
The architecture of amyloid-like peptide fibrils revealed by X-
ray scattering, diffraction and electron microscopy
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Structural analysis of protein Þbrillation is inherently challenging. Given the
crucial role of Þbrils in amyloid diseases, method advancement is urgently
needed. A hybrid modelling approach is presented enabling detailed analysis of
a highly ordered and hierarchically organized Þbril of the GNNQQNY peptide
fragment of a yeast prion protein. Data from small-angle X-ray solution
scattering, Þbre diffraction and electron microscopy are combined with existing
high-resolution X-ray crystallographic structures to investigate the Þbrillation
process and the hierarchical Þbril structure of the peptide fragment. The
elongation of these Þbrils proceeds without the accumulation of any detectable
amount of intermediate oligomeric species, as is otherwise reported for, for
example, glucagon, insulin and� -synuclein. Ribbons constituted of linearly
arranged protoÞlaments are formed. An additional hierarchical layer is
generatedvia the pairing of ribbons during Þbril maturation. Based on the
complementary data, a quasi-atomic resolution model of the protoÞlament
peptide arrangement is suggested. The peptide structure appears in a� -sheet
arrangement reminiscent of the� -zipper structures evident from high-resolution
crystal structures, with speciÞc differences in the relative peptide orientation.
The complexity of protein Þbrillation and structure emphasizes the need to use
multiple complementary methods.

1. Introduction

The severity of several amyloid diseases underlines the
importance of studying the structural aspects of protein
amyloid Þbrillation (Cecchi & Stefani, 2013; Knowleset al.,
2014). However, in spite of more than a century of dedicated
research efforts, how amyloid-like Þbrils are formed remains
elusive. This is mainly because Þbrillation constitutes an
inherent structural analytical challenge, since Þbril formation
proceedsvia several equilibria between native and unfolded
or refolded structures, oligomers, protoÞlaments and mature
Þbrils. Protein Þbrils are however not only relevant in the
context of diseases, as in addition these complex self-assembly
nanostructures are promising scaffolds for the future devel-
opment of biocompatible nanomaterials with an expected
wide range of applications (Gras, 2007).

Many fragments of amyloidogenic proteins as well as
synthetic peptides can form amyloid-like Þbrilsin vitro.
Compared with Þbrils formed from full-length amyloidogenic
proteins, such peptide Þbrils exhibit relatively lower
complexity and hence provide ideal model systems for struc-
tural analysis (see, for example, Balbirnieet al., 2001; Reches
et al., 2002).
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The identiÞcation of particular sequences deÞning frag-
ments with high amyloidogenic propensity aids in identifying
core regions which are potentially essential for the Þbrillation
of the full-length proteins. It is thus expected that structural
information from Þbrils of such shorter fragments will reßect
aspects of the corresponding full-length protein Þbrils, and
hence may be of importance to the understanding of the
mechanism behind Þbrillation of the corresponding various
disease-relevant proteins. The advantages of using shorter
peptide fragments are immediately obvious, since the shorter
and simpliÞed systems offer the study of a Þbril with reduced
complexity yet reßecting the major important aspects of the
full-length complex Þbrils. Here, an amyloidogenic fragment
of a yeast prion protein, GNNQQNY, is predicted to form
the Þbril core in prion Þbrils. Our study may thus ultimately
improve the understanding of the related prion diseases. Yeast
prion proteins, both as fragments and the full-length protein,
have been used as models for prion systems as well for general
amyloid diseases (Wickneret al., 2013). The native protein
product of Sup35p takes part in the termination of translation
(Wickner et al., 2013), but has an N-terminal prion domain
rich in asparagine and glutamine residues. The heptapeptide
GNNQQNY corresponds to a fragment of this N-terminal
domain (Sup35p7Ð13), and the importance of the GNNQQNY
fragment in the Þbrillation of full-length Sup35p has been
indicated by cross-seeding experiments (Balbirnieet al., 2001).
Several studies have reported a concentration-dependent
polymorphism of the possible solution states of this peptide,
revealing the formation of either Þbrils or nanocrystals
(Balbirnie et al., 2001; Diaz-Avaloset al., 2003). The formation
of nanocrystals facilitated the determination of the atomic
structures of a number of amyloidogenic peptides, including
GNNQQNY (Nelsonet al., 2005; Sawayaet al., 2007; Wiltzius
et al., 2008), revealing that peptides in the crystals are
arranged in a so-called steric zipper or dry zipper (� -sheets
with tight packing of side chains). It is suggested that the
structural motifs observed in these crystals are closely related
to the core structure of the Þbrils. Hence, some of these
peptides, such as GNNQQNY, have become model systems
contributing to an understanding of the mechanism and
driving forces in protein Þbril formation. Extensive studies of
the GNNQQNY peptide, including crystal structures, solid-
state nuclear magnetic resonance spectroscopy (ss-NMR) of
both crystal and Þbril forms, computational studies and a wide
range of biophysical characterization, have all elucidated
different structural aspects of the peptide (Nelsonet al., 2005;
van der Welet al., 2007; Debelouchinaet al., 2010; Nasica-
Labouze et al., 2011; Marshallet al., 2010; Qiet al., 2012).
However, there are distinct structural differences between
Þbrils and crystals (Marshallet al., 2010; van der Welet al.,
2007). The relevance of the crystal structure has been inves-
tigated using molecular-dynamics (MD) simulations (Periole
et al., 2009; Espositoet al., 2006), which indicated that the
crystal � -zippers can twist into Þbril-like structuresvia only
minor rotations between the� -strands. Other experimental
data have shown a Þbril-to-crystal transformation and have
revealed signiÞcant differences in the diffraction from the two

forms that was not explicable by twisting of the� -sheets alone
but also by the environment of the tyrosine residue (Marshall
et al., 2010). These partially conßicting studies may reßect that
Þbrillation may lead to more than one speciÞc Þbril structure,
and hence that the crystal structures are likely to be closely
related to some, but not all, such Þbrillar forms. Indeed, MD
studies show that some peptides, and GNNQQNY in parti-
cular, form stable structures in several zipper arrangements
(Berrymanet al., 2009, 2011). Likewise, it has been observed
using magic angle (MAS) NMR and ss-NMR that the Þbrils
exhibit a structural complexity beyond that of the crystals
(van der Welet al., 2007, 2010; Lewandowskiet al., 2011). The
actual peptide packing in the Þbril form is thus still enigmatic.

A recent publication demonstrated a tour de force in hybrid
structural analysis and provided atomic resolution details from
the Þbril arrangement of a transthyretin-derived 11-residue
peptide (Fitzpatricket al., 2013). This demonstrates the full
potential of combining different methods spanning several
orders of magnitude in the structural analysis of amyloid-like
Þbrils. This impressive analysis method, including extensive
MAS NMR analyses, is however extremely demanding both in
material and time. In the present study, we use an alternative
hybrid approach to investigate the structural properties of
GNNQQNY Þbrils. In our approach, by applying advanced
solution small-angle X-ray scattering (SAXS) as the central
method, we enable detailed interpretation of high-quality Þbre
diffraction (FD) in a more time-efÞcient and material-efÞcient
manner. Transmission electron microscopy (TEM) experi-
ments support and validate the analysis, and the SAXS data
collected successively at numerous time points throughout
the Þbrillation process furthermore provide insight into the
structural maturation of Þbrils. This method also investigates
any potential presence of additional transiently formed
oligomeric species (Vestergaardet al., 2007; Oliveiraet al.,
2009; Giehmet al., 2011; Langkilde & Vestergaard, 2012). Our
data show that the peptide forms highly ordered laminar
macroscopic structures, and suggest that aggregation proceeds
without signiÞcant accumulation of transient peptide oligo-
mers. Most importantly, supported by the available high-
resolution crystal structures, the analysis enables the quasi-
atomic resolution modelling of the hierarchically formed
GNNQQNY peptide Þbril.

2. Materials and methods

2.1. Peptide

The heptapeptide GNNQQNY was purchased from Caslo
A/S as the trißuoroacetate salt with a purity of >98%.

2.2. Fibrillation assay

Two different protocols were applied. The peptide was
dissolved in H2O to Þnal concentrations of 8.7 and 8.6 mg ml� 1

and Þltered through a 22mm Þlter. Alternatively, the peptide
was dissolved in DMSO and diluted with water to 10%(v/v)
DMSO to give Þnal peptide concentrations of 5.8 and
6.1 mg ml� 1 and Þltered. At such peptide concentrations the
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lag phase is signiÞcantly shortened; hence, cold water (4� C)
was used for dilution to delay the initial processes. Peptide
concentrations were determined based onA280 using " =
1280 cm� 1 M� 1. Thioßavin T (ThT) was added to a Þnal
concentration of 40mM. The solutions were incubated in
96-well plates (Nunc) at 32� C (samples in H2O) or 35� C
(samples in 10% DMSO) in a BMG PolarStar Fluorescence
Plate reader following ßuorescence emission at 480� 5 nm
upon excitation at 450� 5 nm. It was hypothesized previously
that supercritical concentrations are required for the accu-
mulation of structural nuclei (Powers & Powers, 2006). In this
study the supercritical concentration could not be determined,
yet peptide concentrations were used which caused an almost
complete bypass of the lag phase.

2.3. Sonication

The peptide samples became very viscous at later time
points in the Þbrillation process corresponding to increased
amounts of Þbrillar material. Hence, sonication was necessary
in order to obtain scattering data from a solution of randomly
oriented Þbrils (Langkilde & Vestergaard, 2012). Here, 10 s
of pulsed sonication was applied using a Sonopuls 2270
(Bandelin).

2.4. Small-angle X-ray scattering (SAXS) data collection

The Þbrillation process was started in a large batch of
adequate volume to allow analysis at several time points. The
content of the wells was extracted at different time points from
the plate reader as the Þbrillation process was followed by
ßuorescence spectroscopy, extracting one sample per well for
immediate subsequent SAXS data collection. The details of
this approach have been described elsewhere (Langkilde &
Vestergaard, 2012). Additional late data points from a fourth
Þbrillation series (also in 10% DMSO) were included in parts
of the analyses (10.7 and 13.1 h). All SAXS data were
collected on the EMBL SAXS beamline X33 at the DORIS
storage ring, DESY, Hamburg, Germany (Blanchetet al., 2012;
Frankeet al., 2012) within ans range of 0.08Ð5 nm� 1 using a
PILATUS 1M detector. The momentum transfers is given
by s = 4� (sin� /� ), where 2� is the scattering angle and the
wavelength� is 0.15 nm. The sample-to-detector distance was
2.7 m and measurements were performed with 120 s expo-
sures. The corresponding real-space distances probed ared 2
(90 nm, 1.2 nm).

2.5. SAXS data-evaluation procedures

Two-dimensional images of the Þbrillation measurements
were visually inspected usingFIT2D (Hammersley, 1997) and
the corresponding data were discarded before further analysis
if the two-dimensional images revealed non-isotropic scat-
tering. Data that were not discarded were corrected for
detector response and scaled according to protein concen-
tration, exposure time and intensity before radial averaging.
Repeated exposures (4� 30 s) revealed no sign of X-ray-
induced aggregation, with the exception of the two latest time
points, where only the Þrst two exposures were used in the

subsequent analysis. After buffer subtraction, Guinier analysis
was performed usingPRIMUS (Konarevet al., 2003), and the
Þrst usable data point from this analysis was used assmin

for the given measurement. For the signiÞcantly Þbrillated
samples, a Guinier range as deÞned bysminRg < 1.3 was not
obtained, and only a rough estimate could be made. Indirect
Fourier transformation was then performed inGNOM
(Svergun, 1992) using ansmax of 4 nm� 1 (for the globular
approach). The Þt of the monomeric peptide to the data from
the starting conditions was tested usingCRYSOL (Svergun
et al., 1995) with GNNQQNY monomers from PDB entry
2omm, as well as dimers created from the structure as a pair
from neighbouring� -sheets and a pair within the same� -sheet
to test the level of distinction. The position of the Bragg peak
and the corresponding Bragg spacing were evaluated using
PEAK (Konarev et al., 2003).

2.6. Multi-component analysis of SAXS data

Singular value decomposition (SVD) analysis was performed
using the routine included inPRIMUS (Konarevet al., 2003).
Data with s > 0.3 nm� 1 from Þbrillation series with and
without 10% DMSO were included in two different runs with
and without the two latest time points. Fitting using linear
combinations of start and end points was performed using
OLIGOMER (also included in PRIMUS; Konarev et al.,
2003). The oligomer analysis was performed on the pool of
data using the theoretical scattering from the monomeric
peptide (as obtained from theCRYSOLÞt mentioned above)
together with the 9.0 h sample (a late stage in the Þbrillation
series, with the Þnal level of ThT, and thus expected to be
fully Þbrillated) as input components. In addition, a three-
component oligomer analysis was additionally performed
using the 10.7 h sample as the third input component.

2.7. Fitting geometrical shapes to the SAXS data

Using BODIES available withinPRIMUS (Konarev et al.,
2003), simple geometrical shapes can be Þtted against the
individual scattering curves. This was performed for all data
collected from samples extracted more than 1 h after initiation
of the Þbrillation process. Only data withs < 1.5 nm� 1 were
used in this analysis.

2.8. Cross-section analysis and mass per unit length based on
SAXS data

For very elongated particles, the scattering contribution of
the long axis (the Þbril axis in this case) can be separated from
that of the cross-section (Feigin & Svergun, 1987) and the
cross-section of such species can be evaluated individually
using approaches similar to those regularly used for globular
species. Guinier analysis was Þrst performed usingPRIMUS
(Konarev et al., 2003). From the intercept ats = 0 in the
Guinier plot for a rod-like particle (Supplementary Figs. S1a,
S1b and S1c), lims! 0[sI(s)] is determined. The mass per unit
length (ML) can be calculated using the forward scattering
[I(0)] of a standard protein sample, in this case bovine serum
albumin (BSA): ML = {lims! 0[sI(s)]MWBSA}/[I(0)BSA� ]. In
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Figure 1
Data from the Þbrillation process of GNNQQNY. (a) Normalized ThT ßuorescence emission intensity recorded at the time that the samples were
extracted from the ßuorescence plate reader. Three Þbrillation series are included: 8.7 and 8.6 mg ml� 1 peptide in H2O (squares and circles) and
5.8 mg ml� 1 peptide in 10% DMSO (triangles). Closed symbols correspond to the SAXS data used in the following analysis, while open symbols
represent non-isotropic (and hence discarded) scattering data. Samples sonicated prior to SAXS data collection are shown by inverted triangles.
Additionally, late measurements (stars; 10.7 and 13.1 h) from Þbrillation of 6.1 mg ml� 1 peptide in 10% DMSO were measured. SAXS data were
obtained from samples pooled from two wells, and these data are only partially included in the following analysis (seex3 for details). (b) SAXS data from
the extracted samples [corresponding to Þlled symbols and stars in (a)]. Inset: enlargement of the data from 3.4 and 9.0 h showing increased intensity
arounds = 1.3 nm� 1, while the data from the 10.7 and 13.1 h samples show a clear Bragg peak ats = 1.3 nm� 1. (c) Eigenvalues from singular value
decomposition (SVD), excluding the two late time points (10.7 and 13.1 h). Inset: the Þrst ten eigenvectors from the SVD analysis. (d) Fibril volume
fractions obtained fromOLIGOMER analysis using the theoretical monomer and the 9.0 h samples as representatives of the two components. (e) Cross-
sectional pair-distance distribution functions for the samples at 3.4, 9.0 and 10.7 h. (f) The colour scale from red to purple used in (b) and (e) to show the
development over time. A superscript ÔaÕ indicates that the Þbrillation conditions included 10% DMSO and a superscript ÔbÕ indicates that the sample
was sonicated immediately before measuring the SAXS data.



this calculation, the partial speciÞc volumes of the sample and
the standard are assumed to be identical. The uncertainty in
ML is not only dependent on the SAXS data quality [I(0)
determination of both sample and BSA] but also on the
concentration determination of both the sample and BSA. The
actual error in such a mass estimate can therefore vary from
a few percent upwards, and in this case it is not reasonable
to make an explicit statement. Additionally, indirect Fourier
transformation was then performed usingGNOM (Svergun,
1992) with ansmax of 1.5 nm� 1 and a rod-like assumption
(a built-in option in GNOM), thereby evaluating the pair-
distance distribution of the cross-section alone.

2.9. Transmission electron microscopy (TEM)

Samples of untreated and sonicated Þbrils of GNNQQNY
(from Þbrillation in 10% DMSO with 40mM ThT) were
examined. 5ml sample was allowed to adsorb onto a Formvar/
carbon 300 Mesh Cu Grid (Agar ScientiÞc) for 1 min before
blotting and washing with with 5ml water in a 1 min incuba-
tion. Adsorbed material was negatively stained by two 1 min
incubations with 5ml 2% uranyl acetate. TEM was performed
using a H-7100 transmission electron microscope (Hitachi)
and images were acquired digitally using an axially mounted
UltraScan 1000 CCD camera (Gatan). Ribbon widths were
measured using theGNU Image Manipulation Programand
an average striation width was determined.

2.10. Fibre diffraction (FD)

Dry aligned samples were obtained by placing a drop of 5Ð
10ml Þbrillated peptide solution between two closed capil-
laries with their ends a few millimetres apart to simulate the
stretch-frame approach to align the sample (Morris & Serpell,
2012). The droplet was left to dry overnight. The dried Þbril
samples were then mounted on a standard macromolecular
crystallography pin. Fibre diffraction data were collected on
MAX-lab beamlines I911-3 (� = 0.099 nm, sample-to-detector
distance 290 mm, MAR 225 detector) and I911-2 (� =
0.104 nm, sample-to-detector distance 220 mm, MAR 165
detector). All data were collected at 4� C with exposure times
of 30Ð120 s per frame in both static mode and with 90� rotation
around the Þbril long axis during exposure. Equatorial and
meridional signals were plotted by radially integrating 60�

of data about each respective axis using the radial average
function of CLEARER (Makin et al., 2007). Integrated
diffraction signals were exported as a function of pixels and
converted to real-space distancesd using BraggÕs law.

2.11. Indexing of FD patterns

X-ray Þbre diffraction reßections were measured using
CLEARER (Makin et al., 2007) and were combined with
equatorial data from previously reported patterns of
GNNQQNY (Marshall et al., 2010). Possible unit-cell dimen-
sions were explored usingCLEARER (Makin et al., 2007).
The observed Bragg peak of 4.8 nm from the SAXS data was
also included as an equatorial signal to obtain indexing
(Supplementary Table S1).

2.12. Crystallization and diffraction

The sample was prepared as for the Þbrillation assay with
DMSO present and was left at room temperature in a 1.5 ml
Eppendorf tube, in which several bundles of needle-like
crystals were formed. A bundle of these needle-shaped crys-
tals was mounted on a pin like the dry Þbril samples and
diffraction data were collected as described above.

2.13. Simulation of diffraction patterns

CLEARER (Makin et al., 2007) was also used to simulate
diffraction patterns from crystal structures (PDB entries
2omm and 1yjp; Sawayaet al., 2007; Nelsonet al., 2005) and
the model of the peptide packing using the indexed unit cell.
Settings for the simulation were set to match the experimental
setup. For simulations based on the Þbre models, the crystallite
size was set to mimic the ribbon size determined (approxi-
mately 40� 200� 6 nm).

2.14. Modelling peptide packing

Starting from the crystal structure conformation of PDB
entry 2omm (Sawayaet al., 2007), the side-chain conÞgura-
tions of Asn6 and Tyr7 were changed using the Dunbrack
rotamer library (Dunbrack, 2002) to facilitate parallel packing
of the sheets. A parallel pair of peptides was built roughly
based on the backbone positions of PDB entry 2omm (Sawaya
et al., 2007) and a copy of this pair rotated to model the
suggested packing. Optimization and addition of water
molecules was performed usingAMBERtools in UCSF
Chimera(Pettersenet al., 2004). Water molecules outside the
unit-cell boundary were subsequently deleted to obtain the
model used for the simulation of FD. A ribbon model was
constructed from the basis of this unit cell usingPyMOL
(Schro¬dinger).

3. Results

3.1. No structural nucleus is observed during the fibrillation
process

A monomeric starting point is revealed by the SAXS data
immediately after dissolution and Þltration of the sample. The
estimated molecular weight (MW) and radius of gyration (Rg)
are in agreement with those of a monomeric peptide, and the
theoretical scattering curve calculated from the monomeric
peptide (from PDB entry 2omm; Sawayaet al., 2007) Þts the
experimental data (Supplementary Fig. S2).

The Þbrillation process was followed using thioßavin T
(ThT) ßuorescence (Fig. 1a). In H2O the Þbrillation process
initiated immediately; thus no ThT baseline could be
measured and the SAXS data measured as soon as possible
after dissolution and Þltration included non-monomeric
signal. When Þbrillating the peptide in 10% DMSO, it was
possible to obtain ThT and SAXS data from the lag phase
(i.e.before Þbril formation and the elongation phase). In the
samples with DMSO present, a larger variation in initiation
of the elongation phase was observed (triangles in Fig. 1a);
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however, all samples followed a similar steep elongation phase
after onset. The Þbrils obtained using these two slightly
different conditions were compared on overall morphology as
well as internal structure (discussed below). SAXS data were
measured at different time points in the Þbrillation process.
The progressive increase in scattering intensity at low angles is
clear proof of the development of very large species (Fig. 1b).
The nature of the scattering curve changes from almost ßat to
convex curves correlated with a clear change in the nature of
the scattering species in solution. Notably, for the samples
reaching the ThT plateau increased scattering arounds =
1.3 nm� 1 is observed, and at the very late time points a distinct
Bragg peak at this position is evident from the scattering
proÞles (Fig. 1b). A peak at this position corresponds to a real-
space distance of 4.8 nm, revealing the presence of a highly
repetitive distance within the developing Þbrils. Likewise,
estimates ofRg and the maximum dimension of the scatterer
(Dmax) at all time points (Supplementary Fig. S3b) reveal the
development of the average and maximal sizes of the scat-
tering particles that are present in solution.Dmax is obtained
during the indirect Fourier transformation to the pair-distance
distributions (Supplementary Fig. S3c) but, like Rg, can only
be estimated with some uncertainty when the length of the
Þbrils surpasses the resolution of the SAXS data.

The scattering contributions from different (non-
interacting) species in the sample are additive; thus, applying

singular value decomposition (SVD) to the accumulated data
from the process can reveal the number of species present, and
the scattering contribution from each individual species can
be isolated by careful data analysis (Langkilde & Vestergaard,
2012). This approach has previously been used to describe
structural nuclei in the Þbrillation of insulin (Vestergaardet
al., 2007), glucagon (Oliveiraet al., 2009) and� -synuclein
(Giehm et al., 2011). SVD of the collected pool of
GNNQQNY SAXS data (excluding the two latest time points)
shows the presence of two dominating and a minor third
scattering species (Fig. 1c). If the solution contains two major
components (here monomers and Þbrils), the scattering at
different time points will be a linear combination (scaled by
the volume fractions) of the scattering curves representing the
two individual components. To test this hypothesis, scattering
curves at the start and end points are required. The sample
representing the earliest time point (the sample in DMSO at
0.2 h) showed a monomeric character (Supplementary Fig. S2)
and the theoretical curve Þtted to this starting point was used
as the Þrst component. A late sample (9.0 h), corresponding to
the ThT plateau, was selected as the end point (representing
the Þbril sample). As is seen, data from the intermediate time
points can be consistently Þtted as a linear combination of
these two components, resulting in very limited and nonsys-
tematic residual scattering at the latest time points (Supple-
mentary Fig. S4). From this analysis, the corresponding
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Figure 2
TEM images and diffraction patterns. (a) TEM of untreated Þbrils and (b) sonicated Þbrils, as well as (c) an enlargement from the sonicated sample
showing the lateral striations and exposed ends of the individual Þlaments in the ribbon. The scale bars in (a)Ð(c) are all 0.2mm.



volume fractions of the two components are obtained (Fig. 1d
and Supplementary Table S2) and it can be seen that samples
collected after 3.0 h are predominantly Þbrils. This also
supports the assumption that the 9.0 h sample is a proper
representatation of the Þbrillar state. We thus have no indi-
cations of the presence of additional species during the elon-
gation phase and we conclude that the indication of a third
minor species from the SVD is negligible at all time points
until 9.0 h. However, when including the two latest time points
(10.7 and 13.1 h) a third species is more prominent (Supple-
mentary Figs. S5 and S6). The most natural explanation of this
result is that a third species which is not present in signiÞcant
amounts during the elongation of Þbrils accumulates during
the maturation phase.

Based on this analysis, we conclude that no detectable
amount of intermediate oligomers is present during this
Þbrillation process. The elongation process is thus most likely
to proceedvia monomer addition.

3.2. The ribbon architecture of GNNQNNY fibrils

In previous SAXS studies of Þbrils, the Þbril macroscopic
structure has been modelled as beads on a string, where a
macroscopic repeating unit (Vestergaardet al., 2007; Giehmet
al., 2011; Langkilde & Vestergaard, 2009) directly related to
the overall pitch of twisting of Þbrils enables modelling of the
entire Þbril. In the present case, such a pitch appears to be
either larger than the detectable range or alternatively there is
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Figure 2 (continued)
(d) Corresponding Þbre diffraction patterns from dried samples of untreated Þbril sample (left half) and sonicated Þbrils (lower right quadrant). The
simulated diffraction pattern based on the determined unit cell and the suggested packing model is included (upper right quadrant). (e) The diffraction
pattern from a bundle of partly aligned needle-shaped crystals. Radial averages of the experimental diffraction images and the simulated pattern inthe
meridional (f ) and equatorial (g) sections. For the meridional direction, only a selected range is depicted as the patterns are essentially featureless until
0.5 nm.



no well deÞned repeat. Indeed, TEM images also only reveal
limited and irregular twisting of the ribbons (Fig. 2a). Kratky
plots (Supplementary Fig. S3d) of the data reveal well deÞned
structural information below 90 nm.

When Þtting the data with a simple geometrical shape
using BODIES in PRIMUS (Konarev et al., 2003), the best
approximations are obtained with either a cylindrical ellipsoid
or a parallelepiped (Supplementary Figs. S7a and S7b and
Supplementary Table S3). For the samples extracted later than
3 h both shapes are dominated by one short cross-sectional
dimension, a longer second axis (roughly 35Ð40 nm and
corresponding to twice the ellipticalb semi-axis or the paral-
lelepipedb axis) and a long third axis (approximately 55 nm
and corresponding to the direction of the Þbril long axis; given
as thec axis in Supplementary Table S3). Interestingly, still
focusing on the samples extracted later than 3 h, the dimen-
sions of these shapes vary almost only in one dimension,
namely the shortest axis (a axis; Supplementary Table S3),
which is close to either 5 or 9 nm. Again, the longest axis in
particular can only be determined with uncertainty, and is not
applicable in the continued analysis. This approach using
geometrical shapes to describe the scattering species is a very
simpliÞed, and the dimensions obtained do vary (Supple-
mentary Table S3), but the approach gives indications about
the overall dimensions and morphology of these samples.

Together with the shape of the scattering curve, this initial
analysis underlines the elongated nature of the mature Þbrils.
Importantly, for very elongated particles the scattering
contribution of the long axis (the Þbril axis in this case) can be
separated from that of the cross-section (Feigin & Svergun,
1987); hence, the cross-section can be analyzed in detail even
if the longest axis of the scatterer is not resolved. The corre-
sponding cross-sectionP(r) function (Fig. 1e) reveals an
elongated and slim shape with a maximum dimension of
approximately 40 nm, in accordance with the simple geo-
metrical analysis. Performing this analysis for samples from
different time points results in pair-distance distributions with
a maximum shifted to the left (Fig. 1e). This indicates an
elongated cross-section with dimensions of approximately 3�
40 nm (samples from 3Ð9 h) to 6� 40 nm (for the two latest
samples). The dimensions are deduced from the plot as the
inßection point immediately after the Þrst maximum (Feigin &
Svergun, 1987; arrows in Fig. 1e) and the maximal dimension.
Explicit error estimation on these distances is not possible,
but the identiÞcation of the inßection point is complicated in
this case by additional ripples on the distributions, and the
maximum dimension observed may depend on the resolution
of the data. The ripples observed in the cross-sectionalP(r)
functions (Fig. 1e) are separated by approximately 5 nm. The
spacing between these repeating distances thus corresponds to
the Bragg peak in the raw data (Fig. 1b; highlighted in the
inset) and it is concluded that the cross-section is assembled
from building blocks with this diameter. Building blocks that
are repeated across the cross-section must correspond to
individual protoÞlaments, hence the width of these is 4.8 nm.
We thus conclude that the Þbril structure has a ribbon-like
appearance with a lateral assembly of protoÞlaments.

TEM images clearly conÞrm the presence of a ribbon-like
macroscopic structure (Figs. 2a, 2b and 2c). Also, clear stria-
tions with a width of 5.04� 0.26 nm (Supplementary Fig. S8
and Supplementary Table S4) are observed perpendicular to
the longest axis of the ribbons. This corresponds to the
expected protoÞlament width of 4.8 nm (as determined from
the SAXS data). Upon close inspection of the exposed ends of
ribbons (Fig. 2c) from sonicated samples, the notion of indi-
vidual protoÞlaments arranged side by side in the ribbons is
further substantiated. It is also evident from the TEM images
that there is some variation in the number of protoÞlaments
in each ribbon. In conclusion, the ribbons are composed of a
linearly organized set of individual protoÞlaments.

3.3. Probing the internal order of fibrils and crystals

Firstly, X-ray Þbre diffraction (FD) was applied to partially
aligned untreated and sonicated GNNQQNY Þbrils (Fig. 2d),
thereby allowing a decisive analysis as to whether sonication
had an effect on the internal structure of individual proto-
Þlaments. The patterns showed the expected cross-� peaks and
a close match in the peak positions (Figs. 2f and 2g). The TEM
analysis of sonicated and nonsonicated samples showed that
the length of the striated ribbon is clearly inßuenced by
sonication, while the laminar assembly appears to remain
intact. The FD analysis covers a resolution range of approxi-
mately 3Ð0.3 nm and thus conclusively shows that the internal
structure of the protoÞlaments is also conserved upon soni-
cation, thus also validating the SAXS analysis from sonicated
Þbril samples.

Two polymorphic crystal structures of GNNQQNY have
previously been determined (Nelsonet al., 2005; Sawayaet al.,
2007). During this study, needle-like crystals were also
obtained (seex2); however, the pattern collected from a
bundle of these aligned needle-shaped crystals (Fig. 2e) did
not match simulated diffraction data based on the deposited
structures (Supplementary Figure S9), implying the existence
of further polymorphic crystal forms. At no point did we
observe a conversion from the crystal to the Þbril form orvice
versa. The crystals and Þbrils observed in this study were
stable for months.

Although the crystals show a cross-� -like pattern, a higher
degree of order is evident from the larger number of well
deÞned peaks. Comparing the diffraction patterns (Figs. 2f and
2g) it is clear that the Þbrils and the crystals differ, and as
also reported in a previous study (Marshallet al., 2010) the
GNNQQNY Þbril FD data do not match simulated patterns
based on the deposited crystal structures (PDB entries 2omm
and 1yjp; Sawayaet al., 2007; Nelsonet al., 2005). The crystal
forms of this peptide thus cannot directly model the Þbril
packing, but may serve as the basis for modelling a possible
packing scheme.

3.4. Determination of the basic unit of the fibrils

With the aim of determining the quasi-atomic resolution
Þbril structure, a detailed analysis of the FD data from
GNNQQNY Þbrils was undertaken. We observed a cross-�

research papers

Acta Cryst. (2015). D71, 882–895 Langkildeet al. � Amyloid-like peptide fibrils 889



signature of amyloid Þbrils (Fig. 2d) with a 0.47 nm distance
between consecutive� -strands in the continuous� -sheets
along the Þbril axis. The equatorial FD data of sonicated Þbrils
reveal signals at 1.60, 1.35, 0.928, 0.808, 0.754, 0.699, 0.603,
0.511, 0.464 and 0.404 nm; however, it is not possible to
unequivocally index the data,i.e. the unit cell cannot be
assigned unambiguously, in part because the Þbril cross-
section information is in the rather diffuse equatorial reßec-
tions arising from sample heterogeneity. Hence, from the FD
data alone we can only with certainty assign the 0.47 nm
distance as one of the dimensions of the unit cell. More
speciÞcally, this is the axis parallel to the Þbril long axis (the
orientation of which is known from the sample alignment),i.e.
the classic� -strand spacing.

However, from the SAXS data we have an accurate
assignment of one dimension, this being the 4.8 nm between
consecutive protoÞlaments. When including this information,
it is possible to assign the third dimension from the FD data.
The unit-cell parameters are deÞned asa = 4.85,b = 3.21,
c = 0.47 nm,� = � = � = 90� . This indexing thus accounts
for the position of the diffraction signals. The intensities of
individual diffraction signals are dependent on the peptide
packing in the unit cell and thus demand further considera-
tion.

The unit-cell dimensions immediately suggest how many
peptides are included in the repeating unit. We know that
there is one layer of peptides in the unit cell, since thec axis is
0.47 nm,i.e. one � -strand. The length of one such heptapep-
tide � -strand is approximately 2.5 nm, immediately suggesting
that two such peptides may span the longest dimension of the
unit cell. From an inspection of the crystal packing of peptides,
we know that peptide sheets can pack with dimensions of 1.1Ð
1.5 nm,i.e. two such sheets of peptides can pack along theb
axis (3.21 nm). The immediate suggestion from the unit-cell
dimensions is thus that four peptides pack in the unit cell.

To validate this assumption, we calculated the corre-
sponding solvent content of the unit cell. The unit cell has a
volume of 7.3 nm3, meaning that a solvent content of 45% and
a Matthews coefÞcient of 2.2 Aû3 Da� 1 result from the posi-
tioning of four peptides in the unit cell. This value is within the
normal expected range in crystal packing (Kantardjieff &
Rupp, 2003). Although not directly comparable to the packing
of peptides in Þbrils, we do expect a near-crystalline protein
density and a tight packing in the Þbril structures (Sundeet al.,
1997).

A further validation of the number of peptides in the unit
cell can be derived from the SAXS data. SAXS data from a
highly elongated structure allow the determination of the mass
per unit length (Feigin & Svergun, 1987). We have calculated
this for the samples with high Þbril content (see Supplemen-
tary Table S5 andx2 for details). The mean value for the 3.4Ð
9.0 h samples with >99% Þbril content is 41.6� 5.1 kDa nm� 1,
corresponding to 50� 6 peptide monomers per length unit
(i.e. per nanometre; Supplementary Table S5). The� -strand
spacing in the sheets is deÞned from FD as 0.47 nm, and these
sheets are formed along the Þbril long axis. Thus, the SAXS-
based mass estimate corresponds to 24� 2 monomers in a

single-layered cross-section of 0.47 nm thickness. The second
unit-cell dimension (4.85 nm) is already assigned to the indi-
vidual protoÞlament width, and thus corresponds to the highly
repetitive distance observed in the SAXS data, thus resulting
in a Bragg peak. Our SAXS-based dimension of the cross-
section suggests that we have an elongated cross-section with a
maximal dimension of approximately 40 nm. This would mean
that a maximum of 40/4.85 = 8.2 unit cells could pack along the
longest dimension of the cross-section, resulting in [(24� 2)/8
= 2.8Ð3.3• 3] three peptides per unit cell. The geometric
Þtting of the SAXS dimensions suggests a longest cross-
section dimension of 35Ð40 nm, corresponding to 3Ð4 peptides
in the unit cell, by following the same logic. TEM images
reveal a signiÞcant variation in the ribbon width in the TEM
images. The mass per unit length estimate from SAXS is the
average of all solution species, while the maximum width of
40 nm represents the largest structures. This means that the
average number of peptides per unit is systematically under-
estimated. In conclusion, the mass per unit length analysis
from the SAXS data supports the packing of four peptides in
each unit cell.

In conclusion, each unit cell contains four peptide mono-
mers, and this unit cell thus represents the protoÞlament cross-
section.

The two latest samples (10.7 and 13.1 h) show both larger
cross-sections as well as a larger estimated mass per unit
length (Supplementary Table S5). The shift of the maximum
in the cross-sectionP(r) function (Fig. 1e) indicates that these
samples are thicker, and we conclude that there is a hier-
archical layering of the ribbons in these samples.

3.5. Approaching a quasi-atomic resolution structure of the
fibril

Determination of the unit-cell dimensions and the number
of peptides per unit cell, together with previously published
data (Marshall et al., 2010), enables the conception of a
detailed model of the Þbril packing.

Zipper motifs formed by two tightly paired� -sheets have
now been observed in numerous crystal structures of peptides
(Nelsonet al., 2005; Sawayaet al., 2007; Wiltziuset al., 2008;
Eisenberg & Jucker, 2012). Based on these structures, eight
possible different sheet-to-sheet arrangements have been
classiÞed (Sawayaet al., 2007; Eisenberg & Jucker, 2012)
deÞned by their face-to-face interactions and parallel or
antiparallel sheets. Furthermore, a recent rigorous derivation
of the possible zipper groups revealed a total of ten different
classes (Stroud, 2013). According to MD simulations, an
asymmetric Gln/Asn-rich peptide such as GNNQQNY can
form stable structures within all of the original eight classes
(Berryman et al., 2011). We observe a 0.47 nm meridional
signal in our FD data, but not a signal at 2� 0.47 nm in the
meridional direction, which implies that the GNNQQNY
� -sheets in these Þbrils are parallel (Sikorskiet al., 2003) as in
the crystal structures (Nelsonet al., 2005; Sawayaet al., 2007),
meaning that the possible packing motifs belong to one of four
remaining classes (classes 1Ð4). These classes can be illustrated
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schematically, as shown in Fig. 3 (left column). Each� -strand
has two distinct sides (with odd side chains projecting to one
side and even side chains projecting to the other). If odd side
chains pair with odd side chains in the neighbouring� -strand,
this is a so-called face-to-face arrangement (classes 1 and 3 in

Fig. 3; the orange side of the box is facing the orange side).
Odd/even side-chain pairing is characteristic of classes 2 and 4
(the orange side faces the green side of the box in Fig. 3).
These two� -strands are either arranged in parallel (classes 2
and 3; blue ends facing same way in Fig. 3) or antiparallel

(classes 1 and 4; blue ends facing
opposite ends and hence grey/blue pairs
are visible in Fig. 3). We observe four
peptides in our unit cell. These four
peptides thus form two such zipper
motifs, and the two consecutive zipper
motifs can be organized in only two
ways (by rotation either perpendicular
or parallel to the Þbril axis). This results
in a total of eight arrangements, as
depicted in Fig. 3 (note that the two
arrangements within class 3 are iden-
tical). Note that combinations poten-
tially formed by adding the second
zipper motif by a simple translation of
motif 1 are ruled out because this would
lead to a unit-cell dimension ofa/2,
which we do not observe. The same
criterion immediately rules out one
class 1 arrangement (that on the right;
obtained by rotation parallel to the Þbril
axis but yielding an arrangement
corresponding to a pure translation)
as a possible arrangement. When
regarding the remaining six possible
arrangements, classes 2 and 4 can also
be ruled out as they have face-to-back
arrangements (green facing orange in
Fig. 3). This interaction could in prin-
ciple be repeated indeÞnitely, meaning
that it is illogical that only two peptides
are zipped (using class 2 on the left in
Fig. 3 as an example, a green face
identical to the face that deÞnes the
interfacial contact in the zipper is
exposed; thus, an orange face would
easily access this green face). Thus,
classes 2 and 4 have no actual bound-
aries in they direction and are excluded
as possible stacking principles yielding
the observed unit cell. Likewise, class 1
(left) has no boundaries in thex direc-
tion. We can thus exclude both class 1
motifs (that on the left because of the
lack of boundaries and that on the right
because it deÞnes a unit cell with anx
axis of a/2) and we thus conclude that
the peptide motif in the Þbril is
distinctly different from the peptide
motif in the crystal structures, which are
both class 1 zippers (Nelsonet al., 2005;
Sawayaet al., 2007). Two-zipper motifs

research papers

Acta Cryst. (2015). D71, 882–895 Langkildeet al. � Amyloid-like peptide fibrils 891

Figure 3
Packing of two-zipper motifs of class 1Ð4 zippers. (a) The zipper motif from the GNNQQNY crystal
structure (PDB entry 2omm; Sawayaet al., 2007) is shown along with a schematic representation of
a single peptide by a box (inspired by the presentation in Stroud, 2013). The different colours
differentiate between C/N-termini, odd/even-residue side chains and the up/down orientation of the
given� -sheet. (b) Left column: single zipper motifs of classes 1 to 4 for which all individual sheets
are parallel. Middle column: a second zipper motif generated by rotation around a twofold axis
parallel to y (perpendicular to the Þbril axis). Right column: a second zipper motif generated by
rotation around a twofold axis parallel toz (corresponding to the Þbril long axis or spine axis).
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from classes 1, 2 and 4 thus do not Þt the observed data. This
means that we can identify class 3 as the packing motif used in
the formation of GNNQQNY Þbrils.

The Þnal suggested packing motif therefore consists of two
class 3 zippers. In the suggested motif the zippers are formed
face to face, presumably with the even-numbered residues
(Asn2, Gln4 and Asn6) forming the zipper (Fig. 4), resembling
the internal sheet-to-sheet interaction observed in the crystals.
The motif of the two zippers indicates interactions of either
all four terminal glycines (Gly1) or four tyrosines (Tyr7).
Importantly, tyrosine mobility has previously been noted as a
distinction between GNNQQNY crystal forms and Þbrils (van
der Welet al., 2010) and in results from linear dichroism (LD),
which indicates that the stacking of Tyr7 in the Þbrils is
perpendicular to the Þbril long axis (Marshallet al., 2010).
Although the charged terminals are close in the suggested
packing arrangement, the electrostatic forces appear to be less
important for aggregation stability, which instead appears
to be dominated by van der Waals interactions, thereby
compensating for otherwise unfavourable electrostatic inter-
actions (Berrymanet al., 2011). No peptide crystal structures
with class 3 zipper motifs have been reported (Eisenberg &
Jucker, 2012); however, GNNQQNY has also been shown to
retain the ordered cross-� structure in this conÞguration in

MD simulations (Berrymanet al., 2011). In addition, this
suggested two-zipper motif shows distinct boundaries, which
may well explain the difference between the Þbrils and crys-
tals. In the case of GNNQQNY, it may even be speculated that
the initial interaction of two sheets [upÐup or upÐdown,
corresponding to the difference between class 1 (observed in
crystals) and class 3 (suggested)] determines the pathway to
either crystal or Þbril.

Based on the suggested overall structural motif, and the
possible tyrosine interactions, a model of the unit cell was
constructed (Fig. 4). The corresponding Þbre diffraction
patterns were simulated usingCLEARER (Makin et al., 2007)
and the major meridional and equatorial reßections are
comparable to the experimental data (Fig. 2d).

4. Discussion

4.1. Peptide fibrillation may proceed through monomer
addition and not via transient oligomers

No buildup of oligomeric intermediates was observed
during the GNNQQNY Þbrillation process. Instead, the minor
third component detected in this study is likely to be a result of
changes in the maturation phase. This is in contrast to previous
studies (Vestergaardet al., 2007; Giehmet al., 2011; Oliveiraet
al., 2009) on other Þbrillating systems, where volume fractions
of up to 60% of transiently formed oligomers were observed.
A possible explanation is that a given full-length protein
requires a larger degree of refolding before assuming a
Þbrillation-prone conformation, and such a conformation may
be stabilized in intermediate oligomers. The surface of such
oligomers (or structural nuclei) may associate, potentially
complemented by direct monomer addition (Vestergaard
et al., 2007; Oliveiraet al., 2009; Giehmet al., 2011). The
heptapeptide is in a monomeric native starting conformation

Figure 4
Schematics of the ribbon and the packing motif. (a) A ßat ribbon, here depicted with eight protoÞlaments side by side. (b) Stacks of� -strands in the
protoÞbril. (c) The corresponding unit cell with the suggested packing motif.



that is expected to be rapidly ßuctuating between different
conformations, including an extended� -like conformation
(Strodel et al., 2007), some of which may be prone to Þbril-
lation. Hence, the assembly of an intermediate oligomer may
no longer be a prerequisite for Þbril formation, even though
one (or a few) of the conformations included in the ensemble
of structures can still be considered to be the (thermodynamic
and/or structural) nucleus. The structural equilibrium of the
monomeric ensemble of structures is evidently dependent
on experimental conditions, for example temperature and
peptide concentration; hence, the rate of Þbrillation is inßu-
enced by several factors. As an example, we keep the dissolved
peptide at low temperatures to avoid the immediate onset of
Þbrillation. Under the conditions investigated, we detected
only a brief lag phase followed by an exponential growth
phase, which is typically assigned to the dependence on
secondary nucleation. This could be assigned to Þbril surface
effects, where the Þbril surface auto-catalyzes Þbril elongation.
In our framework, this would correspond to a shift in the
structural equilibrium of the monomeric species, promoting
a higher proportion of the Þbrillation-prone conformation
among the ensemble of multiple possible monomeric peptide
conformations. We conclude that the lack of evidence for
oligomeric forms of the heptapeptide does not exclude the
possibility of a nucleation-dependent process or elongation by
oligomer addition, but the nuclei and oligomers would then be
formed in low numbers and exist within short time frames.
Here, our observations do suggest that the elongation of
GNNQQNY Þbrils is dominated by monomer addition.
Studies focused on a much larger so-called NM fragment
(Sup35p1Ð254; Collins et al., 2004) showed through Þbrillation
kinetics, analytical ultracentrifugation and single-molecule
ßuorescence that Þbrillation proceedsvia monomer addition.
On the other hand, a study using a shorter N-terminal frag-
ment (Sup35p5Ð26; Narayananet al., 2006) shows that small
oligomers are critical for the Þbrillation process. However, this
latter study was performed in a dialysis setup following
the diffusion of differently sized species,i.e. a signiÞcantly
different setup. In addition, it is observed that a structural
reorganization from an� -helical to a� -sheet structure only
occurs upon incorporation into, or formation of, the Þbrillar
form. Thus, we speculate that this N-terminal oligomer,
although potentially critical for Þbrillation, is perhaps not on
the pathway to the Þbrils.

4.2. Protofilaments and ribbons are mostly straight rather
than twisted and intertwined

Our TEM images reveal striated, highly elongated, ribbons
with only a few twists and turns, in accordance with previous
data (Diaz-Avaloset al., 2003; Marshallet al., 2010; van der
Wel et al., 2007; Lewandowskiet al., 2011). Obviously, surface
effects may inßuence the degree of ribbon twisting seen. TEM
further clearly reveals that the protoÞlaments do not form
bundles, as often observed for other Þbrils (for example, as in
Jime«nezet al., 2002; Vestergaardet al., 2007). Fibrillar bundles
presumably occur if several parts of each protoÞlament

interact and/or if each individual protoÞlament twists. Based
on the side-by-side ribbon association observed, the inter-
action between protoÞlaments must have a clear directional
preference. The protoÞlament itself must thus also be in a
rather rigid, nontwisting macroscopic conformation to result
in the observed linear arrangement. We thus conclude that
individual protoÞlaments do not twist, which will also cause a
low degree of twisting in the ribbon, in accordance with our
observations. Our SAXS data are devoid of surface effects and
also do not reveal the presence of signiÞcant regular twisting
within the range of distances probed by the data. In agreement
with this observation, the Þbril samples are highly viscous, and
we have observed a tendency for preferential orientation in
the SAXS sample cell (evident as non-isotropic scattering
signals when Þbril samples were not sonicated; such data were
discarded prior to analysis).

A previously published TEM analysis (Lewandowskiet al.,
2011) reported striation widths of 5.1� 0.7, 7.1� 1.1 and 12.2
� 1.2 nm. Bragg peaks are rather unusual in biomacromole-
cular SAXS, yet here one is clearly present corresponding to
4.8 nm arising from extremely well deÞned interpositioning of
protoÞlaments, thus revealing the highly ordered macroscopic
hierarchical buildup of these peptide Þbrils.

A GNNQQNY Þbre-to-crystal conversion has previously
been reported (Marshallet al., 2010). This was not detected in
this work, where crystals were only rarely obtained after long-
term storage at room temperature. Interestingly, the diffrac-
tion from these crystals does not match the simulated patterns
based on the two known crystal structures (Supplementary
Fig. S9), further underlining the polymorphism observed for
this and several similar short peptides (Sawayaet al., 2007;
Berrymanet al., 2009).

4.3. A cross-disciplinary derived model of the atomic
structure of GNNQQNY fibrils

As described, the combination of the Bragg peak-
containing SAXS data and the high-quality FD data enabled
us to index the FD data. The SAXS-derived estimate of the
mass per unit length further enables it to be concluded that
there are four peptides within a unit cell of 4.85� 3.21�
0.47 nm. Finally, our cross-sectional analysis reveals that either
one or two layers of protoÞlament ribbons form the Þnal
Þbrils. Based on the available high-resolution crystal struc-
tures of amyloid-like peptide fragments, and a consideration
of the unit-cell dimensions and protoÞlament packing, we
further conclude that the GNNQQNY Þbrils are packed as
zippers of the class 3 type. We can thus provide a quasi-atomic
resolution structure of the four-peptide unit cell, which utilizes
available crystal structure peptide packing, modiÞed also by
the LD-based observation of a new orientation of the terminal
tyrosine residue.

Previously published solid-state NMR analyses of
GNNQQNY Þbrils (Lewandowskiet al., 2011; van der Welet
al., 2010) indicated the presence of three different backbone
conformations (composite Þbrils), and thus microscopically
heterogeneous samples. We do not have a similar observation
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of microscopic heterogeneity in our samples, since the Bragg
peak in the SAXS data is distinctly at one distance and we are
able to Þt our Þbre diffraction data using one structure only.
However, we have clear indications of macroscopic hetero-
geneity. As described in detail above, based on our SAXS data
we observe the presence of ribbons of both one and two
protoÞlaments in thickness, and we have clear evidence in our
TEM data for the varying width of the ribbons. Finally, weak
but random twisting of the ribbons is observed, further adding
to the heterogeneous nature of the solution SAXS data. We
can thus conclude that our samples are macroscopically rather
heterogeneous, although microscopically apparently homo-
genous. The overall average parameters and dimensions can
be obtained from the SAXS data as described above. It is not
possible to Þt our model to the SAXS data by including only
one single model. The sample heterogeneity, which is clearly
identiÞed by both our cross-sectional analysis of SAXS data
and the TEM data, means that in order to Þt the SAXS data
we would need to use a mixture of models, including ribbons
of single/double protoÞlament thickness, varying large-scale
twisting and possibly variations in ribbon width. Such Þtting
clearly includes too many parameters to be conclusive.

The detailed structure of amyloid Þbrils from full-length
proteins is still elusive. Usually, such detailed structural char-
acterization of Þbrils and the Þbrillation process is hindered by
the nature of Þbrillation (a dynamic process including species
on very different size scales), but when combining many
methods, each with their own strengths, it is possible to
overcome these limitations, in particular when studying
shorter fragments of the amyloidogenic proteins. This has
recently been demonstrated in a highly elaborate study of
a transthyretin fragment (Fitzpatricket al., 2013) centred
around numerous MAS NMR studies in combination with
scanning transmission EM or cryo-EM and FD, providing a
high-resolution Þnal model, including a qualitative description
of the heterogeneity of mature Þbrils. Here, we have estab-
lished a plausible atomistic model of the peptide structure in
a highly hierarchical Þbril packing. Based on more easily
obtainable SAXS data, we qualitatively describe the Þbril
heterogeneity, and based on the same SAXS data we assign
the FD unit cell. The method is hence signiÞcantly less
laborious than using MAS NMR, but also results in a lower
resolution model that does not provide details of side-chain
positions but does reveal the overall packing scheme with
clear boundaries with zipper structures in a so-called class 3
motif that has not previously been observed. The SAXS
analysis in addition provides information about the Þbrillation
process, including potential analysis of additional species in
the process. With an interest in protein Þbrillation originating
from disease or possible application as scaffolds for biocom-
patible materials, these approaches to the structural investi-
gation are equally applicable. Investigating the Þbrillation
process and the Þbrillar samples, we have demonstrated a
hybrid method for Þbril structure analysis which could in
future also be extended to include models of full-length
amyloid-like systems as well as other self-assembling
systems.
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