University of Sussex
Browse

sorry, we can't preview this file

Architecture for Mitigating Short-Term Warning Cosmic Threats_READI Project.ppsx (3.06 MB)

Architecture for mitigating short-term warning cosmic threats: READI project

Download (3.06 MB)
Version 2 2023-06-12, 06:37
Version 1 2023-06-09, 00:10
conference contribution
posted on 2023-06-12, 06:37 authored by Shrrirup P Nambiar, Alaa Hussein, Jackelynne Silva-Martinez, Jessica Reinert, Fernando Gonzalez
Earth is being constantly bombarded by a large variety of celestial bodies and has been since its formation 4.5 billion years ago. Among those bodies, mainly asteroids and comets, there are those that have the potential to create large scale destruction upon impact. The only extinction-level impact recorded to date was 65 million years ago, during the era of dinosaurs. The probability of another extinction-level, or even city-killer, impact may be negligible, but the consequences can be severe for the biosphere and for our species. Therefore it is highly imperative for us to be prepared for such a devastating impact in the near future, especially since humanity is at the threshold of wielding technologies that allow us to do so. Majority of scientists, engineers, and policymakers have focused on long-term strategies and warning periods for Earth orbit crossing Near-Earth Objects (NEOs), and have suggested methods and policies to tackle such problems. However, less attention has been paid to short warning period NEO threats. Such NEOs test current technological and international cooperation capabilities in protecting ourselves, and can create unpredictable devastation ranging from local to global scale. The most recent example is the Chelyabinsk incident in Russia. This event has provided a wakeup call for space agencies and governments around the world towards establishing a Planetary Defense Program. The Roadmap for EArth Defense Initiative (READI) is a project by a team of international, intercultural, and interdisciplinary participants of the International Space University's Space Studies Program 2015 hosted by Ohio University, Athens, OH proposing a roadmap for space agencies, governments, and the general public to tackle NEOs with a short warning before impact. Taking READI as a baseline, this paper presents a technical description of methodologies proposed for detection and impact mitigation of a medium-sized comet (up to 800m across) with a short-warning period of two years on a collision course with Earth. The hypothetical comet is on a highly-inclined orbit having a high probability for Earth impact after its perihelion. For detection, we propose a space-based infrared detection system consisting of two satellites located at the Earth-Moon Lagrange points L1 and L2 coupled with space observatories, like the James Webb telescope and the Centennial telescope. These telescopes are supported by ground-based telescopes, like the Arecibo and Green Bank telescope, in the search for NEOs. Upon detection, the comet is tracked constantly using space- and ground-based telescopes. The deflection system is two-pronged, firstly involving the use of a high energy Directed Energy Laser Terminals (DELT) placed at Sun-Earth Lagrange points L4 and L5 so as to initiate and increase the ablation rate of the comet and deviate it from its collision trajectory, and secondly by the Hypervelocity Comet Intercept Vehicle (HCIV), a space-borne system combining a kinetic impactor with a thermonuclear device. The policy and international collaboration aspects to implement these methods are also outlined in the paper. The techniques mentioned could also be applied to mitigate medium-to-large sized asteroids (up to 2km across).

History

Publication status

  • Published

File Version

  • Published version

Journal

2016 IEEE Aerospace Conference

Publisher

IEEE

Page range

1-11

Event name

2016 IEEE Aerospace Conference

Event location

Big Sky, MT, USA

Event type

conference

Event date

5-12 March 2016

ISBN

9781467376761

Series

IEEE Conference on Aerospace

Department affiliated with

  • Engineering and Design Publications

Research groups affiliated with

  • Industrial Informatics and Signal Processing Research Group Publications

Notes

© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works

Full text available

  • Yes

Peer reviewed?

  • Yes

Legacy Posted Date

2020-10-22

First Open Access (FOA) Date

2020-10-22

First Compliant Deposit (FCD) Date

2020-10-21

Usage metrics

    University of Sussex (Publications)

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC