Galaxy formation in the Planck cosmology - III. The high-redshift universe

This version is available from Sussex Research Online: http://sro.sussex.ac.uk/id/eprint/54597/

This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher's version. Please see the URL above for details on accessing the published version.

Copyright and reuse:
Sussex Research Online is a digital repository of the research output of the University.

Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available.

Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.
Galaxy formation in the Planck cosmology – III. The high-redshift universe

Scott J. Clay, 1* Peter A. Thomas, 1 Stephen M. Wilkins 1 and Bruno M. B. Henriques 2
1Astronomy Centre, University of Sussex, Brighton, BN1 9QH, UK
2Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, D-85741 Garching bei München, Germany

Accepted 2015 April 10. Received 2015 April 9; in original form 2015 March 4

ABSTRACT
We present high-redshift predictions of the star formation rate distribution function (SFRDF), UV luminosity function (UVLF), galactic stellar mass function (GSMF), and specific star formation rates (sSFRs) of galaxies from the latest version of the Munich semi-analytic model L-GALAXIES. We find a good fit to both the shape and normalization of the SFRDF at \(z = 4–7 \), apart from a slight underprediction at the low-SFR end at \(z = 4 \). Likewise, we find a good fit to the faint number counts for the observed UVLF at brighter magnitudes our predictions lie below the observations, increasingly so at higher redshifts. At all redshifts and magnitudes, the raw (unattenuated) number counts for the UVLF lie above the observations. Because of the good agreement with the SFR we interpret our underprediction as an overestimate of the amount of dust in the model for the brightest galaxies, especially at high redshift. While the shape of our GSMF matches that of the observations, we lie between (conflicting) observations at \(z = 4–5 \), and underpredict at \(z = 6–7 \). The sSFRs of our model galaxies show the observed trend of increasing normalization with redshift, but do not reproduce the observed mass dependence. Overall, we conclude that the latest version of L-GALAXIES, which is tuned to match observations at \(z \leq 3 \), does a fair job of reproducing the observed properties of galaxies at \(z \geq 4 \). More work needs to be done on understanding observational bias at high redshift, and upon the dust model, before strong conclusions can be drawn on how to interpret remaining discrepancies between the model and observations.

Key words: galaxies: evolution – galaxies: formation – galaxies: high-redshift – galaxies: luminosity function, mass function – ultraviolet: galaxies.

1 INTRODUCTION
With the installation of Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST) in 2009, it is now possible to identify statistically useful and robust samples of star forming galaxies in the early Universe (\(z > 4 \); Bouwens et al. 2010a, 2011; Bunker et al. 2010; Finkelstein et al. 2010, 2012b, 2014; McLure et al. 2010, 2011, 2013; Oesch et al. 2010; Wilkins et al. 2010, 2011a; Lorenzoni et al. 2011, 2013; Duncan et al. 2014). In recent years, a tremendous effort has been dedicated to quantifying the photometric and physical properties, such as star formation rates (SFR) and stellar masses, of these galaxies. As we continue to dig deeper, with the first sources now identified at \(z \approx 10 \) (e.g. Oesch et al. 2012; Ellis et al. 2013), and with the launch of the James Webb Space Telescope (JWST) in the next few years, we will further be able to constrain the physics of galaxy formation and evolution in this critical epoch of the Universe’s history.

Although it lasts less than 0.8 Gyr, the period of the Universe between \(z = 7 \) and \(z = 4 \) is important to study because it defines an epoch of interesting galaxy formation and evolution activity. The start of this period marks the end of the epoch of reionization; galaxies are starting to ramp up their metal and dust production, and we are finding evidence of the first quasars. While astronomy is unique in allowing us to observe the Universe at these early times, theoretical modelling is required to interpret those observations in terms of an evolving galaxy population. The rapidly advancing observational constraints on the physical properties of galaxies in the early Universe provides an opportunity to further test and refine these galaxy formation models.

The most well-studied property of the galaxy population at high redshift (in part due to its accessibility) is the rest-frame ultraviolet luminosity function (UVLF). Because of the link between the UV luminosity of galaxies and their SFR, the observed UVLF provides an important constraint on star formation activity in the early
has had a lot of success over the past decade in predicting various properties of galaxies, such as the stellar-mass and luminosity functions both in the local Universe and out to redshift $z = 3$ (Henriques et al. 2013). In this paper, we extend these predictions to higher redshift without altering any of the model parameters (except to modify the redshift-dependence of the dust model, as described in Section 2.2.1 below). In that sense, the results presented here may be considered predictions of the model.

This paper is structured as follows: in Section 2, we describe the relevant parts of our semi-analytical model, highlighting the changes in the latest version; in Section 3, we discuss our high-redshift predictions for the SFRDF and UVLF, followed by the stellar mass function in Section 4. In Section 5 we discuss the relationship between the specific star formation rate (sSFRs) and the stellar mass, and in Section 6, we give a brief overview of the evolution of these properties at high redshift. We conclude our work in Section 7. Throughout this paper, we adopt a Chabrier initial mass function (Chabrier 2003) and use the latest Planck cosmology (Planck Collaboration I 2014). Number densities are presented per comoving volume, $(h^{-1} \, \text{Mpc})^3$.

This paper makes use of detailed predictions from the new model of L-GALAXIES outlined in Henriques et al. (2015), which have been made publicly available. The binned data used to make the plots in this paper have also been made available online.

2 THE MODEL

2.1 L-GALAXIES

SAMs provide a relatively inexpensive method of self-consistently evolving the baryonic components associated with dark matter merger trees, derived from N-body simulations or Press–Schechter calculations. The term semi-analytic comes from the use of coupled differential equations (rather than numerical calculations), to follow the evolution of galaxy formation physics determining the properties of gas and stars. Physics commonly found in most SAMs include descriptions of: (1) primordial infall and the impact of an ionizing UV background; (2) Radiative cooling of the gas; (3) Star Formation recipes; (4) Metal enrichment; (5) Supermassive black hole growth; (6) Supernovae and AGN feedback processes; and (7) The impact of environment and mergers including galaxy morphologies and quenching.

The Munich SAM, or L-GALAXIES, (Springel et al. 2001, 2005; De Lucia, Kauffmann & White 2004; De Lucia & Blaizot 2007; Croton et al. 2006; Guo et al. 2011, 2013; Henriques et al. 2013) has been developed over the years to include most of the relevant processes that affect galaxy evolution. In this work, we use its latest version, Henriques et al. (2015), and direct the reader to the appendix of that paper for a detailed description of the model. Of most relevance to this paper are the adoption of the Planck year 1 cosmology and a modified gas-to-dust relation, partly motivated by the work presented in this paper. The model parameters were constrained using the abundance and passive fractions of galaxies at $z \leq 3$, and the model has successfully reproduced key observables at these redshifts, such as the luminosity and stellar mass functions. We highlight this fact in Fig. 1, which is a reproduction of the SMF at $z \in \{0, 1, 2, 3\}$ from Henriques et al. (2015). We direct the reader to figs 2 and A1 and the related text of that paper for a more detailed
Figure 1. Predicted stellar mass functions at redshift \(z \approx 0 \) (top left), \(z \approx 1 \) (top right), \(z \approx 2 \) (lower left) and \(z \approx 3 \) (lower right). Solid black lines show the stellar mass functions predicted by our model. This figure is reproduced from Henriques et al. (2015) Figs 2 and A1, and we direct the reader there for a more detailed description. We include it here to highlight how well the model works at lower redshifts in predicting key observables such as the SMF. Observations are taken from several surveys; SDSS (Baldry, Glazebrook & Driver 2008; Li & White 2009) and GAMA (Baldry et al. 2012) at \(z = 0 \); and Marchesini et al. (2009), Spitzer-COSMOS (Ilbert et al. 2010), NEWFIRM (Marchesini et al. 2010), COSMOS (Domínguez Sánchez et al. 2011), ULTRAVISTA (Ilbert et al. 2013; Muzzin et al. 2013) and ZFOURGE (Tomczak et al. 2014) at higher redshifts.

discussion, but we highlight how well the model can explain the observed evolution in the SMF at these redshifts, over the mass range constrained by observers.

2.2 Dust extinction model

Actively star forming galaxies are known to be rich in dust. This can have a dramatic effect on their emitted spectrum since dust significantly absorbs optical/UV light while having a much milder effect at longer wavelengths. As a result, dust-dominated galaxies will generally have red colours even if they are strongly star forming. For that reason, we summarize the dust model of Henriques et al. (2015) here: a fuller description can be found in section 1.14 of the supplementary material in that paper.

We considering dust extinction separately for the diffuse interstellar medium (ISM) and for the molecular birth clouds (BC) within which stars form. The optical depth of dust as a function of wavelength is computed separately for each component and then combined as described below. We do not at present attempt to compute the detailed properties of the dust particles or the re-emission of the absorbed light.

2.2.1 Extinction by the ISM

The optical depth of diffuse dust in galactic discs is assumed to vary with wavelength as

\[
\tau_{\text{ISM}}^\lambda = (1+z)^{-1} \left(\frac{A_\lambda}{A_V} \right) z_\odot \left(\frac{Z_{\text{gas}}}{Z_\odot} \right)^a \times \left(\frac{\langle N_H \rangle}{2.1 \times 10^{21} \text{ atoms cm}^{-2}} \right),
\]

where

\[
\langle N_H \rangle = \frac{M_{\text{cold}}}{1.4 m_p \pi (a R_{\text{gas}, d})^2}
\]

is the mean column density of hydrogen. Here, \(R_{\text{gas}, d} \) is the cold gas disc scalelength, 1.4 accounts for the presence of helium and \(a = 1.68 \) in order for \(\langle N_H \rangle \) to represent the mass-weighted average
column density of an exponential disc. Following the results in Guiderdoni (1987), the extinction curve in equation (1) depends on the gas metallicity and is based on an interpolation between the solar neighbourhood and the Large and Small Magellanic Clouds: \(s = 1.35 \) for \(\lambda < 2000 \) Å and \(s = 1.6 \) for \(\lambda > 2000 \) Å. The extinction curve for solar metallicity, \((A_{\lambda}/A_V)_{\odot}\), is taken from Mathis (1983).

The redshift dependence in equation (1) is significantly stronger than in previous versions of our model \([(1 + z)^{-0.5}\) in Kitzbichler & White (2007) and \((1 + z)^{-0.3}\) in Guo & White (2009)]. The dependence implies that the same amount of cold gas and the same metal abundance, there is less dust at high redshift. The motivation comes both from observations (Steidel et al. 2004; Quadri et al. 2008) and from the assumption that dust is produced by relatively long-lived stars. However, it may also be that this redshift dependence has to be introduced as a phenomenological compensation for the excessively early build-up of the metal content in model galaxies. In practice, it has been included simply to give an approximate match to the low extinctions of high-redshift galaxies as inferred from their observed UV slopes (Bouwens et al. 2012), and to the UVLF, as described below.

\[A_{\lambda} = A_V \left(\frac{1}{\mu} - 1 \right) \left(\frac{\lambda}{5500\text{ Å}} \right)^{-0.7}, \quad \text{where } \mu \text{ is given by a random Gaussian deviate with mean 0.3 and standard deviation 0.2, truncated at 0.1 and 1.} \]

\[\text{(3)} \]

2.2.2 Extinction by molecular BC

This second source of extinction affects only young stars that are still embedded in their molecular BC, for which we assume a lifetime of 10 Myr. The relevant optical depth is taken to be

\[\tau_{\lambda}^{\text{BC}}(z) = \tau_{\lambda}^{\text{ISM}} \left(\frac{1}{\mu} - 1 \right) \left(\frac{\lambda}{5500\text{ Å}} \right)^{-0.7}, \]

where \(\mu \) is given by a random Gaussian deviate with mean 0.3 and standard deviation 0.2, truncated at 0.1 and 1.

\[\text{(3)} \]

2.2.3 Overall extinction curve

In order to get the final overall extinction, every galaxy is assigned an inclination, \(\theta \), given by the angle between the disc angular momentum and the z-direction of the simulation box, and a ‘slab’ geometry is assumed for the dust in the diffuse ISM. For sources that are uniformly distributed within the disc then the mean absorption coefficient is

\[A_{\lambda}^{\text{ISM}} = -2.5 \log_{10} \left(\frac{1 - \exp^{-\tau_{\lambda}^{\text{ISM}} \sec \theta}}{\tau_{\lambda}^{\text{ISM}} \sec \theta} \right). \]

\[\text{(4)} \]

Emission from young stars embedded within BC is subject to an additional extinction of

\[A_{\lambda}^{\text{BC}} = -2.5 \log_{10} \left(\exp^{-\tau_{\lambda}^{\text{BC}}} \right). \]

\[\text{(5)} \]

The standard L-GALAXIES output does not attempt to model the attenuation of light by the intergalactic medium. However, this is done in post-processing for the lightcones published in the Millennium Run Observatory\(^\text{3}\)(Overzier et al. 2013). In this paper, however, we neglect intergalactic attenuation.

3 RECENT STAR FORMATION

In this section, we investigate the SFR, and the related UVLF, at redshifts \(z \in \{4, 5, 6, 7\} \).

Fig. 2 shows the SFRD as predicted by our model alongside measurements from Smit et al. (2012, converted to our fiducial Chabrier IMF) and Duncan et al. (2014).

Comparing with the Smit et al. (2012) measurements at redshifts \(z \approx 5–7 \), we find generally good agreement. At these redshifts, the Duncan et al. (2014) measurements are generally higher than both the model and the Smit et al. (2012) results. This is particularly true for the most massive galaxies, though we note that the quoted observational uncertainties can be very large.

At \(z \approx 4 \), however, our model underpredicts the number of galaxies for \(\log_{10}(\text{SFR}/h^{-2} \text{M}_{\odot}) < 1 \) when compared to both sets of observations (which are consistent with one another at this redshift). The cause of the discrepancy is unclear, though may be a consequence of our model underestimating the contribution to the SFR from merger-driven activity.

3.1 The UVLF

We present the UVLF predicted by our model in Fig. 3 alongside recent observational estimations at high redshift (Bowler et al. 2014a;b; Duncan et al. 2014; Finkelstein et al. 2014; Bouwens et al. 2015). The solid black line shows our prediction for the attenuated UVLF; the attenuated UVLF at \(z = 4 \) is also shown on subsequent plots for comparison. The dashed line shows our intrinsic UVLF, with no dust model being applied.

We find a good fit to the faint number counts: \(M_{\text{UV}} > -20 \) for \(z = 4–6 \) and \(M_{\text{UV}} > -19 \) for \(z = 7 \). At brighter absolute magnitudes, the model counts fall below the observed ones. Note, however, that the raw counts, before dust attenuation, lie above the observations. Given that we saw a good fit in Section 3 between predicted and observed SFRs, then this points to a difference in the dust model between the two.

To better understand this, we quantify in Fig. 4 the attenuation required (as a function of the intrinsic UV absolute magnitude) to reconcile the raw L-GALAXIES data with observations. We do this by comparing observed, \(M_{\Phi, \text{obs}} \), and intrinsic, \(M_{\Phi, \text{int}} \), absolute magnitudes below which we achieve a particular cumulative number density, \(\Phi \) of galaxies:

\[\Phi = \int_{-\infty}^{M_0} \phi \, dM, \]

\[\text{(6)} \]

where \(\phi \) is the usual differential number density of galaxies. The attenuation is then \(A_{\text{UV}} = M_{\Phi, \text{obs}} - M_{\Phi, \text{int}} \).

The dust attenuation required to match the observation (as a function of the intrinsic absolute magnitude) is shown in Fig. 4. The black, solid line shows the attenuation currently implemented in L-GALAXIES, as described in Section 2.2.

As expected, the built-in attenuation matches that from the Duncan et al. (2014) data fairly well. The other data sets show a shallower slope: the attenuation is reasonable, perhaps even underestimated in the faintest galaxies, but is strongly overestimated in the brightest galaxies and increasingly so at high redshift.

It is important to stress that while we are presenting the results for all the objects within our simulation, observational samples (such as those employed by Duncan et al. 2014; Finkelstein et al. 2014; Bouwens et al. 2015), are biased and may not truly capture the full galaxy population at these redshifts. Indeed, a defining characteristic

\(^3\) The Millennium Run Observatory, or MRObs, allows you to observe our semi-analytic galaxy formation model through the use of ‘virtual telescopes’.

Figure 2. Predicted SFRDF at redshift $z \approx 4$ (top left), $z \approx 5$ (top right), $z \approx 6$ (lower left) and $z \approx 7$ (lower right). In each instance, we use the closest available snapshot from our L-GALAXIES run of $z = 3.95, 5.03, 5.82$ and 6.97, respectively. Solid black lines show the SFRDF predicted by our model. Our $z = 4$ SFRDF is repeated at higher redshifts as a grey dot–dashed line for comparison. Observations are taken from Smit et al. (2012), converted to a Chabrier IMF, and Duncan et al. (2014).

of the Lyman break technique, which is regularly used to identify galaxies in the high-redshift universe, is that it preferentially selects blue rest-frame UV bright sources, i.e star forming galaxies with low UV dust attenuation ($A_{UV} < 2$). Very dusty galaxies, or those with little to no star formation would then be missed in typical Lyman break galaxy searches (e.g. HFLS3, a very dusty intensely star forming galaxy at $z \approx 6.3$ Riechers et al. 2013). The degree to which this is a concern at high redshift is difficult to assess, largely due to the lack of sensitive far-IR and sub-mm imaging which is critical to identify heavily obscured systems.

Given the current observational uncertainties, we conclude that the simple, empirical dust extinction model currently built into L-GALAXIES does a reasonable job, although it could be refined to match particular data sets if required. In the future, we intend to implement a more physically-motivated dust model: we note that the current model has prompt recycling, and this could be an issue at these early times when the age of the Universe is just 1.5 Gyr at $z = 4$ and less than 1 Gyr for $z > 6$. A delayed chemical enrichment model has been implemented in L-GALAXIES by Yates et al. (2013), and we intend to incorporate that into the Henriques et al. (2015) model in future work.

4 Galaxy Stellar Mass Function

We present the GSMF at $z \in \{4, 5, 6, 7\}$ predicted by our model in Fig. 5 alongside recent observational estimates at high redshift from González et al. (2011) and Duncan et al. (2014).

It is important to first note that the observationally derived mass functions presented in Fig. 5 are inconsistent with each other at $z \sim 4-5$. One possible source (see Duncan et al. 2014 for a wider discussion) of this discrepancy is the effect of nebular emission which was included in Duncan et al. (2014) but not in González et al. (2011). Galaxies in the high-redshift Universe are expected (Wilkins et al. 2013) and inferred (e.g. Smit et al. 2014) to exhibit strong nebular emission which can strongly affect the measured stellar mass-to-light ratios and thus masses (Wilkins et al. 2013). The accuracy/precision of stellar mass estimates are also affected by the lower sensitivity and angular resolution of the Spitzer/IRAC imaging.

Given the above observational uncertainties, it is gratifying that the model predictions split the two observational measurements at $z = 4$. There is a hint that the change in slope at the ‘knee’ of the mass-function ($M_{\text{knee}} \approx 3 \times 10^9 h^{-2} M_\odot$) may be sharper in
Figure 3. Predicted rest-frame (1500 Å) UVLF at redshift $z \approx 4$ (top left), $z \approx 5$ (top right), $z \approx 6$ (lower left) and $z \approx 7$ (lower right). In each instance, we use the closest snapshot available to use from our L-GALAXIES run of $z = 3.95, 5.03, 5.82$ and 6.97, respectively. Solid black line shows the L-GALAXIES prediction for the attenuated UVLF using the dust extinction model outlined in Section 2.2.1. The dashed black line is the L-GALAXIES prediction of the intrinsic UVLF, with no dust model applied. Our $z = 4$ attenuated, UVLF is repeated at higher redshifts as a grey dot–dashed line for comparison. Observations are taken from Bouwens et al. (2015), Duncan et al. (2014) and Finkelstein et al. (2014); and at high mass from Bowler et al. (2014a, $z = 6$) and Bowler et al. (2014b, $z = 7$).

The exact cause of these discrepancies is difficult to assess. One possibility is that it reflects a deficiency in the model; on the other hand, it may reflect a systematic bias in the observations. This has been discussed at low redshift ($z = 0–3$) in appendix C of Henriques et al. (2013). It seems probable that the uncertainties on the individual stellar masses could have been underestimated, and that can strongly boost the inferred number of galaxies in regions where the mass function is particularly steep. As an example of the possible magnitude of this effect, we show in Fig. 5 the result of convolving with a Gaussian of standard deviation 0.3 dex, similar to that required at low redshift. This largely reconciles the observed and predicted slopes of the mass function, but the normalization remains too low at $z = 7$. Understanding the source of this discrepancy is a focus of an additional work in progress (Wilkins et al., in preparation).

Recent hydrodynamic simulations, particularly ILLUSTRIS (Vogelsberger et al. 2014) and EAGLE (Schaye et al. 2015), have begun making predictions of observables at high redshift (Furlong et al. 2014; Genel et al. 2014). Like L-GALAXIES, both ILLUSTRIS and EAGLE make predictions at high redshift by only using observational constraints at lower redshift. Both simulations are similar to ours in the prediction of the GSMF at $z = 6–7$ in that we all underpredict the abundance of high-mass galaxies ($>10^9 M_{\odot}$) at these redshifts, although EAGLE better match the observations at $z = 5$ across the entire mass range. Whilst both L-GALAXIES and EAGLE match a similar shape to the observations, particularly finding good agreement with the slope and abundance for low-mass galaxies, ILLUSTRIS predicts a slope that steepens with increasing redshift faster than what is observed, and over predicts the abundance of low-mass galaxies at all redshifts.
Figure 4. This figure shows the amount of dust attenuation required to move our intrinsic UVLF (the dashed, black lines in Fig. 3) to match different observational data sets (Duncan et al. 2014; Finkelstein et al. 2014; Bouwens et al. 2015), as a function of unattenuated absolute UV magnitude. The solid, black line shows the attenuation built into the L-GALAXIES model as described in Section 2.2.

5 SPECIFIC STAR FORMATION RATE

The sSFR is a measure of how quickly a galaxy is forming its stars. We present the sSFRs at \(z \in \{4, 5, 6, 7\}\) of our galaxy population predicted by our model in Fig. 6 alongside recent observational measurements from Salmon et al. (2015). We represent the sSFR of individual galaxies by a 2D histogram; the solid line shows the median value predicted by our model, averaged over bins of 100 or more galaxies.

The observations are consistent with our model, particularly for galaxies of mass \(M \approx 10^9\) \(M_\odot\), across all redshifts. However, the observations show a decline in the sSFR with increasing galactic stellar mass, and we do not identify the same trend. Instead, all galaxies in our model have roughly the same level of activity, regardless of galactic stellar mass. This discrepancy is not surprising: given that the models match the observed SFR but underpredict the stellar masses of the largest galaxies, then we would expect this result.

The question remains as to whether the observations or the model is at fault, or a combination of both. We could boost AGN feedback in the most massive galaxies in the model, but this would then reduce the bright end of the UVLF. Alternatively, as hinted in the previous section, the inferred masses of the highest mass galaxies may have been boosted by observational scatter. At lower masses, there will be an observational bias towards the brightest galaxies, and so the median sSFR may be overestimated.

6 EVOLUTION

To make it easier to see how the properties of our model galaxies change with time, we extract the model predictions from each of the four redshifts shown in Figs 2, 3, 5 and 6 and display them in single panels in Fig. 7.

Concentrating first on the SFR (upper-left panel), we see the knee of the distribution remains relatively unchanged, at about \(20 h^{-2}\) \(M_\odot\) yr\(^{-1}\) over this period. However, the normalization of the relation grows and the slope decreases, such that the number comoving number density of galaxies with SFR of \(0.3 h^{-2}\) \(M_\odot\) yr\(^{-1}\) is approximately constant, while that of higher SFR in excess of \(100 h^{-2}\) \(M_\odot\) yr\(^{-1}\) grows by several orders of magnitude. As might be expected, a similar, but less pronounced, trend is seen in the UVLF, although the knee of the distribution is harder to discern.

In contrast to the SFRDF, the galactic SMDF shows only a slight reduction in slope from \(z = 7\) to \(z = 4\). Consequently, the comoving number density of low-mass galaxies increases by about 1 dex over this time. This is reflected in the sSFR, which reduces by a factor...
Galaxy formation at high redshift

Figure 5. Predicted stellar mass functions at redshift $z \approx 4$ (top left), $z \approx 5$ (top right), $z \approx 6$ (lower left) and $z \approx 7$ (lower right). In each instance, we use the closest snapshot available to use from our L-GALAXIES run of $z = 3.95, 5.03, 5.82$ and 6.97, respectively. Solid black lines show the stellar mass functions predicted by our model. To indicate the possible effect of uncertainties in the observational stellar mass determinations, we also show as a red dot-dashed line the stellar mass function convolved with a Gaussian of standard deviation 0.3 dex. Our $z = 4$ stellar mass function is repeated at higher redshifts as a grey dot-dashed line for comparison. Observations are taken from González et al. (2011), converted to a Chabrier IMF and Duncan et al. (2014).

7 CONCLUSIONS

We have presented the latest high-redshift observational predictions of the SFRDF, UVLF, GSMF and sSFRs of galaxies from the latest version of the L-GALAXIES SAM (Henriques et al. 2015). Our conclusions are as follows.

(i) We find a good fit to both the shape and normalization of the observed SFRDF at $z = 4–7$ (Fig. 2), apart from a slight underprediction at the low-SFR end at $z = 4$, possibly caused by a lack of SFR contribution from merger-driven activity in our model.

(ii) We find a good fit to the faint number counts for the observed UVLF (Fig. 3). At brighter magnitudes, our predictions lie below the observations, increasingly so at higher redshifts.

(iii) At all redshifts and magnitudes, the raw (unattenuated) number counts for the UVLF lie above the observations, and so we interpret our underprediction as an overestimate of the amount of dust in the model for the brightest galaxies, especially at high redshift (Fig. 4).

(iv) While the shape of our SMF matches that of the observations, we lie between the observations at $z = 4–5$ and underpredict at $z = 6–7$ (Fig. 5). We note, however, that both sets of observations are inconsistent with one another, and have, at times, large errors attached to them.

(v) The sSFRs of our model galaxies (Fig. 6) show the observed trend of increasing normalization with redshift, but do not reproduce the observed mass dependence, indicating instead that galaxies of all masses have the same level of activity. It is unclear as to whether this is caused by observational bias, or by an underestimate of AGN feedback in the model.

In summary, the L-GALAXIES model has mixed success in reproducing observations at high redshift. It provides a reasonable match to
Figure 6. Predicted sSFRs (sSFR = SFR/M) at redshift \(z \approx 4 \) (top left), \(z \approx 5 \) (top right), \(z \approx 6 \) (lower left) and \(z \approx 7 \) (lower right). In each instance, we use the closest snapshot available to use from our L-GALAXIES run of \(z = 3.95, 5.03, 5.82 \) and 6.97, respectively. The histogram density plot represents the L-GALAXIES galaxy population, with white representing the most dense, and blue representing the least. The solid line shows the L-GALAXIES median values, and the dashed lines show the 0.16 and 0.84 percentiles. The observations are taken from Salmon et al. (2015), the points denotes the median while the error bars reflect the scatter in the observed values (not the uncertainty on the median).

both the SFRDF and the low-mass end of the SMF, but fails to show the observed mass dependence of the sSFR. The predicted UVLF is highly dependent upon an ad hoc scaling with redshift of the dust model.

In Yates et al. (2013), we added a detailed model of the chemical enrichment in L-GALAXIES by adding a delayed enrichment from stellar winds and supernovae, as well as metallicity-dependent yields and the tracking of eleven heavy elements (including O, Mg and Fe). This shows promising results in reproducing the mass–metallicity relation at \(z = 0 \), although the chemical enrichment at high redshift remains untested and is something we will look at in the future. That then will provide a more realistic prediction of the metallicity of galaxies at early times. In future work, we will also add a physically-motivated model for dust growth and destruction, and consider the effect of extinction from the intergalactic medium.

ACKNOWLEDGEMENTS

The authors would like to thank the anonymous referee for valuable comments and suggestions that helped them to improve this paper. They would also like to thank Kenneth Duncan, Brett Salmon and Renske Smit for providing them with their observational data, in some cases in advance of publication, and Chaichalit Srisawat and David Sullivan for their advice and assistance.

The authors contributed in the following way to this paper. SJC undertook the vast majority of the data analysis and produced the figures; he also provided a first draft of the paper. PAT & SMW jointly supervised SJC and led the interpretation of the results. BMBH provided expertise on the interpretation of the L-GALAXIES model.

The model data used in this paper was generated on the DiRAC Data Centric system at Durham University, operated by the Institute for Computational Cosmology on behalf of the STFC DiRAC HPC Facility (www.dirac.ac.uk). This equipment was funded by BIS National E-infrastructure capital grant ST/K00042X/1, STFC capital grant ST/H008519/1, STFC DiRAC Operations grant ST/K003267/1 and Durham University. Much of the data analysis was undertaken on the APOLLO cluster at Sussex University.

SJC acknowledges the support of his PhD studentship from the Science and Technology Facilities Council (STFC). PAT & SMW acknowledge support from the Science and Technology Facilities Council (grant number ST/L000652/1). BMBH was supported by advanced grant 246797 ‘GALFORMOD’ from the European Research Council.
Figure 7. Plot to show the evolution of the stellar mass (top left); SFR (top right); UVLF (lower left); and sSFRs (lower right) in the redshift range $z = 4–7$. In each instance, we use the closest snapshot available to use from our L-GALAXIES run of $z = 3.95, 5.03, 5.82$ and 6.97, respectively.

REFERENCES
