scores. The horizontal distance is clipped to prevent success in one behaviour from dominating a controller’s score at the expense of the other.

The MATLAB IDE (The Mathworks, Inc., Natick, MA) was used for all aspects of agent simulation, evolution, and later analysis.

3 Results

In this section we will look more closely at the means of setting the parameters of the networks and their readouts. In the reservoir computing paradigm, network parameters are typically generated randomly and only readout weights are adapted. However, due to the fact that the networks used here are much smaller than is usual, it was not immediately obvious whether the same template should be followed here or whether all available parameters should be placed under evolutionary control. We will begin by describing the options we built into the process to be able to find an answer to this question, and then follow with a record of refinements which ultimately led to a much improved success rate.

A set of controller features may be enabled or disabled at the beginning of each evolutionary run. These features are: whether to use the linear or non-linear spring model, whether to use spring extension velocity in the linear readout, whether to evolve real-valued weights on the inputs or to use random integers, whether to use a single random set of spring parameters across the population or to evolve those parameters, whether to employ node position feedback and whether to evolve or to use a constant value for the motor bias in Equation (2) (Table 1, column 1). The ranges of all evolved parameters are given in Table 2. Due to the use of different configurations of which features to evolve, and because the use of the Delaunay triangulation leads to a variable number of MSDs in the network, the genotype length is highly variable. Approximate lengths for some configurations which led to a number of successful controllers are given in Table 3.

Table 1: The first winning combinations discovered. The features of velocity in the readout sum, weighted inputs, evolved springs, nonlinear springs, evolved motor function bias and node position feedback are all optional. 20 evolutionary runs of 100 generations with a population size of 400 were run with random selection of optional features. 5 runs generated successful controllers; each with a unique configuration.

<table>
<thead>
<tr>
<th>Controller</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fitness(%)</td>
<td>99.6</td>
<td>98.9</td>
<td>99.5</td>
<td>98.4</td>
<td>97.8</td>
</tr>
<tr>
<td>Number of springs</td>
<td>20</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>Velocity</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Weighted inputs</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Evolve springs</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Nonlinear springs</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Bias motors</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Feedback</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 2: Limits placed on evolved parameters for configurations A through E.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Lower limit</th>
<th>Upper limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position</td>
<td>-10000</td>
<td>10000</td>
</tr>
<tr>
<td>Velocity</td>
<td>-10000</td>
<td>10000</td>
</tr>
<tr>
<td>Input weights</td>
<td>-2</td>
<td>2</td>
</tr>
<tr>
<td>Linear stiffness coefficients</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>Linear damping coefficients</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>Non-linear stiffness coefficients</td>
<td>100</td>
<td>200</td>
</tr>
<tr>
<td>Non-linear damping coefficients</td>
<td>100</td>
<td>200</td>
</tr>
<tr>
<td>Motor function bias</td>
<td>-5</td>
<td>5</td>
</tr>
<tr>
<td>Feedback gains</td>
<td>-1</td>
<td>1</td>
</tr>
</tbody>
</table>

When node position feedback is employed it is applied as an xy force vector based on a node’s displacement from its resting position. Where the motor bias is not evolved a constant value of 2.5640, taken from a successful CTRNN controller which was found when developing the simulation, was used. Where input weights are not evolved, one set of weights is randomly drawn from the set $\{-1, 1\}$, and applied to the entire population. These unity weights are of both signs in order to avoid the entire network being pushed in a single direction. When spring parameters were not evolved they were randomised as reported in Hauser et al. [11]. Briefly, non-linear spring coefficients are drawn from a uniform distribution in the interval $[100, 200]$ and linear spring coefficients are drawn from a log-uniform distribution in the interval $[1, 100]$. The use of the log-uniform distribution biases samples towards the lower end of the interval.

It was initially unclear which configuration of features was most appropriate, so a set of 20 evolutionary runs, each with a
single randomly generated configuration applied across the population, was executed. A population of size 400 was evolved over a short run of 100 generations. While the MA favours larger populations, note that the proportion of the population replaced, and therefore requiring evaluation, is variable and typically much less than the population size. A success threshold of \(\sim 98\% \) of the perfect score was determined to be sufficient to ensure the correct behaviour for all trials, and 5 out of 20 runs resulted in viable controllers. Table 1 shows the configurations of these 5 controllers. Although this is a small set of results, the variety is striking - the configurations of controllers A and E are similar, but otherwise there is no evidence of a particular configuration which is required for success. However it can be seen that the use of velocity in the linear readout is favoured; being used in 4 out of 5 controllers. Of the remaining features only whether or not to evolve the motor bias stands out; selected in only one result.

Following these results a further 20 evolutionary runs were executed with the configuration of controller A, selected because it gives the highest dimensional search space without using feedback. While in many search algorithms increasing dimensionality is an issue, in evolutionary algorithms it can be advantageous in that it may introduce more pathways to success \([5]\). Runs continued until the search could be seen to either have succeeded or effectively halted at a local optimum, up to a maximum of 1000 generations. In this case only 4 runs met the success criterion, but the average fitness was high, as can be seen in Table 3.

Sets of evolutionary runs with configurations based on that of controller A were later conducted in an attempt to improve upon the evolutionary success rate of configuration A (Table 3). The first set of 20 was with a configuration which will be referred to as ‘J’, which had the input weight range doubled to \([-4, 4]\]. This change was made based on an observation that controllers which just failed to succeed always did so because they did not respond correctly to the most distant falling objects, which are initially only detected by the outermost sensors, and that only briefly if the correct response is not immediately produced. Adjusting the range of sensory weights seems to have made it possible for agents to respond more strongly, and correctly, in these most difficult trials. The configuration of the second set of 20, referred to as ‘S’, was based on configuration J, but in this case spring parameters were not evolved and spring velocities were not used in the readout. This process is more faithful to the reservoir computing paradigm, and was surprisingly successful given the low dimensionality for controller tuning. The final set of 20, referred to as ‘W’, was also based on configuration J, but was modified such that instead of each sensory input driving only a single node in each MSD network, each free node received a weighted input from every sensory neuron.

The box plot in Figure 4 shows the distribution of fitness scores found for the four sets of evolutionary runs. Configurations J, S and W are all more successful than A in terms of mean fitness. This plot alone makes J and W look strongest, but when we look at other statistics such as number of runs which succeed according to the 98% criterion, and how long it takes to obtain those successes (Table 3), a slightly different picture is painted. Configuration S, perhaps because it has a far smaller search space than all others, has a 50% success rate, considerably the best of the four. The reader will be reminded that the proportion of the population replaced in every generation varies, so not too much can be drawn from the mean time to success for all configurations, but they seem comparable. It may be that a further improvement may be made by merging configurations S and W, which will still give a relatively small search space, although with the advantage of a number of weights to be tuned for each input. However, we have yet to see how the various configurations cope with evolution in noisy conditions, which will be the ultimate test. We have also yet to conduct a proper investigation into the best evolutionary algorithm for this task.

<table>
<thead>
<tr>
<th>Configuration</th>
<th>A</th>
<th>J</th>
<th>S</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of genes (approx)</td>
<td>120</td>
<td>120</td>
<td>26</td>
<td>160</td>
</tr>
<tr>
<td>Mean fitness</td>
<td>0.93</td>
<td>0.95</td>
<td>0.95</td>
<td>0.96</td>
</tr>
<tr>
<td>Percentage of results with fitness > 0.98</td>
<td>20</td>
<td>35</td>
<td>50</td>
<td>35</td>
</tr>
<tr>
<td>Mean time to success (generations)</td>
<td>243</td>
<td>390</td>
<td>288</td>
<td>271</td>
</tr>
</tbody>
</table>

Table 3: Statistics of evolutionary runs for configuration A and derived configurations. The statistics are calculated from the results of 20 runs for each configuration.

In summary, a number of different configurations of MSD networks and network layouts (Figure 3) have proven effective. Interestingly, there is also considerable variety in the behaviour of successful controllers and, from a high-level point of view, various strategies are possible. Broadly speaking, three distinct strategies have been observed. In Figure 5 we show an example of each. The individual figures plot the horizontal distance between agent and object over time. When the agent’s behaviour is viewed from this perspective it can be seen that controller A inches towards objects until it can distinguish between them,
controller A5 finds objects quickly and then oscillates around their position until making a decision, and controller A1 scans back and forth.

Understanding how these different behaviours arise will help us to understand how compliant networks can generate adaptive behaviour. The following section will thus analyse the behaviour of MSD networks in this task in general, and finally we will analyse two specific controllers in detail in Section 5.

4 Analysis

In order to uncover the principles of operation of successful MSD networks we conducted a number of analyses. We test the hypothesis that controllers actively maximise information from the sensors. We examine the capacity for memory of the networks in order to determine if it is possible that the agent can integrate the inputs from its sensors over time, and we disrupt the normal operation of networks in a variety of ways in order to gain some knowledge from the effects.

In all of the following analyses, except that of perturbation analysis, we will examine two results, for comparison and contrast. The first is controller A, from our first evolutionary run, and is selected because its behaviour is characteristic of the results as a whole. The second, denoted A1, is a result from an evolutionary run with configuration A and is selected because it is unique: it is the only successful MSD controller which we have yet seen which scans objects in a similar fashion to Beer’s CTRNN [3, 4].

Before continuing to more detailed scrutiny of individual controllers, there are certain observations which can be made
regarding the problem and the results in general.

In each trial there is an initial period where the falling object is out of range of the agent’s sensors. Due to the fact that sensory input is normalised and scaled, in this period the sensory neurons receive a constant input of −0.5. Thus the MSD networks are driven into a biased configuration which will affect the response to stimuli from the object when it falls into range. Although the MSD networks have non-zero output throughout this period, due to the symmetry of the network pair and the antagonistic motor configuration, the agent does not move until the object is detected.

In general, as the objects fall towards the agent, the sensory inputs to the networks rise along a ramp from −0.5 towards 0.5 (see, for example, Figure 14c). The initial biased configuration takes the form of energy stored in the networks, and so as the inputs rise towards zero, and beyond into positive values, energy is released from the networks and then imparted to them again. However, as some sensors are never activated or are activated only at certain times, there will always be some energy stored in the networks. Figure 5c gives an example of this. Both extended and compressed springs indicate stored energy, and in this case the total energy rises quickly, then falls gradually as the sensory stimuli approach zero, and then rises again close to the end.

The behaviour of the agent over the remainder of the trial can be split into two phases (Figure 5). In the first phase the agent positions itself under the object, not necessarily centrally or statically, as we shall see in Section 5, and in the second phase the agent responds to the type of the object in either catch or avoid actions.

A point worth noting is that the two objects are of different widths (Figure 1). Circular objects are 30 units wide, but although diamonds are squares of 30 units wide, they are oriented such that the agent ‘sees’ the length of their diagonal, which is approximately 42. This means that if the agent sits below the object, at some point more sensors will be activated for diamonds than for circles, something which may be exploited by evolution.

Finally, while it is not impossible that a network with fading memory could exploit some transient effect as a temporary timer, we do not consider it likely that networks as small as those herein, with a high degree of coupling throughout, could isolate such an effect over the period of the trial. However, as already noted, for all successful agents the sensory inputs rise along a ramp. Hence while the pattern of sensors which are actually activated may vary across trials and across agents, there will still be a strong correlation between the magnitude of stimuli and the present point in time, a feature which is ripe for exploitation by the evolutionary process in producing successful behaviour.

4.1 Information analysis

In this section we consider an information-theoretic explanation for the behaviour of the agent. Mobile adaptive agents do not only process information from their sensors, they also move to generate it. In this case all successful controllers moved the agent such that the falling object was kept in its visual field until the decisive moment of selecting the appropriate action for the object type. This is of course an obvious strategy, but when the visual field is examined through an information-theoretic lens it becomes evident that some controllers have evolved to achieve this by maximising sensory information, for at least some of the time. In the foregoing we explore how far this is the case, and over what timescale this adaptation takes place.

For each trial we subject our agents to, what the agent will ‘see’ at any particular point in space and time is predetermined, as the horizontal position and vertical velocity of the object is constant, unaffected by the agent, and its apprehension is unaffected by noise. The lookup tables we used for the sensor model essentially extend over the entire space and time of the trial, and so can be easily analysed for informational content. We quantised the stimuli levels in the tables to 200 distinct levels. For each location in space-time we treat the combination of 7 stimuli as a single event, and then calculate the probability of occurrence, over all space-time, for each event. From this probability mass function we then compute the self-information, I, of each location (x, t), using the following equation:

$$I((x, t)_k) = -\log_2(p_k)$$ \hspace{1cm} (12)

where p_k is the probability of the pattern of stimuli at point k.

In this context, patterns of stimuli which have low probability have high informational content because they have low ambiguity as to the position of the agent relative to the object. The self-information of the agent’s visual field, as a function of its horizontal distance from the object and simulation time-step, can then be viewed as a kind of map across space and time (see Figures 6a and 6b), where the ambiguity of the pattern of stimuli falls as the self-information rises\(^1\). The maps we show here were built with the assumption that the agent could not know the current time. As noted in Section 4, there is an indication

\(^1\)To clarify, although entropy is the expected value of self-information, we do not consider the entropy of the space-time map as its structure is fixed. In addition we do not consider the entropy of the signals from the sensors over time, as it is not guaranteed that this entropy will be correlated with paths of high information through space-time.
of simulation time available in the environment due to the objects falling, so as a control we also built maps based upon the opposite assumption: that the agent knew exactly what time it was. In this case, rather than having a single probability mass function over all time, we constructed one for each simulation step and so calculated self-information on an instant by instant basis. The resultant maps had roughly the same structure as the ones we show here, and so for all following analyses we use only the maps based on the first assumption.

Beer [4] identified a structure in the visual field of the agent. Cells of continuously varying levels of sensory stimulation are divided by ‘edges’ which delineate the boundaries between individual sensors detecting and not detecting the object, as the relative position of object and agent is varied (Figure 6). When we converted the visual fields for both catch and avoid into maps of the self-information of sensory events over space-time, we found that the informational structure has a certain amount of correspondence with the already noted structure, shown in Figures 6c and 6d, but also that the aforementioned edges have particularly high informational content (Figures 6a and 6b). Furthermore, when we overlaid the trajectories of agents onto these maps we saw that some controllers, for catch trials in particular, appeared to closely follow these edges (Figure 7). As noted in Section 4, the behaviour of agents can generally be split into two phases: moving to get a good view of the object, and then moving to catch or avoid as appropriate once the object type is identified. Visual inspection of the trajectories across these maps suggests that agents may be following a route of high information in phase 1, but it is not clear if this is also the case in phase 2.

The analysis reported here is related to ‘empowerment’, an information-theoretic measure introduced by Klyubin et al. [17], which essentially quantifies the effect of an agent’s action upon its own apprehension of its environment. Klyubin et al. [17] define empowerment as the channel capacity between the action of an agent at time t and the state of its sensors at time $t + 1$.

![Figure 6](image-url): Representations of the visual field of the agent. As the object falls at a constant rate over all trials there is an equivalence between its position and time, plotted on the y-axis. The horizontal distance between agent and object is plotted over the x-axis. The same cells, bounded by edges where sensors switch on/off, can be seen in both representations. (a) The self-information of the visual field for catch trials. (b) The self-information of the visual field for avoid trials. (c) The summed intensity of stimuli over the visual field for catch trials. (d) The summed intensity of stimuli over the visual field for avoid trials.
The underlying idea is that it is in the agent’s interests to maximise this informational return from its actions, and that this ‘empowers’ it. Trajectories such as that for controller A on catch trials (Figure 7a) suggest that the evolutionary process has identified and exploited paths of high information, but it is unclear as to what extent. It is also unclear whether the evolved controllers have any capacity for the detection and measurement of information, or whether they simply follow evolutionarily predetermined routes.

We are able to shed some light on this subject by considering the extreme case: an agent with the policy of, at each simulation step, moving to the position of highest information in its reach. As we can see in Figures 8a and 8b this is an effective policy for phase 1, but is not sufficient for phase 2, when the object must be identified and responded to appropriately. Therefore we can rule out the simple policy of always maximising information at the evolutionary timescale and at the level of individual controllers. In fact a policy of simply maximising the summed amplitude of stimuli compares well in terms of performance with maximising information (Figures 8c and 8d). This is also the case when noise is added to the information map and visual field for the two scenarios, respectively (Figure 9). Although we have not yet identified it in any controllers, we believe that in general it will be easier for both evolution and individual agents to follow this second policy, but also that it will be more robust at the evolutionary timescale. For example, in preliminary tests with noisy sensors it appeared that controller A, which has clearly evolved to follow a path of high information in phase 1, was too tuned to specific patterns of stimuli and failed dramatically with even low noise levels.

In summary, while evolution has exploited the structure in of the information space, the policy of simply maximising infor-
mation suffers from a lack of distinction between the quantity of information and its value. While we may expect a certain correspondence between the quantity and quality of information in biological organisms, where sensory systems are co-evolved with behaviour, this should not be taken for granted. In systems such as this, where the sensory morphology is hand-designed and fixed throughout evolution, it is even more likely that a certain amount of received sensory input will be redundant. As we shall see in Section 4.4, performance is more impacted upon by certain sensory disruptions than others, which lends further support to this idea.

Figure 8: Testing simple agent policies. The first policy, shown in (a) and (b), is for the agent to move such as to maximise the self-information appearing to its sensors. The second policy, shown in (c) and (d), is for the agent to move such as to maximise the sum of stimuli intensities appearing to its sensors. In both cases, 100 trials are shown, starting from random positions in the same interval as the trials used in evolution. (a) Maximising self-information for catch trials. (b) Maximising self-information for avoid trials. (c) Maximising summed stimuli intensity for catch trials. (d) Maximising summed stimuli intensity for avoid trials. Note that maximising stimuli intensity is optimal for catching objects, but show no distinction between object types. On the other hand maximising information, while suboptimal for both catch and avoid, does lead to distinct behaviours.

4.2 Capacity for memory
We turn next to measuring the capacity for memory of networks A and A1. As with the analysis of the preceding section, this question is of interest as it gives clues as to how the controllers perform their functions. In acquiring our measures, we follow a method based on that described by Maass et al. [22]. Maass et al. devised an input stream with zero mutual information (and therefore also zero correlation) between different segments. Then, to obtain a measure of network memory, readout neurons were trained to reproduce segments of the input stream from earlier periods, and segments of the output signal were correlated against the input segments they should have reproduced. A similar approach is taken here, although we chose not to measure general memory capacity but rather to see if these networks can retain information of the sensory inputs they are evolved to deal with. For this reason the readout was trained to recover the simplest combination of the input signals over the course of a single
Figure 9: The policies of maximising self-information and maximising summed intensity of stimuli are tested under conditions of noisy sensors. The visual fields are subjected to white noise, with a signal to noise ratio of 5:1. (a) Maximising self-information for catch trials under noisy conditions. (b) Maximising self-information for avoid trials under noisy conditions. (c) Maximising summed stimuli intensity for catch trials under noisy conditions. (d) Maximising summed stimuli intensity for avoid trials under noisy conditions. In this case both strategies are still successful in maintaining attention on the object in phase 1, but lead to no distinction between object types.
Figure 10: Measuring memory capacity. The linear readout is trained to recover inputs from 10s ago. Then the input stream and the controller output are split into 10 s segments and the correlation of each output segment with the prior input segment is calculated, at all available points in time. The correlation of the input streams from the two periods is also shown as a baseline. The legend for all four plots is shown in (a). (a) Controller A, trial 5 (catch). (b) Controller A, trial 18 (avoid). (c) Controller A1, trial 5 (catch). (d) Controller A1, trial 18 (avoid). In all plots the baseline trace indicates the zero-memory case and memory is the difference between network outputs and this baseline. Typically the baseline is high and the network memory is therefore only small, but it should be noted that both networks successfully disambiguate the case when the baseline correlation switches sign and successfully track the sign of past inputs.

While a negative correlation still indicates a relationship, for the sign of the correlation to change introduces ambiguity which the trained readout has been able to resolve. However it appears unlikely that this controller exploits memory capacity. As shown in Figures 5a and 5b, for both catch and avoid behaviours, initially this controller gradually creeps towards the object as it falls, suggestive of a purely reactive network. The result for controller A1 also indicates a degree of memory capacity, with the network being able to recover more information about earlier input segments than the input stream itself, as shown in Figures 10c and 10d, and again to resolve the ambiguity we see in the baseline. This is consistent with the general strategy. Unlike all other results this controller drives away from the object and then returns to it, a behaviour which seems of a more proactive character and implies memory of at least which side of the agent the object is on. It should be pointed out that this controller does not make use of feedback. Any present memory is only transient, fading memory.

4.3 Perturbations

We can learn something more about these controllers and the difficulty of the search problem by examining the effect on performance of adjusting the evolved parameters. This analysis has only been conducted for controller A1. Parameters are perturbed by adjusting genes and then mapping to phenotypes to evaluate performance. We adjusted genes, one at a time, with a two-part scheme: with fine increments near to the existing value, and larger increments covering the entire possible range.

In our first test (see Figure 11) we used an increment of 0.2 across the whole range, and 0.1 in the range of \([-0.2, 0.2]\) centred about the value already optimised by evolution. At this scale we see a fairly smooth fitness landscape, with few local optima, although as far as only adjusting a single gene at a time goes, there seems to be no possibility of improvement upon this result, from this location in parameter space. However, this does not rule out the possibility of improvement by adjusting multiple
parameters simultaneously.

Figure 11: Each gene was perturbed one at a time for controller A1. The entire range of values for each gene is explored with a resolution of 0.2, and the interval of [-0.2,2] about the evolved gene value is explored with resolution 0.1. Evolved gene values are marked with white asterisks. For many genes the surface contains one or more plateau, indicating large regions with no cues for evolution to determine which way to move parameters towards their optima. The values of many genes, particularly on the right-hand side of this plot, can be seen to have very little effect on fitness.

At this scale certain characteristics of controller A1 become clear. When varied individually the nonlinear spring coefficients, encoded in genes 80 to 115, have very little bearing on the performance of the agent, with fitness remaining high throughout. This seems to be because the extensions and velocities of the springs are very low (Figures 5c, 5f and 5i). As can be seen in Equation (7), the nonlinear effects are proportional to the cubes of these states. As the states are already well below zero, cubing them leads to only micro-effects. It is worth mentioning here that this task may not even require nonlinearity in the network, although, as noted by Hauser et al. [12], the couplings between the MSDs in the network will introduce a certain amount of nonlinearity regardless of which spring model is used.

One discovery which is slightly more surprising is that the genes which encode for the weights applied to the velocities of springs in the linear readout, genes 19 to 36, also have a relatively low effect on fitness. A possible reason for this is that in general the inputs to the network increase along a ramp. The MSD elements will typically have highest velocity shortly after sensors being switched on or off, which can provoke a sharp change followed by a transient vibration, but gradual change at the inputs also drives gradual, i.e. low velocity, change in the network. As exampled in Figure 5i, the velocity states will, on average, be low and so the weights applied to them will be of relatively low importance. On the other hand, in our tests for memory capacity in this controller, we have seen that velocity encoding is advantageous in recovering memory effects. The other side of this coin is that incorrect velocity encoding will be disruptive of memory effects appearing at the network outputs, and indeed of behaviour in general. At this point we can only speculate, but it may be that although we see little effect when we perturb these weights individually, the effect of adjusting several simultaneously will be deleterious.

Also unexpected is the discovery that genes 62 to 79, which encode the MSD linear damping coefficients, may in most cases also be varied without too much effect. This is surprising because the character of the response of an individual MSD can vary dramatically with the damping coefficient. We believe the relative neutrality of individual damping coefficients is due to two causes: firstly, the damping effect is proportional to the velocity of the spring, which we have already seen is often close to zero. Secondly, and more importantly, due to the coupling of MSDs through nodes, damping may be more a property which is local to a node rather than to a single MSD. Therefore the effect of changing the damping coefficient for a single element may be partly absorbed by adjoining elements.

When we repeated the test using an increment of 0.1 across the entire gene range and an increment of 0.01 in the range of

\[-0.1,0.1\]

centred about the existing value we discovered that the fitness landscape is in fact not as smooth as it originally appeared (see Figure 12b). We performed this test for genes 1 to 79 only as we had already observed that genes from 80 upwards were not critical. Finally we varied gene 1 over the full possible range, at a resolution of 0.001 (see Figure 12a). This 1-dimensional fitness landscape is extremely difficult to negotiate, with a large plateau over much of its range and a highly disrupted surface in the region of the global optimum. It appears that the results given here are fairly characteristic, and that this explains the difficulty of obtaining successful controllers.
Figure 12: (a) The 1-dimensional fitness landscape for gene 1 of controller A1, where all other genes are held at the evolved values. Here it becomes clear that not only are plateau in the fitness landscape an issue, but that the surface is increasingly noisy in the region surrounding the optimum value. (b) Each gene from 1 to 79 was perturbed one at a time for controller A1. The entire range of values for each gene is explored with a resolution of 0.1, and the interval of $[-0.1,0.1]$ about the evolved gene value is explored with resolution 0.001. Evolved gene values are marked with white asterisks.

Figure 13: Lesion experiments. The top row of plots shows results for controller A and the bottom for controller A1. The rows in plots show the performance on a trial by trial basis. The colour of a grid element shows the fitness of the controller following the lesion. Trials 1 to 12 are the catch trials and trials 13 to 24 are the avoid trials. From left to right: one spring at a time is disconnected from the readout; one spring at a time is removed from the network, one spring at a time is linearised; one input at a time is disconnected. It can be seen, here as in the perturbation tests, that performance for both networks is relatively robust to the adjustment of many parameters.

4.4 Lesions

As with perturbations to the system parameters, we have learnt something about our controllers by recording changes in agent performance as parts of the network are disabled. Four experiments, illustrated in Figure 13 for controllers A and A1, were conducted. In the first three experiments changes were made to the springs, one at a time, and the performance scores for the
modified network for all 24 trials were recorded. In the fourth experiment, one sensor at a time was disabled and performance scores were recorded. In order, the modifications for springs were: to disconnect them from the linear readout, to remove them from the network completely, and to set their nonlinear coefficients to zero.

Various observations can be made from these plots. It can be seen that in general adjustments to the network elements for controller A (Figures 13a and 13b, 13c) tend to cause failure in catching circles far more often than in avoiding diamonds, as though this controller is predisposed to avoidance. To support this conclusion, this agent also shows low dependence on all but the outermost sensors for avoidance but depends on all sensors except sensor 5 for catching (Figure (13d).

Complete removal of springs from the network causes high failure in both agents, although controller A1 (Figures 13e, 13f, 13g, and 13h) is more robust to this than controller A. That this should cause a high failure rate comes as no surprise, given the tightly coupled nature of the network dynamics. Neither controller shows a strong dependence on spring non-linearity; which is in accord with observations in the previous section on perturbation tests for controller A1.

The plots in Figure 13 suggest that for both of these agents the most difficult trial is trial 12, the last where catching behaviour is required. This is surprising as at the beginning of this trial the object is only slightly offset from the agent’s position. The reason for this has not yet been uncovered, but it seems probable that it is connected to the large weights in the linear sum as relatively small differences in sensory input are amplified into high velocity, which could lead to a sudden loss of the object’s position.

5 Case studies

In this section we will consider the controllers A and A1 separately, scrutinising their behaviour over representative trials in some detail. What we can observe at this level will be supplemented by the observations of the previous analyses, and so we will build as complete an understanding of these two controllers as we are yet able. As these two seem to represent the opposite extremes of the range of behaviours we have seen in our collection of results, the two together may be considered broadly representative of the class of controllers under the evolutionary conditions we employed.

5.1 Controller A1

Figure 14: Network outputs, agent velocity and sensory stimuli of controller A1 over trial 9 (catch). (a) Network outputs. (b) Agent velocity. (c) Sensory stimuli. Note that the sensory stream here and in following figures is recorded after being normalised and shifted to the interval $[-0.5, 0.5]$, but prior to the delaying effect of the sensory neurons.

As can be seen in Figure 14b, agents tend to operate their motors in the regions of cutoff and saturation, a consequence of using a sigmoid operation between network output and motor (Equation 2). Figure 14a shows the network outputs which produced the velocity shown in Figure 14b. The two red lines show the point at which individual motors switch off and saturate. Because the networks drive an antagonistic motor pair, the agent stops at every point where the network outputs coincide. It also stops whenever the motors are either both saturated or both switched off. From the point of view of dynamics the network outputs appear complex and nonlinear, especially as sensory input tends to rise linearly and show high correlation between not only past and present but also between different sensors. From the point of view of information, the sigmoid in the motor function operates as a filter, rejecting redundant information from the network outputs.

In the case of this controller, it can be seen that throughout most of the trial there is a certain degree of symmetry between the network outputs. Spikes tend to indicate short-term effects of ‘events’ in the sensory streams, whereas divergences and convergences occur relatively periodically (suggesting a certain indifference to many stimuli) until close to the end of the trial. In tests with white noise added to sensory input, the controller represented in these plots showed the highest degree of robustness to white noise yet seen.
It is often difficult to attribute causality in the sensorimotor loop. For this controller, the trajectories across the information maps shown in Figures 7c and 7d suggest that this controller is aversive to a lack of information, turning back towards the object at the point where the last sensor switches off. But if we look at \(t \approx 300 \) in Figures 14b and 14c, where the agent makes such a turn, we discover that the last sensor in fact did not go off for trial 9. We can also see that there is no easily discernible effect of the previous sensor switching off. Therefore we conclude that, for this sensor on this trial and at least some points, the causal relationship between sensor and agent velocity is the reverse of our expectation - the sensor output is determined by an inevitable turn rather than being its trigger.

It is still of interest why evolution has selected a controller which produces a trajectory which appears to respond to edges in the information map by changing direction (Figures 7c and 7d). Perhaps the ancestors of this controller responded to those edges but at some point the relationship changed from reaction to prediction. Another striking pattern in the trajectories is the apparent constancy of the magnitude of the gradient throughout the period where the agent is ‘scanning’, caused by the fact that in this period, while the agent changes direction a number of times, its magnitude of velocity is generally at the maximum possible. Another question to be asked here is this: given a lack of fast reactions to sensors and an apparent scanning behaviour, how far does the network integrate sensory input? This is not an easy question to answer - generally speaking, the sensory input is constantly growing for any successful agent - this is a kind of environmental integration which can potentially be exploited by evolution. It is unclear how far this controller exploits sensory input simply as an energy source to drive its oscillation, and how far it is responding to particular sensory patterns.

However, the controller is capable of distinguishing between the two objects, so it is clear that at least at some point the sensory input is more closely observed. The point of decision would appear to be soon after \(t \approx 600 \), where the network outputs diverge in a way which shows no symmetry. In trial 9, which is a catch trial, the motors switch off at this time and the agent stops to perform a catch. However, as can be seen in Figures 15a and 15b, for the corresponding avoid trial, there is some delay between decision and action. The network outputs diverge soon after \(t \approx 600 \), but as both networks are well within the cutoff region at that time, the effect is delayed and it takes until \(t \approx 670 \) for the right motor to switch on (Figure 15b) and the ‘escape’ behaviour to be initiated.

5.2 Controller A

Whereas controller A1 tends to switch both motors, the general pattern for controller A is to keep the left motor at full power until late in the trial and so control its velocity by switching the right motor on and off (Figure 16b). In catch trials it inches towards the object by pulsing the right motor. In avoid trials it is still the right motor which effectively controls the velocity, but its action can be smoother and more prolonged than in catch trials (Figure 17b).

In general sensory effects on network outputs are easier to detect for this controller than for A1. The first sensor to activate for the catch trial number 7, sensor 3 (see Figure 16c) appears to provide the energy for the left motor, with the network output tracking the ramp of that input and therefore staying well in saturation until the decisive moment. For this network the effects of other sensors are superimposed upon that ramp in the output, but in the right network there appears to be little or no effect of sensor 3, with the underlying form of the output in phase 1 being initially flat and not far into saturation. There is a distinctive curve superimposed upon the effect of sensor 3 in both networks; this is the effect of sensory stream 4.

In this trial sensor 2 has a repulsive effect on the agent throughout phase 1. Each time it comes on, it is followed by a negative spike in the right network which briefly deactivates the right motor so that the left motor moves the agent until the sensor also switches off. It appears that the activation of sensor 5 at \(t \approx 540 \) changes the predisposition to move away when sensor 2 is activated. The decisive moment in catching occurs when sensor 6 switches on, at around \(t \approx 633 \), the sensory input balances...
Figure 16: Network outputs, agent velocity and sensory stimuli of controller A over trial 7 (catch). (a) Network outputs. (b) Agent velocity. Note that, in contrast to controller A1, this controller tends to pulse motors. (c) Sensory stimuli. Note that the sensory ramp for this controller has a remarkably constant gradient compared to other controllers. In phase 1 this gradient corresponds to an edge of high information in the visual field (Figure 7a).

and the two network outputs rapidly converge (see Figures 16c and 16b for sensors and velocity, respectively, over this trial).

The main points to be made here are that sensory effects on the network outputs are almost always immediate for this controller, and that their effects are precariously balanced. In the description above we have emphasised the importance of sensors 2 and 6 in centring and catching, respectively, and yet in the lesion tests of Section 4.4 it emerged that in the case of trial number 7, the most detrimental lesions were for sensors 3, 4 and 5 (Figure 13d). A closer look at Figure 16a and Figure 16c reveals that although sensor 2 seems to drive motion, it is the combination of its effect and that of sensor 4 which ensures that each time sensor 2 switches on the velocity response is only a short pulse. This intricate balance of sensory input corresponds to the path of high information which this agent was seen to follow in Section 4.1 and has been discovered to not be a robust solution.

Figure 17: Network outputs, agent velocity and sensory stimuli of controller A over trial 19 (avoid). Note that in this trial the object falls from the same position as in trial 7 (Figure 16). (a) Network outputs. (b) Agent velocity. Note that although there is still a tendency to pulse motors, in the avoid trials velocity occasionally varies more smoothly, as can be seen here between $t \approx 200$ and $t \approx 400$ (c) Sensory stimuli.

In trial 19, the corresponding avoid trial for trial 7, the response to individual sensors appears somewhat different. Presumably because sensors 2 and 4 are activated almost simultaneously, the effect of sensor 2 is somewhat muted, with a low velocity moving the agent towards the object between $t \approx 200$ and $t \approx 400$. As before, the activation of sensor 5, at around $t \approx 409$, signals the end of phase 1 and stops motion. This time the decisive event appears to be the late activation of sensor 1, at $t \approx 556$. When this happens the network outputs, already divergent, both change direction, eventually causing the agent to drive away at around $t = 700$.

In lesion tests it emerged that sensor 1 is important to both catch and avoid behaviours for controller A. In the pair of trials we have examined here, a decisive effect was observed for avoidance but no effect was observed in the catch trial. This is because in the catch trial the inputs to the networks were already balanced by the time sensor 1 was activated. In this trial the removal of sensor 1 will cause an imbalance in the inputs to the networks at the point of activation for sensor 7, and therefore have a detrimental effect on performance.
5.3 Summary

We have seen that a certain behavioural variety is possible in the networks used here, but as with controllers A and A1, there are various features which all results seem to have in common. Due to the production of large signals in the network readouts, and the sigmoidal transfer function between readout and motors, agents tend to switch between being static and moving at maximum velocity. The effect of the sigmoidal function in this case could be construed as a rejection of redundant information. That said, although switching motors may appear crude, evolution has clearly exploited certain regularities in the visual field to produce controllers which switch at appropriate times across all the trials. In many cases, such as that of controller A, this may not be a behaviour which is very robust to disturbance, but we have seen from controller A1 that a more robust controller is possible, and that this appears to be because it reacts to stimuli over longer timescales.

6 Discussion

The controller in this experiment is analogous to a body with the simplest of nervous systems: weighted connections from sensory neurons to the body and weighted outputs from the body to 2 simple summing nodes. Hence the body performs the lion’s share of the computation involved in producing adaptive behaviour which could be thought of as a reflexive response to different patterns of stimuli. Throughout most of this paper it has been convenient to describe the two responses as catch and avoid, but, for example, we could equally conceive of this behaviour as active perception in order to distinguish between friend and foe, resulting in stay or escape responses.

Due to the fading memory property, the networks used in this experiment have some capacity to store information about past inputs, but as yet there is no definitive evidence that this is exploited. While the state of the network certainly does play a central role in determining behaviour, it appears that most controllers, like controller A, are tuned to react immediately to sensors being switched on and off. In the case of controller A1, its scanning motion implies integration of the streams from multiple sensors in a way which is unique in all our results. Closer scrutiny of input and output streams reveals that this controller does not respond to all sensory ‘events’, and that in some cases it actually seems to predict them and change direction just before its last sensor is switched off. The lack of a clear causal relationship between the various input streams and the network outputs for this controller suggests, at least, that the transient effects of inputs are longer-lived than in other controllers.

When the agent’s visual field is given an information theoretic interpretation, it appears that some controllers exploit paths of high information. In behavioural phase 1, where agents position themselves under the falling object, maximising the information received by the sensors appears to be a sufficient and robust strategy, but for the decisive period of phase 2 it is not sufficient. This rules out the possibility of a controller which measures and acts to maximise the information at its inputs, and makes it clear that this is an adaptation at the evolutionary timescale. For example, the path of controller A in catch trials is such that a specific group of sensors are on during phase 1, and furthermore such that the gradient of increase of those stimuli is remarkably constant.

The information received from the visual field is first projected into the high-dimensional state space of the MSD networks, then there is a drastic two-stage reduction in information, first where the network state is reduced to a single readout output, and secondly when that output is fed through the sigmoidal motor neuron, which thresholds the output and effectively rejects most of the information in that stream. An interesting line of enquiry which has not yet been addressed is to what extent this last stage is necessary for success.

It appears from the results of both perturbation and lesion tests that for this task there is no need to use a nonlinear MSD model. However, in biological materials, nonlinearity is the norm [34], so it would be interesting to adjust the nonlinear terms in Equation (7) such that nonlinear effects are magnified and see if successful controllers are still obtained. Our intuition is that this would in fact pose no problem, as the coupling between the MSD elements in the networks already leads to a high degree of nonlinearity.

7 Conclusion

According to Pfeifer and Bongard [29], intelligence is “distributed throughout the body” and not solely in the brain. The body of evidence for this is ever-growing, and we believe the work reported on here constitutes a significant addition to that body. We have shown that complaint bodies with complex dynamics can integrate, store and process information in meaningful and adaptive ways. If an abstracted model of a body and primitive nervous system can successfully perform adaptive reflexive behaviour with the body as the main computational locus, then it seems reasonable to hypothesise that biological soft bodies could perform a similar function. Furthermore, if this behaviour is of the nature of what has previously been described as minimal cognition, then the result challenges notions of brains as the ultimate and sole seat of intelligence and cognition.
Acknowledgements

Chris Johnson was funded by a University of Sussex graduate teaching assistantship. Andrew Philippides and Philip Husbands have received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement no. 308943.

References

