Simvastatin inhibits TLR8 signaling in primary human monocytes and spontaneous TNF production from rheumatoid synovial membrane cultures

Article (Accepted Version)

Mullen, Lisa, Ferdjani, Jason and Sacre, Sandra (2015) Simvastatin inhibits TLR8 signaling in primary human monocytes and spontaneous TNF production from rheumatoid synovial membrane cultures. Molecular Medicine, 21 (1). pp. 726-734. ISSN 1528-3658

This version is available from Sussex Research Online: http://sro.sussex.ac.uk/id/eprint/58450/

This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher's version. Please see the URL above for details on accessing the published version.

Copyright and reuse:
Sussex Research Online is a digital repository of the research output of the University.

Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available.

Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

http://sro.sussex.ac.uk
Simvastatin inhibits TLR8 signaling in primary human monocytes and spontaneous TNF production from rheumatoid synovial membrane cultures

Lisa Mullen, Jason Ferdjani, and Sandra Sacre
Clinical and Laboratory Investigation, Brighton and Sussex Medical School, Trafford Centre, Brighton BN1 9RY

Running title: Inhibition of TLR8 signaling by simvastatin

To Whom Correspondence should be addressed: Dr. Sandra Sacre, Clinical and Laboratory Investigation, Brighton and Sussex Medical School, Trafford Centre, Brighton BN1 9RY. Telephone No. 01273 872865. Email: s.sacre@bsms.ac.uk

Keywords: Rheumatoid arthritis, simvastatin, Toll-like receptor 8, inflammation.
Abstract

Simvastatin has been shown to have anti-inflammatory effects that are independent of its serum cholesterol lowering action, but the mechanisms by which these anti-inflammatory effects are mediated have not been elucidated. To explore the mechanism involved, the effect of simvastatin on TLR signalling in primary human monocytes was investigated. A short pre-treatment with simvastatin dose-dependently inhibited the production of TNF in response to TLR8 (but not TLRs 2, 4, or 5) activation. Statins are known inhibitors of the cholesterol biosynthetic pathway, but intriguingly TLR8 inhibition could not be reversed by addition of mevalonate or geranylgeranyl pyrophosphate; downstream products of cholesterol biosynthesis. TLR8 signalling was examined in HEK 293 cells stably expressing TLR8, where simvastatin inhibited IKKα/β phosphorylation and subsequent NF-κB activation without affecting the pathway to AP-1. Since simvastatin has been reported to have anti-inflammatory effects in RA patients and TLR8 signalling contributes to TNF production in human RA synovial tissue in culture, simvastatin was tested in these cultures. Simvastatin significantly inhibited the spontaneous release of TNF in this model which was not reversed by mevalonate. Together, these results demonstrate a hitherto unrecognized mechanism of simvastatin inhibition of TLR8 signalling that may in part explain its beneficial anti-inflammatory effects.
INTRODUCTION

Rheumatoid arthritis (RA) is a debilitating inflammatory disease that affects approximately 1% of the population. It is characterized by autoimmune synovial inflammation with consequent destruction of cartilage and bone (1). The release of pro-inflammatory cytokines and matrix metalloproteinases by immune cells that infiltrate the synovial membrane is an important factor in the pathogenesis of RA, as demonstrated by the clinical effectiveness of anti-cytokine biologicals (antibodies/soluble receptors), in particular, those that target TNF (2, 3). A compounding problem associated with RA is an increased risk of cardiovascular mortality (4, 5). Consequently, HMG-CoA inhibitors (statins) that inhibit the production of mevalonate, thereby preventing the biosynthesis of cholesterol are often prescribed to RA patients. In addition to the lipid-lowering effects which are beneficial in the treatment of cardiovascular disease, statins also have anti-inflammatory actions, such as inhibition of NF-κB activity and consequent reduction in the production of pro-inflammatory cytokines (6, 7). This anti-inflammatory effect of statins has been reported to decrease clinical symptoms of disease in patients with RA (8-11) and have also been observed to have prophylactic and therapeutic efficacy in the collagen-induced arthritis mouse model (12). However, the precise mechanisms by which statins exert these effects have not yet been fully elucidated.

Statins inhibit the production of mevalonate, the committed step in cholesterol biosynthesis, thereby preventing the production of cholesterol and its precursors. They not only reduce cholesterol synthesis, but also reduce mevalonate-derived molecules, such as the isoprenoid intermediates, farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP). The function of these isoprenoid intermediates is to induce protein prenylation i.e. addition of a prenyl group to C-terminal cysteine residues of proteins. The functions of several intracellular signalling proteins such as Rac and Rho have been demonstrated to be controlled
by prenylation (13). Thus, it is possible that statins could mediate inflammatory pathways by blocking this process.

The potential role of innate immunity in sustaining chronic inflammation in RA is now well recognised (14, 15). In particular, toll-like receptors (TLRs), a family of pattern recognition receptors of which there are ten in humans, have been implicated in the pathogenesis of RA (reviewed in (16)). Upon activation, TLRs initiate signalling cascades leading to the activation of transcription factors AP-1, NF-κB or IFN regulatory factors leading to the production of cytokines. These signalling pathways are initiated by the adaptor proteins myeloid differentiation primary response 88 (MyD88)(17, 18); MyD88 adaptor-like (Mal) protein (19); TIR domain-containing adaptor inducing IFN-β (TRIF) (20) and TRIF-related adaptor molecule (TRAM) (21). The main signalling pathway activated by most TLRs is the MyD88 dependent pathway that signals to the TRAF6 complex which includes IRAK1, 2 and 4. This then activates TAK1-binding protein (TAB)1 and 2 and transforming growth factor beta-activated kinase (TAK)1, at which point the signal splits to activate the IKK complex consisting of IKKα, IKKβ and NEMO leading to NF-kB activation or to the mitogen-activated protein kinases (MAPK) which activate downstream AP-1 (22). Interestingly, statins have previously been demonstrated to modulate TLR2 and 4 signalling and expression (23, 24), making TLRs good candidates for the anti-inflammatory mechanism of statins in RA. In an attempt to gain a further understanding of the mechanism by which statins may be beneficial from an immunomodulatory perspective, the effect of simvastatin on TLR signalling in primary human monocytes and in human rheumatoid synovial membrane cell cultures that spontaneously produce inflammatory cytokines were investigated.
MATERIALS AND METHODS

Reagents

Cell culture reagents used were penicillin-streptomycin, RPMI 1640, and DMEM obtained from Lonza (Wokingham, UK) and fetal calf serum (FCS) from Sigma (Dorset, UK). The TLR ligands used were chloroform-extracted Escherichia coli, lipopolysaccharide (LPS) and resiquimod (R-848) from Invivogen (Toulouse, France). Flagellin (purified) and Pam3Cys-Ser(Lys)4·3HCl (Pam3) were from Alexis (Enzo Life Sciences, Exeter, UK). Simvastatin and geranylgeranyl- pyrophosphate (GGPP) were purchased from Sigma.

Cell culture

RA synovial membrane cells were isolated from patients undergoing joint replacement surgery as previously described (25, 26). Immediately after isolation, cells were cultured at 1 × 10^5 cells/well in 96-well tissue culture plates (Falcon) in RPMI 1640 containing 5% (v/v) FBS and 100 U/ml penicillin-streptomycin. All RA patients gave written informed consent and the study was approved by the Riverside Research Ethics Committee REC number: 07/H0706/81. Primary human monocytes were isolated from single donor platelephoresis residues obtained from the North London Blood Transfusion Centre (United Kingdom) by Ficoll-Hypaque centrifugation after peripheral blood mononuclear cells (PBMC) isolation using lympholyte gradients (27). The use of peripheral blood mononuclear cells was approved by the Brighton and Sussex Medical School Research Governance and Ethics Committee. Cells were cultured in RPMI medium 1640 with 25 mM Hepes and 2 mM l-glutamine supplemented with 5% heat-inactivated fetal calf serum and 100 units/ml of penicillin/streptomycin at 37°C. HEK-Blue hTLR8 cells (Invivogen) were routinely cultured in DMEM (Sigma) supplemented with 10% fetal bovine serum and 100 U/mL penicillin-
streptomycin. These cells stably express human TLR8 and an inducible secreted embryonic alkaline phosphatase (SEAP) reporter gene driven by an NF-κB/Ap-1 promoter. Upon activation of TLR8, SEAP is secreted into the cell supernatant and is detected using QUANTI-Blue (Invivogen), a medium that turns purple/blue in the presence of SEAP.

Plasmids

The NF-κB reporter plasmid, pGNL6 (a generous gift from Dr. David Gould, Queen Mary, University of London), consists of six repeats of the NF-κB site upstream of a minimal CMV promoter controlling expression of firefly luciferase (28). The prenylation reporter system was based on the lentiviral vector constructed by Chinault et al. (29), except that two separate plasmids were constructed for use in transient transfections rather than lentiviral delivery. The sequences coding for the Gal4BD-VP16-GFP-CDC42tail was amplified from the lentiviral vector previously described (29) using the primers 5’ctaggctagcagtagtctgttcctctagaa 3’ and 5’ctagggccgcctctcgacgct 3’, and ligated into pcDNA6 (Life Technologies, Paisley, UK) using NheI and NotI restriction enzymes. The sequences coding for 5 copies of Gal4 upstream of firefly luciferase was amplified from the lentiviral vector described above using primers 5’ctaggggatcagtttggtatgacggt 3’ and 5’ctagggccggttgctttcacaagc 3’, and ligated into pGL2-Basic (Promega, Southampton, UK) using restriction sites for KpnI and NheI. All constructs were verified by sequencing. The Renilla luciferase plasmid (pRL-SV40; Promega) was used to normalize for transfection efficiency in all experiments.

Transient transfection of HEK-Blue hTLR8 cells

Transient transfections were performed using 25 kDa linear polyethylenimine (PEI) (purchased from Polysciences Inc. PA, USA). Stock solutions of PEI were prepared in water
at a concentration of 1 mg/ml, and the pH adjusted to 7.0. The transfection conditions were as previously described(30). Briefly, cells were plated at a density of 4 x 10^5 cells/well in 96-well plates and transfected with a total of 0.5 µg of DNA per well. The transfection complex was formed at a DNA:PEI ratio of 1:3 in OPTI-MEM (Life Technologies, Paisley, UK), with a 30 minute incubation at room temperature prior to addition to the cells. Culture media was replaced 24 h later with 100 µL of fresh DMEM containing 5 µg/mL of R-848 and cultured for a further 24 h before collecting supernatants or assaying luciferase activity in cell lysates.

Western blotting

Primary human monocytes or HEK-Blue TLR8 cells were preincubated with simvastatin for 30 min before stimulation with 2 or 5 µg/mL of R-848 respectively for 30 min. Cells were lysed by the addition of 100 µl of SDS sample buffer. Extracts were separated on 12% or 10% SDS-PAGE gels, and proteins were transferred to nitrocellulose membrane. Membranes were blocked in 5% BSA in Tris-buffered saline containing 0.1% Tween 20 (TBST) and probed with antibodies recognizing phosphorylated forms of p38, TAK-1 or IKKα/β, or anti-GAPDH as a loading control (all from Cell Signalling Technologies). Membranes were then incubated with anti-rabbit-IgG-horseradish peroxidase conjugate (Sigma), followed by detection with advanced chemiluminescence (ECL) reagents (GE Healthcare, Amersham, UK) and exposed to autoradiography using Hyperfilm (GE Healthcare). Films were developed using an AGFA Curix 60 developer (Agfa Healthcare, Middlesex, UK).

ELISA

Sandwich ELISAs were used to measure TNF and IP-10 (BD, Oxford, UK) according to the manufacturer’s recommendations. Standards were purchased from Peprotech (London, UK).
Optical density was read on a spectrophotometric ELISA plate reader (BioTek) and analyzed using Gen5 software V2.6.

Assays

Firefly and Renilla luciferase activities were assayed in cell lysates using the Steady-Glo Luciferase Assay System (Promega) and Renilla Luciferase Assay System (Promega) respectively according to the manufacturer’s instructions. Luminescence was measured using a BioTek plate reader. SEAP activity was measured in cell culture supernatants using Quanti-Blue reagent (Invivogen) according to the manufacturer’s instructions. Measurements were taken at 630 nm. Cell viability was assessed by MTT assay (Sigma).

Statistical methods

Mean, SD, SEM, and statistical significance were calculated using GraphPad version 3 (GraphPad Software). For statistical analysis, a one-tailed t test of paired data was used with a 95% confidence interval or a Wilcoxon matched-pairs two-tailed signed ranks test.
RESULTS

Simvastatin inhibits TLR8 signalling in primary human monocytes and is not reversed by treatment with GGPP

It has previously been suggested that the anti-inflammatory effects of simvastatin could be mediated by inhibition of TLR signalling. Therefore, the release of TNF from primary human monocytes pre-incubated with 10 µg/mL of simvastatin for 30 min prior to stimulation for 18h with ligands specific for TLRs 2 (Pam3), 4 (LPS), 5 (flagellin) and 7/8 (R-848) was measured. Simvastatin had no effect on TNF secretion in response to stimulation of TLRs 2, 4 or 5 but did result in a decrease in TNF produced in response to R-848 (Fig. 1A), with no effect on cell viability as shown by MTT assay (Fig. 1B). This effect was assumed to be due to inhibition of TLR8, rather than TLR7, signalling as it has previously been demonstrated that monocytes do not produce TNF in response to TLR7 ligands (32). To investigate the mechanism by which simvastatin inhibits R-848-induced TNF secretion, a downstream product of the cholesterol pathway, GGPP, was added to the cultures together with simvastatin in an attempt to reverse this effect. Treatment with simvastatin dose-dependently inhibited TNF secretion from primary human monocytes, but could not be reversed by addition of 10 µM GGPP (Fig. 1C). Similar results were found in experiments where mevalonate (also downstream of HMG-Co inhibition) rather than GGPP, was added to the monocytes (Fig. 1D).

Simvastatin-mediated inhibition of TLR8 signalling in HEK-Blue TLR8 cells is independent of the cholesterol pathway

In order to model these responses in a more genetically tractable system, we also tested the effect of simvastatin on TLR8 signalling in HEK-Blue TLR8 cells that stably express both TLR8 and an AP-1/NF-κB SEAP reporter. These cells constitutively express human TLR8
and also have the advantage that NF-κB/AP-1 activation can be measured via the Quanti-Blue assay. Treatment of HEK-Blue TLR8 cells with simvastatin dose-dependently inhibited activation of NF-κB in response to treatment with R-848, which could not be reversed by addition of 10 µM GGPP (Fig. 2A), with no effect on cell viability (Fig. 2B).

GGPP can reverse the effects of simvastatin on prenylation, but not the effects of simvastatin on inhibition of TLR8 signalling

To confirm that the GGPP used in these experiments was functional and could reverse the effects of simvastatin treatment a prenylation reporter system was constructed, based on one previously described (29). The system is based on transient transfection of 2 plasmids: one coding for a chimeric Gal4-VP16-GFP transcription factor with a prenylation motif (the cdc42 tail) and a second plasmid coding for 5 Gal4 DNA-binding sites upstream of the gene for firefly luciferase. Once prenylated, the recombinant cdc42 tail associates with cell membranes, thereby preventing it’s translocation into the nucleus via the intrinsic nuclear localization sequences within the Gal4 DNA–binding domain. However, in the absence (or inhibition) of prenylation, the unprenylated chimeric transactivator can accumulate in the nucleoplasm, where it can drive the expression of firefly luciferase (Fig 3A). The reporter system was tested by transfection of both plasmids into HEK-Blue-TLR8 cells, followed by treatment with 10 µg/mL simvastatin -/+ 10 µM GGPP. As expected, treatment with simvastatin dramatically increased luciferase expression, and the addition of GGPP reversed this effect completely (Fig. 3B). As GGPP did not reverse the inhibition of TLR8 signalling in HEK Blue TLR8 cells, the effect of simvastatin -/+ GGPP on prenylation was tested in these cells. Simvastatin blocked prenylation at all concentrations tested, while 10 µM GGPP reversed this effect of simvastatin (Fig. 3C), but not the effects on NF-κB activation as already shown in Fig. 2A.
Simvastatin-mediated inhibition of TLR8 signalling is independent of AP-1 activation

To investigate the possible mechanisms by which simvastatin inhibits TLR8 signalling, experiments were performed to determine if activation of both NF-κB and AP-1 transcription factors were inhibited by simvastatin as the SEAP reporter would not discriminate between them. Stimulation of HEK-Blue TLR8 cells with R-848 induces the production of SEAP via activation of both of these transcription factors. Hence, the effect of simvastatin on activation of NF-κB alone, using a reporter plasmid coding for the firefly luciferase gene downstream of 6 NF-κB binding sites, was tested. Transient transfection of HEK-Blue TLR8 cells with the NF-κB reporter plasmid was followed by stimulation with R-848 +/- simvastatin. Activation of NF-κB was dose-dependently inhibited by simvastatin (Fig. 4A). The effect of simvastatin on the activation of AP-1 was explored by analysis of phosphorylation of p38 by Western blotting. Stimulation of HEK-Blue TLR8 cells with R-848 resulted in a marked increase in the level of intracellular phosphorylated p38 and this increase was not affected by simvastatin (Fig. 4B). These results were confirmed in primary human monocytes (Fig. 4C). Investigation of the NF-κB activation pathway in primary human monocytes revealed that treatment of monocytes with R-848 resulted in a marked increase in phosphorylated IKKα/β, which was inhibited by simvastatin and not reversed by GGPP (Fig. 4C and D). To further elucidate the mechanism by which simvastatin inhibited phosphorylation of IKKα/β, activation of TGF-β-activated kinase-1 (TAK-1) was analysed by western blot in primary human monocytes as this lies upstream of both p38 and IKKα/β. Treatment of human monocytes with R-848 resulted in phosphorylation of TAK-1, but again, this was not affected by simvastatin (Fig. 4C).

Simvastatin inhibits spontaneous TNF production from human RA synovial membrane cultures
Synovial membrane cultures isolated from human RA joints spontaneously secrete cytokines. The importance of TLR8 in the production of TNF from these cultures has previously been demonstrated (32), so we hypothesized that simvastatin may also have anti-inflammatory effects in this system. Therefore, rheumatoid synovial membrane cells harvested from elective joint replacement surgery were cultured with increasing concentrations of simvastatin for 24h and the secretion of TNF was measured. Incubation with 20 µg/mL of simvastatin significantly reduced (**, $p < 0.01$; and *, $p < 0.05$) the concentrations of these molecules in the cell supernatants (Fig. 5A). The effect of simvastatin was dose-dependent and was not reversed by addition of mevalonate to the cultures (Fig. 5B). Cell viability was measured by MTT assay at the end of the 24h incubation in each experiment and showed no difference in cell viability between any of the experimental conditions (Fig. 5C).

DISCUSSION

This study increases the understanding of the anti-inflammatory mechanism of simvastatin by demonstrating an inhibitory effect on TLR8 signalling in primary human monocytes. This effect of simvastatin on TLR8 signalling is to our knowledge, entirely novel. Anti-inflammatory actions of statins that are independent of the reduction in cholesterol have been known for some time, such as inhibition of oxidative stress induced NF-κB activation (6, 33), leukocyte adhesion (34, 35) and cell proliferation/apoptosis (36, 37) (38). Some of these anti-inflammatory effects have been attributed to an alteration of protein prenylation. Blocking the cholesterol synthesis pathway prevents the downstream synthesis of isoprenoid intermediates such as FPP and GGPP, which can be incorporated into proteins via covalent attachment to conserved cysteine residues in a process known as protein prenylation (13). RhoA prenylation in particular has been shown to be important in activation of NF-κB and
secretion of pro-inflammatory cytokines from TNF activated rheumatoid synoviocytes (39) and TLR2 activated monocytes from RA patients (23).

The inhibition of TLR signalling by simvastatin observed was unexpected in that it was not reversible by mevalonate or GGPP and was specific to TLR8. Instead the mechanism appeared to be through inhibition of downstream IKK phosphorylation and consequently NF-kB activation. However, phosphorylation of p38 MAPK that leads to AP-1 activation was unaffected. TAK1 acts upstream of both IKKβ and p38 (40) and was clearly phosphorylated upon treatment of monocytes with R-848. However, this was not inhibited by simvastatin suggesting that simvastatin may act either directly on the IKK complex or via another upstream molecule necessary for IKK phosphorylation. Interestingly, TLR8-mediated phosphorylation of IKK has previously been suggested to be independent of TAK1 instead being phosphorylated by mitogen-activated protein kinase kinase kinase 3 (MEKK3) (41). This alternate pathway of IKK activation by TLR8 may explain why no effect of simvastatin was observed on TLR2, 4 or 5 induced TNF production in monocytes in this study.

Conversely, there have been reports of modulation of TLR2 and TLR4 by simvastatin. In monocytes from RA patients, simvastatin inhibited activation of NF-κB and secretion of TNF and IL-1β in response to TLR2 stimulation (23). In monocytes from healthy donors, simvastatin has also been shown to inhibit the expression of TLR4 (24). However, these differences may be explained by the methodologies used, in particular, in the length of exposure to simvastatin prior to stimulation. A short 30 min incubation with simvastatin prior to adding TLR ligands was used in this study, whereas the other studies used a 24h pre-incubation (23, 24). Interestingly the effects of simvastatin shown in both of these studies
were reversible with mevalonate and/or GGPP suggesting a possible reduction of prenylation of TLR signalling molecules with a longer pre-incubation period.

TLRs are suggested to contribute to the maintenance of inflammation in RA. In previous studies we had identified a role for TLRs, and in particular TLR8, in the production of spontaneous TNF in human RA synovial membrane cultures (32, 42). In agreement with a pathogenic role for TLR8 in RA, a recent study observed that expression of human TLR8 in transgenic mice resulted in increased susceptibility to collagen-induced arthritis (43). This same study also reported increased expression of TLR8 in the blood of patients with systemic arthritis (43). As simvastatin is suggested to be anti-inflammatory in RA (44) and was observed to inhibit TLR8 signalling in monocytes in this study, the effect of simvastatin on the production of TNF from human RA synovial cultures was investigated.

Treatment of human RA synovial cultures with simvastatin significantly decreased the spontaneous production of TNF which was refractory to mevalonate treatment, as had been observed for TLR8 induced TNF production in monocytes. This suggested that it was not due to effects on other TLRs such as TLR2 and TLR4 which can be reversed with mevalonate. This anti-inflammatory effect in the RA synovial membrane cultures is consistent with previous studies showing beneficial effects of statins in RA (45) and suggest that the effects of statins on lowering joint pain and swelling (44, 46) may be due, at least in part, to the inhibition of TNF released from synovial tissue. TNF is known to be a key cytokine driving chronic inflammation in RA as has been demonstrated by the clinical success of anti-TNF biological therapies (47). This reduction in TNF may in part be due to inhibition of TLR8, however in RA patients, long term simvastatin use may have multiple effects that together generate the clinical benefits observed, such as the reduction of expression and function of
other TLRs, decreased cell proliferation and a reduction in inflammation initiated by other pathways (8-11, 44).

CONCLUSION

Together, these data provide new insights into the intracellular signalling pathways downstream of TLR8 activation. The precise mechanism by which phosphorylation of IKK in response to TLR8 stimulation is inhibited by simvastatin remains to be fully elucidated. However, the data builds upon our existing knowledge of the anti-inflammatory effects of simvastatin and suggests a possible mechanism by which simvastatin contributes to a reduction in disease activity in RA.
ACKNOWLEDGEMENTS

This work was supported by funding from the European Union Seventh Framework Programme (integrated project Masterswitch; 223404) and by Brighton and Sussex Medical School.
References

Figure Legends

Figure 1. Simvastatin inhibits TLR8, but not TLRs 2, 4 or 5 signalling and is not reversed by GGPP in primary human monocytes. (A) Cells were incubated with 10 μg/mL simvastatin for 30 min, then stimulated with 10 ng/mL Pam3, 100 ng/mL LPS, 2 μg/mL R-848 or 10 ng/mL flagellin for 16 h. Supernatants were analysed for TNF. Data pooled from 4 separate donors is shown as a percentage of the appropriate maximal response (* p< 0.0001). (B) Cell viability was measured by MTT assay. Data are pooled from 4 separate donors as a percentage of the appropriate maximal response. (C) Primary human monocytes were cultured in the presence of 10 μg/mL simvastatin ± 10 μM GGPP for 30 min prior to stimulation with 2 μg/mL R-848. Supernatants were analysed for TNF production. Data are representative of 5 separate experiments using 5 different donors. (D) Primary human monocytes were cultured in the presence of 0 or 10 μg/mL of simvastatin ± 1 μM of mevalonate for 30 min prior to stimulation with R-848. Supernatants were analysed for TNF production. Data are representative of 4 separate experiments using 4 different donors.

Figure 2. Simvastatin inhibits TLR 8 signalling in HEK Blue TLR8 cells which is not reversed by treatment with GGPP. (A) HEK Blue TLR8 cells (which stably express TLR8 and a reporter gene expressing a secreted embryonic alkaline phosphatase (SEAP) under the control of a NF-κB/AP-1 inducible promoter) were cultured for 30 min in the presence of 10 μg/mL simvastatin ± 10 μM GGPP, before stimulation with 5 μg/mL R-848 for 16 h. Supernatants were analysed for SEAP activity using the Quanti-Blue assay and (B) cell viability was measured by MTT assay. Data are representative of 3 independent experiments.

Figure 3. Inhibition of TLR8 signalling by simvastatin is independent of the prenylation pathway. (A) Schematic showing the principle of the bioluminescence reporter for detection
of inhibition of protein prenylation in cells. HEK Blue TLR8 cells were transfected with a plasmid coding for a Gal4-VP16-GFP transcription factor bearing a prenylation (geranylgeranylation) site from Cdc42 at its C-terminus (Gal4-VP16-GFP-Cdc42tail). This drives transcription of firefly luciferase (F Luc) from a second transfected plasmid under the control of a synthetic promoter containing 5 Gal4 DNA–binding sites. When prenylated, the Gal4-VP16-GFP-Cdc42tail associates with membranes, reducing its ability to drive firefly luciferase (F Luc) expression. (B) Inhibition of prenylation by 10 µg/mL simvastatin for 30 min prevents association of Gal4-VP16-GFP-Cdc42tail with membranes, allowing the transactivator to accumulate in the nucleoplasm and augment reporter expression. The presence of 10 µM GGPP fully reverses the effect of simvastatin. (C) Prenylation is inhibited by 10 µg/mL simvastatin and reversed by 10 µM GGPP in HEK Blue TLR8 cells treated with 5 µg/mL of R-848 for 16h.

Figure 4. Inhibitory effects of simvastatin on TLR8 signalling are mediated by inhibition of NF-κB, but not AP-1. (A) Inhibition of NF-κB-induced luciferase production in HEK Blue TLR8 cells in response to 16 hour incubation with 5µg/ml R-848 after a 30 min incubation with simvastatin. (B) HEK Blue TLR8 cells were treated with 10 µg/mL simvastatin for 30 min ± 10 µM GGPP prior to treatment with 5 µg/mL R-848 for 16 h. Cell lysates were examined for phosphorylation of p38 by Western blotting. (C) Primary human monocytes were treated with 10 µg/mL simvastatin ± 10 µM GGPP for 30 min prior to treatment with 2µg/ml R-848 for 16 h. Cell lysates were examined for phosphorylation of p38, IKKα/β and TAK-1 by Western blotting. GAPDH was used as a loading control. These blots are representative of 3 independent experiments. (D) Densitometric analysis of Western blots for phosphorylated IKKα/β. Data are expressed as arbitrary units and are the mean ±SE (n = 3). *P<0.05 vs. R-848 treated samples by Student’s t-test for paired data.
Figure 5. Simvastatin inhibits spontaneous TNF production from RA synovial membrane cultures which is not reversed by mevalonate. (A) RA synovial membrane cells were cultured in medium alone or medium containing 20 µg/mL simvastatin (\(^*\!* p<0.0001\)). Data are shown from 7 RA patient samples from separate donors. (B) RA synovial membrane cells were cultured for 24 h in the presence of simvastatin ± 1 µM mevalonate. Supernatants were analysed for TNF. (C) Effects of simvastatin ± 1mM mevalonate on cell viability were measured by MTT assay. Data shown in B and C are from triplicate cultures shown as the mean ±SD and are representative of three separate experiments in unrelated donors.