University of Sussex
Browse
Etheridge, Thomas James.pdf (5.43 MB)

Application of photoactivated localisation microscopy to visualising eukaryotic DNA replication processes

Download (5.43 MB)
thesis
posted on 2023-06-09, 00:50 authored by Thomas Etheridge
DNA replication is a crucial process that ensures duplication of the genome prior to cellular division. The fidelity of this process is of upmost importance for ensuring genomic stability and the integrity of subsequent generations. Obstruction of the replication machinery by DNA damage, protein barriers or other impediments can cause replication stress, a phenotype often observed in cancer cells. Studying the underlying molecular mechanisms of DNA replication and the repair processes involved during replication arrest is thus critical to ensure a complete understanding of the process and the role it plays in cancer development and progression. A key technique used to study DNA replication and repair proteins is fluorescence microscopy, which allows researchers to visualise the expression and spatial organisation of cellular components. Until recently, the information that could be extracted from fluorescence images was restricted by limited resolution, a consequence of the diffraction of light. Recent advancements in fluorescence microscopy have yielded techniques that can break this diffraction barrier and achieve nanometre scale resolution. One such technique is Photoactivated Localisation Microscopy (PALM), which relies on the detection and high precision localisation of single fluorescent molecules. The work presented in this thesis outlines the development of an adaptation to PALM that can be used to study the chromatin association of proteins inside unfixed cells. This technique was subsequently used to study the role of ubiquitination of the replication-sliding clamp during unperturbed DNA synthesis and characterise the global DNA binding of the Smc5/6 complex during replication stress.

History

File Version

  • Published version

Pages

235.0

Department affiliated with

  • Biochemistry Theses

Qualification level

  • doctoral

Qualification name

  • phd

Language

  • eng

Institution

University of Sussex

Full text available

  • Yes

Legacy Posted Date

2016-04-11

Usage metrics

    University of Sussex (Theses)

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC