

151

• Interaction rules with expressions may be applied to active pairs the same as in

the original interaction nets. Attributes that are held by the active pairs of the

rule are substituted for variables that occur in agents with expressions in the LHS

of the rules, and each expression is performed and replaced with the calculation

result. For instance, when a rule (α(x1, x2), β(y)) ⇒ N is applied to an active pair

(α(1, 2), β(3)), these x1, x2, y that occur in N are replaced with 1, 2, 3 respectively.

Increments elements of lists The following is an example of interaction rules with

expressions such that the values of attributes in lists are incremented:

n n+1

Nilinc

⇒

⇒

inc inc

Nil

A list of 2,4,3 is changed into a list of 3,5,4 by applying the inc agent as follows:

inc �→

�→ inc �→
�

inc2 4 3 Nil 3 4 3 Nil

3 5 3 Nil 3 5 4 Nil

Duplication lists The following is an example of interaction rules with expressions that

duplicates lists:

�

�

n

n

�

⇒

⇒

Nil

n

Nil

Nil

A list is duplicated by applying the δ agent as follows:

� �→ �

2

2

�→
�

�

3

3

�→

2 4 3 Nil 4 3 Nil

2 4

2 4

Nil

2 4 3 Nil

2 4 3 Nil

152

6.2.3 Conditional interaction rules

We extended interaction rules with expressions so that these rules can be performed only

when attributes in the active pairs meet given conditions.

Definition 6.2.2 (Conditional interaction rules)

• Conditions for an active pair (α(x1, . . . , xn), β(y1, . . . , ym)) are expressions built on

attribute operations, integer numbers, and only variables x1, . . . , xn, y1, . . . , ym. For

instance, (x ≥ 1) and (x ≤ 10) is a condition for an active pair (α(x), β).

• We define conditional interaction rules for active pairs (α(x1, . . . , xn), β(y1, . . . , ym))

as interaction rules with expressions such that a condition Cond for the active pairs

is labelled on arrows:

(α(x1, . . . , xn), β(y1, . . . , ym))
Cond⇒ N

• Conditional interaction rules may be applied to active pairs only if the evaluation

result of the conditions is not 0.

• Each condition for the same active pair must be disjoint, and thus there is only one

rule that can be applied to the active pair.

We note that the Strong confluence property (Theorem 2.1.1) is preserved since there

is only at most one conditional interaction rule for each active pair.

Vending machine This is an example of a vending machine such that a candy is sold

at 45 pence. The agent Vending holds one integer number for the total value of inserted

coins, and when the total value exceeds 45 pence, it outs one candy and changes. This

logic is written by conditional interaction rules:

Vending
(p)

n ⇒

p + n

�

45

Candy

p+n-45

Vending
(0)

Vending
(p)

n ⇒

not

(p + n

�

45)

Vending
(p+n)

Cancel
Vending

(p) ⇒

p > 0

Vending
(0)

Vending
(p) ⇒

not

(p > 0)

p

Vending
(0)

Cancel

153

A list of coins 20p, 20p, 10p is changed into one candy and 5 pence:

�→
�

�→

Vending
(0)

20 1020
Vending

(40)
10

Candy
Vending

(0)

5

6.2.4 Examples

In this section we give some examples. Here we use the Tuple1 agent to hold an integer

number i:

Tuple1(i)

As long as there is no confusion, we omit the agent name and the bracket as follows:

i

Addition The addition operation is written as the following rules:

n ⇒ Addn

(n)

m n+m⇒

Add

Addn

(n)

For instance, the computation result of 2 + 3 is obtained as follows:

2

3

�→ 3 �→ 5Add Addn
(2)

Fibonacci number The following is an example of interaction rules of Fibonacci num-

ber.

n ⇒Fib

n=0

1

n ⇒Fib

n=1

1

n ⇒Fib

not(n=0) and

not(n=1)

Fib n-1

Fib n-2

Add

154

Ackermann function The following is an example of interaction rules of Ackermann

function.

1

⇒

m=0
m

A

A2(m)⇒

not(m=0)
m

A

n ⇒

n=0

m-1
A

n ⇒

not(n=0)
m-1

A

m

n-1

A

Addn
(1)

A2(m)

A2(m)

Bubble Sort The following is a set of rules for Bubble Sort algorithm. The agent M

works as a separator to indicate that all elements after are sorted.

⇒

⇒B(x)BS x

B(x) x

x

BS Nil ⇒

⇒

Nil

BS B(x)

BS M ⇒

⇒

⇒B(x)

B(x) y x B(y)

y B(x)

Nil M Nil

M M

x

�

y

not

(x

�

y)

y

For instance, a list [3,4,2] is sorted as follows:

BS 3 4 2 Nil �→ BS B(3) 4 2 Nil

�→ BS B(4)3 2 Nil �→ BS B(4)3 2 Nil

�→ BS 3 2 M Nil4 �→ 2 M Nil4BS B(3)

�→ 2 M Nil4BS B(3) �→ 2 M Nil4BS 3

M Nil43�→ BS B(2) M Nil43�→ BS 2

Nil43�→ 2

155

Quick Sort The next example is Quick Sort algorithm. The main mechanism of this

algorithm is given by the following rules. The first element of the list is used as a pivot:

QS x

QS Nil ⇒

⇒

Nil

x QS

QS

Part(x)Append

The agent Part(x) splits a list into two ones by less than x or not:

⇒y

y

�

x

Part(x) Part(x)
y

⇒yPart(x)
Part(x)

y

Part(x) Nil ⇒
Nil

Nil

not

(y

�

x)

The agent Append appends given two lists into one:

Append ⇒
Nil

⇒x x
Append

Append

For instance, a list [3,4,2,1] is sorted as follows:

QS 4 2 1 Nil3

�→ 4 2 1 Nil

�→
�

4 Nil

2 1 Nil

�→
�

Nil

1 Nil

�→
�

3

QS

QS

Part(3)Append
3

QS

QS

Append
3

Append
3

QS

QS

Part(4)Append
4

QS

QS

Part(2)Append
2

Append
4 Nil

Nil

Append
2 Nil

1 Nil

�→
� 2 3 4 Nil1Append

156

6.3 Syntax

In this section we introduce new syntax to express the extensions for agents and interaction

rules.

6.3.1 Nested pattern matching

Here we introduce the case-statements in the same style as functional programming lan-

guages in order to write interaction rules with nested pattern matching.

Definition 6.3.1 (case-statements)

We define an abbreviation for sets of interaction rules of nested patterns with case-

statements by the following grammar:

P ⇒ case x of α1(~x1) => E1 | · · · | αn(~xn) => En
def
= {〈P, x− α1(~x1)〉 → E1} ∪ · · · ∪ {〈P, x− αn(~xn)〉 → En}

where P is a nested active pair, and E1, . . . , En, called case-expressions, are defined by

the following grammar:

E ::= N

| case x of α1(~x1) => E1 | · · · | αn(~xn) => En.

Definition 6.3.2 (Sequential set for the case-statements)

Let P ⇒ E be an abbreviation with case-statements. We define a set of nested active

pairs by the following translation Seq(P,E) for nested agent pairs P and the syntax of

case-expressions E:

Seq(〈P 〉 , N)
def
= {〈P 〉},

Seq(〈P 〉 , case x of α1(~x1) => E1 | · · · | αn(~xn) => En)

def
= {〈P 〉} ∪ Seq(〈P, x− α1(~x1)〉 , E1) ∪ · · · ∪ Seq(〈P, x− αn(~xn)〉 , En).

Lemma 6.3.3

Let a set of rules α(~x) on β(~y) ⇒ E be given by an abbreviation with case-statements.

Then Seq(α(~x) on β(~y), E) is sequential.

Proof. Let P = Seq(α(~x) on β(~y), E). First, we show that, for 〈P, yj − γ(~z)〉 ∈ P,

P ∈ P:

• By Definition 6.3.2, Seq(〈P ′, y − β(~y)〉 , E′) contains P ′ and 〈P ′, y − β(~y)〉. Every

element in P occurs at the first argument of Seq, and 〈α(~x) on β(~y)〉 ∈ P. Thus, for

〈P, yj − γ(~z)〉 ∈ P, P ∈ P.

157

Next, we show that, when 〈P, yj − γ(~z)〉 ∈ P, then 〈P, y − α(~w)〉 6∈ P for all free

ports y in P except the yj and for all agents α:

• By Definition 6.3.2, the 〈P, yj − γ(~z)〉 is created by the case of a case-statement

such as Seq(〈P 〉 , case yj of γ(~z) => E | · · · | γ′(~z′) => E′ · · ·). Other case-

statements should occur in among E and E′, so there is no element such that

〈P, y − α(~w)〉 ∈ P where y 6= yj . �

Theorem 6.3.4

Let a rule set R = α(~x) on β(~y) ⇒ E be given by an abbreviation with case-statements.

Then R is well-formed.

Proof. Seq(α(~x) on β(~y), E) is a sequential set which contains every nested active pair

of the LHS in R. By Definition 6.3.2, for every rule P ⇒ N in R, there is no interaction

rule P ′ ⇒ N ′ in R such that P ′ is a subnet of P . �

Example 6.3.5

Interaction rules for Fibonacci number and Ackermann function are written as follows:

Fib(r) = Z ⇒ r = S(Z)

Fib(r) = S(x) ⇒ case x of

Z => r = S(Z)

| S(y) => y = Dup(y1, y2), Fib(r1) = S(y1),

Fib(r2) = y2, Add(r2, r) = r1

A(y, r) = Z ⇒ r = S(Z)

A(y, r) = S(x) ⇒ case y of

Z => Pred(A(S(Z), r)) = x

| S(u) => u = Dup(Pred(A(w, r)), A(y, w))

6.3.2 Agents and interaction rules with attributes

Here we introduce syntax for agents holding attributes and interaction rules with expres-

sions and conditions.

Agents hold attributes We write attributes the same as auxiliary ports. For instance,

α(2, 4, r) means that the α agent holds two attributes 2, 4 and has one auxiliary port r.

In the case of agents with expressions, we also write variables the same as auxiliary

ports. In order to distinguish those from auxiliary ports, we may use a modifier int before

each attribute: For instance, Cons(int x, r) means that the x is used for an attribute

variable and the r is for an auxiliary port.

158

We extend the syntax for terms t as follows:

V ::= int x | i where i is an integer number,

Arg ::= V | t,

t ::= x | α(Arg1, . . . ,Argn) | $t.

We use ∆,Θ also for multisets of equations of those extended terms.

Definition 4.4.2 for name sets in terms is extended as follows:

Definition 6.3.6 (Names in terms)

The set Name(t) of names of a term t is defined in the following way, which extends to

sequences of terms, equations, sequences of equations, and rules in the obvious way.

Name(i) = ∅ where i is an integer number,

Name((int)x) = ∅,

Name(x) = {x},

Name(α(t1, . . . , tn)) = Name(t1) ∪ · · · ∪ Name(tn),

Name($t) = Name(t).

Thus, the occurrence of attributes and attribute variables do not affect the linearity

condition.

Lists agents List data-structures are common and useful to manage sequences of data.

We introduce the Cons(x, xs) and the Nil agents as built-in agents for lists and, write

those by using the following abbreviations:

[x|xs], [].

In addition, we introduce an abbreviation of [x1|[x2|[x3| · · · |Nil]] · · ·] as

[x1, x2, x3, . . .].

For instance, [2,4,3] denotes a list of 2,4,3:

2 4 3 Nil

Tuple agents The tuple data-structure is common to manage fixed-length data. In

interaction nets programming, it is useful to concentrate on operations of attributes. We

introduce the following n-tuple built-in agents:

Tuple0(), Tuple1(x1), Tuple2(x1, x2), Tuple3(x1, x2, x3), . . .

159

and we write those agents by using the following abbreviations:

(), (x1), (x1, x2), (x1, x2, x3), . . .

For instance, the following is a 2-tuple for 3 and 5:

(3,5)

Interaction rules with expressions Each symbol of attribute operations

+,−,×,÷, mod,=, 6=, <,≤, >,≥, and, or, not

is written as

+, -, *, /, mod, ==, !=, <, <=, >, >=, and, or, not

respectively.

In the interaction rules with expressions, expressions ei that contain arithmetic oper-

ations are replaced with variable vi, and written as vi = ei in a where-clause as follows:

α(x1, . . . , xn) = β(y1, . . . , ym)⇒ ∆ where v1 = e1 v2 = e2 · · · vl = el

where

• variables for attributes among x1, . . . , xn, y1, . . . , ym are written with the modifier

int,

• every variable vi does not occur in ej such that j < i,

• each ei is an expression built on arithmetic operations, variables for the attributes

in the LHS and variables vj such that j < i.

By this separation of expressions from equation sequences, operations for attributes

are distinguished from the operations for the original interaction net.

Take the following rules as an example of this notation:

n n+1

Nilinc

⇒

⇒

inc inc

Nil

These are written as follows:

inc(r) = [int n|ns] ⇒ r = [n1|w], inc(w) = ns where n1 = n+1

inc(r) = [] ⇒ r = []

160

Conditional interaction rules We introduce the following notation for conditional

interaction rules for active pairs P with conditions Cond as follows:

P
Cond⇒ ∆

We also introduce the following notation for a set of conditional interaction rules for

the same active pairs P to ensure that conditions Cond i are disjoint:

P | Cond1 ⇒ ∆1

| Cond2 ⇒ ∆2

...

| otherwise⇒ ∆n

as the following abbreviation:

P
Cond1⇒ ∆1

P
not(Cond1) and Cond2⇒ ∆2

...

P
not(Cond1) and ··· and not(Condn−1)⇒ ∆n

For instance, the rules for the candy vending machine are written as follows:

Vending(int p, c, r) = [int n|ns]

| p+n>=45⇒ r = candy(w), Vending(0, c1, w) = ns, c = [p1|c1]

where p1 = p+n-45

| otherwise ⇒ Vending(p1, c, w) = ns where p1 = p+n

Vending(int p, c, r) = cancel(ns)

| p>0⇒ Vending(0, c1, r) = ns, c = [p|c1]

| otherwise ⇒ Vending(0, c, r) = ns

In the graph notation as well, we use the otherwise to denote negation of any other

conditions.

Example 6.3.7

• Interaction rules for Fibonacci numbers are written as follows:

Add(m, r) = (int n) ⇒ Addn(n, r) = m

Addn(int n, r) = (int m) ⇒ r = (i) where i = m+ n

Fib(r) = (int a)

| a == 0 ⇒ r = (1)

| a == 1 ⇒ r = (1)

| otherwise ⇒ Fib(Add(n, r)) = (b), Fib(n) = (c)

where b=a-1 c=a-2

161

• Ackermann function is written by the following rules:

A(n, r) = (int m)

| m == 0 ⇒ Addn((1), r) = n

| otherwise ⇒ A2(m, r) = n

A2((int)m, r) = (int n)

| n == 0 ⇒ A((1), r) = (m′) where m′ = m-1

| otherwise ⇒ A(w, r) = (m′), A((n′), w) = (m)

where m′ = m-1 n′ = n-1

In the rules for Ackermann function, we can omit the declaration of A2 when we use

the notation of nested pattern matching:

A(n, r) = (int m)

| m == 0 ⇒ Addn((1), r) = n

| otherwise ⇒ case n of

(int n1) =>

| n1 == 0 ⇒ A((1), r) = (m′) where m′ = m-1

| otherwise ⇒ A(w, r) = (m′), A((n′), w) = (m)

where m′ = m-1 n′ = n1-1

• Evaluation results of F39 and A(3, 8) are obtained by equations Fib(r) = (39) and

A((8), r) = (3) respectively.

Example 6.3.8

The rule set of Bubble Sort is written as follows:

BS(r) = [] ⇒ r = []

BS(r) = [x|xs] ⇒ B(x, BS(r)) = xs

BS(r) = M(w) ⇒ r = w

B(int x, r) = [] ⇒ r = M([x])

B(int x, r) = M(w) ⇒ r = M([x|w])

B(int x, r) = [int y|ys]

| x<=y ⇒ r = [x|w], B(y, w) = ys

| otherwise ⇒ r = [y|w], B(x,w) = ys

Example 6.3.9

The rule set of Quick Sort is written as follows:

QS(r) = [] ⇒ r = []

QS(r) = [int x|xs] ⇒ Part(x, QS(w), QS(Append([x|w], r))) = xs

162

Append(a, b) = [] ⇒ a = b

Append(a, b) = [x|xs] ⇒ b = [x|w], xs = Append(a,w)

Part(int x, a, b) = [] ⇒ a = [], b = []

Part(int x, a, b) = [int y|ys]

| y<=x ⇒ ys = Part(x, a, w), b = [y|w]

| otherwise ⇒ ys = Part(x,w, b), a = [y|w]

6.4 Extension of LL0

In this section we extend the syntax of LL0 and the compilation method so that agents

and interaction rules with attributes can be expressed. Finally, we introduce an execution

model.

6.4.1 Extension of the syntax of LL0

In this section, we extend the syntax of LL0.

Attributes and expressions We use attribute values the same as graph elements by

putting a modifier (int) before the values, and thus an assignment of an attribute i to a

port p ≥ 1 of a graph node x is written as:

x[p] = (int)i

For instance, x[1] = (int)2 and x[2] = (int)10 are assignments of attribute variables 2

and 10 to ports x[1] and x[2] of a graph element x respectively. Those values also can be

assigned to variables by using the modifier (int) such as v = (int)2.

Attribute values that are assigned to variables can be referred in expressions by putting

a modifier (int) before the variables. For instance, when an attribute value 2 is assigned

to v, then (int)v + 10 is an expression, and the evaluation result is 12. With respect

to ports of L and R, we only allow referring these in rule procedures such as (int)L[1],

(int)R[2] and so on.

Expressions, the same as attribute values, are also assigned to ports and variables

by using the modifier (int), and these are recognised as assignments of the calculation

results of the expressions. For instance, when x[1] has an attribute value 2, then x[2] =

(int)((int)x[1]+1) is an assignment of the calculation result x[1]+1, thus 3, to the port

x[2].

The following is the summary for the extension for instructions:

163

Instruction Description

x[p] = (int)e Assign the result of an attribute expression e to a port p ≥ 1 of a

graph element x.

v = (int)e Assign the result of an attribute expression e to a variable v.

and for expressions:

Expression Description

(int)L[p] Deal with the port p of the left agent of the operated active pair as

an attribute value.

(int)R[p] Deal with the port p of the right agent of the operated active pair as

an attribute value.

(int)v Deal with the value of the variable v as an attribute value.

op e1 Apply an unary operation op ∈ {-, not} to an expression e1.

e1 op e2 Apply a binary operation op to expressions e1, e2

where op ∈ {+, -, *, /, mod, ==, !=, <, <=, >, >=, and, or}

The syntax is extended as follows (where original definitions are underlined):

〈operation〉 ::= 〈attrAssign〉 | 〈assignment〉 | 〈disposeAgent〉 | 〈opEquation〉

〈attrAssig〉 ::= 〈var〉 ′=′ (int) 〈attrExp〉

〈attrExp〉 ::= 〈integer〉 | (int) 〈var〉 | (int) (′L′ | ′R′) ′[′ 〈num〉 ′]′ |

〈unaryArith〉 | 〈binaryArith〉 |′ (′ 〈attrExp〉 ′)′

〈unaryArith〉 ::= (′-′ | ′not′) | 〈attrExp〉

〈binaryArith〉 ::= 〈attrExp〉 | (′+′ | ′-′ | ′*′ | ′/′ | ′mod′ |
′==′ | ′!=′ | ′<′ | ′<=′ | ′>′ | ′>=′ | ′and′ | ′or′) | 〈attrExp〉

〈integer〉 ::= ′ −′ 〈num〉 | 〈num〉

Example 6.4.1

An agent holding attributes

�(2, 4)

is allocated by the following instructions:

aAlpha = mkAgent(ALPHA)

aAlpha[1] = (int)2

aAlpha[2] = (int)4

Example 6.4.2

A list [2,4,3] is allocated by the following instructions:

164

// []

aNil=mkAgent(NIL)

// [3]

aCons1=mkAgent(CONS)

aCons1[1]=(int)3

aCons1[2]=aNil

// [4,3]

aCons2=mkAgent(CONS)

aCons2[1]=(int)4

aCons2[2]=aCons1

// [2,4,3]

aCons3=mkAgent(CONS)

aCons3[1]=(int)2

aCons3[2]=aCons2

Interaction rules We introduce if-statements to the syntax of rule procedures so that

conditional rules can be described as follows:

rule α β {

if (Cond1) {· · ·}

elif (Cond2) {· · ·}
...

elif (Condn) {· · ·}

else {· · ·}

}

where Cond i are conditions. The same as the block in rule procedures, we also write

instructions between { and } in if-statements, which are called if-statement blocks, and

variables introduced in an if-statement block can live only in the block.

In the execution of an if-statement, each condition Cond i is evaluated in the order

Cond1,Cond2, . . . until its evaluation result is 0. When the evaluation result of Cond j

is not 0, then the block placed at the right of the Cond j is evaluated as the execution of

the if-statement. Otherwise, the block of else is evaluated. These elif-clauses can be

omitted if those are not needed.

With respect to the syntax of nested pattern matching, we deal with it as a syntax

sugar, and thus we assume that the case-statement is translated into normal interaction

165

rules automatically.

The syntax for rules are extended as follows:

〈ruleBlock〉 ::= 〈ifClause〉 〈elifClause〉∗ 〈elseClause〉 | ′{′ 〈operation〉∗ ′}′

〈ifClause〉 ::= ′if′ ′(′ 〈attrExp〉 ′)′ 〈ifBlock〉

〈elifClause〉 ::= ′elif′ ′(′ 〈attrExp〉 ′)′ 〈ifBlock〉

〈elseClause〉 ::= ′else′ 〈ifBlock〉

〈ifBlock〉 ::= ′{′ 〈operation〉∗ ′}′

Example 6.4.3

The interaction rule for Fibonacci number is written as follows:

rule Fib Tuple1 {

stackFree()

if ((int)R[1]==0) {

aTP1 = mkAgent(Tuple1)

aTP1[1] = (int)1

push(L[1],aTP1)

} elif ((int)R[1]==1) {

aTP1 = mkAgent(Tuple1)

aTP1[1] = (int)1

push(L[1],aTP1)

} else {

b = (int)((int)R[1]-1)

c = (int)((int)R[1]-2)

w1 = mkName()

aFib = mkAgent(Fib)

aAdd = mkAgent(Add)

aAdd[1]=w1

aAdd[2]=L[1]

aFib[1] = aAdd

aTP1 = mkAgent(Tuple1)

aTP1[1] = b

push(aFib,aTP1)

bFib = mkAgent(Fib)

bFib[1] = w1

bTP1 = mkAgent(Tuple1)

166

bTP1[1] = c

push(bFib,bTP1)

}

free(L)

free(R)

}

6.4.2 Extension of the compilation method

In this section we extend the compilation method that is defined by Definition 5.2.2

and 5.2.4 into the extended syntax. First we extend the compilation of terms.

• The translation Compilet defined by Definition 5.2.2 is extended into integer numbers

as follows:

Compilet(n)
def
= (“”, “(int){n}”) where n is an integer number

Next we extend the compilation for rules.

• The translation Compiler defined by Definition 5.2.4 is re-defined as follows:

Compiler(α(~x) = β(~y)⇒ Θ)
def
= Compiler(α(~x) = β(~y)⇒ Θ where)

| Compiler(α(~t) = β(~s)⇒ Θ
def
= “rule {α} {β} {”

where v1 = e1 · · · vn = en) + “stackFree()”

+ CompileRinst(α(~t) = β(~s)⇒ Θ

where v1 = e1 · · · vn = en)

+ “free(L)”

+ “free(R)”

+ “}”
| Compiler(α(~t) = β(~s)

def
= “rule {α} {β} {”

| e1 ⇒ Θ1 + “stackFree()”

| e2 ⇒ Θ2 + “if (” + CompileRexp(e1) + “) {”
... + CompileRinst(α(~t) = β(~s)⇒ Θ1) + “}”
| otherwise⇒ Θn) + “elif (” + CompileRexp(e2) + “) {”

+ CompileRinst(α(~t) = β(~s)⇒ Θ2) + “}”
...

167

+ “else {”
+ CompileRinst(α(~t) = β(~s)⇒ Θn) + “}”
+ “free(L)”

+ “free(R)”

+ “}”;

CompileRinst(α(~t) = β(~s)⇒ Θ)
def
= CompileRinst(α(~t) = β(~s)⇒ Θ where)

| CompileRinst(α(~t) = β(~s)⇒ Θ

where v1 = e1 · · · vn = en)

def
= let

~x = remInt(~t); ~y = remInt(~s);

N1 = Compilern(~x, L, ∅);

N2 = Compilern(~y, R,N1);

(N, c1) = makeN′(

Name(Θ)− {~x, ~y},N2);

in

c1 + CompileRes(Θ,

v1 = e1, . . . , vn = en);

end;

remInt((int)x,~t)
def
= (x, remInt(~t))

| remInt(t,~t)
def
= (t, remInt(~t));

CompileRes(Θ,

v1 = e1, . . . , vn = en)

def
= let

N[v1] := freshStr(); · · ·N[vn] := freshStr();

c1 = “{N[v1]}=(int)({Compileexp(e1)})”;
...

cn = “{N[vn]}=(int)({Compileexp(en)})”;

in

c1 + · · ·+ cn + Compilees(Θ)

end;

168

CompileRexp(i)
def
= i where i is an integer number

| CompileRexp(x)
def
= “(int){N[x]}”

| CompileRexp(op e)
def
= op + CompileRexp(e) where op ∈ {-, not}

| CompileRexp(e1 op e2)
def
= CompileRexp(e1) + op + CompileRexp(e2)

where op ∈ {+, -, *, /, mod,

==, !=, <, <=, >, >=, and, or}

| CompileRexp((e))
def
= CompileRexp(e);

Example 6.4.4

Here, as an example, we take the interaction rule for Fibonacci number in Example 6.3.7:

Fib(r) = (int a)

| a == 0 ⇒ r = (1)

| a == 1 ⇒ r = (1)

| otherwise ⇒ Fib(Add(n, r)) = (b), Fib(n) = (c)

where b=a-1 c=a-2

By applying Compiler to the rule, the following is obtained:

"rule Fib Tuple1 {

StackFree()

if ({CompileRexp(a == 0)}) {

{CompileRinst(Fib(r) = (int a)⇒ r = (1))} }

elif ({CompileRexp(a == 1)}) {

{CompileRinst(Fib(r) = (int a)⇒ r = (1))} }

else { {CompileRinst(Fib(r) = (int a)⇒ Θ where b=a-1 c=a-2)} }

free(L)

free(R)

}"

where Θ is Fib(Add(n, r)) = (b), Fib(n) = (c).

We manage the first if-block. By unfolding CompileRexp(a == 0) the following is

obtained:

(int)R[1]==0

By unfolding CompileRinst(Fib(r) = (int a)⇒ r = (1)), the following is obtained:

aTuple1=mkAgent(Tuple1)

aTuple1[1]=(int)1

push(L[1],aTuple1)

169

Next we manage the last if-block CompileRinst(Fib(r) = (int a) ⇒ Θ). This is

unfolded as follows:

n=mkName()

CompileRes(Θ, b=a-1, c=a-2)

with the following name table N:

N = {(n, n)}.

The CompileRes(Θ, b=a-1, c=a-2) is unfolded as follows:

b=(int)((int)R[1]-1)

c=(int)((int)R[1]-2)

Compilees(Θ)

Therefore, the outlook of the compilation result is obtained as follows:

rule Fib Tuple1 {

StackFree()

if ((int)R[1]==0) {

aTuple1=mkAgent(Tuple1)

aTuple1[1]=(int)1

push(L[1],aTuple1)

} elif ((int)R[1]==1) {

aTuple1=mkAgent(Tuple1)

aTuple1[1]=(int)1

push(L[1],aTuple1)

} else {

n=mkName()

b=(int)((int)R[1]-1)

c=(int)((int)R[1]-2)

Compilees(Θ)

}

free(L)

free(R)

}

Taking account of the unfolding result of Compilees(Θ), this has the same operations

of the rule procedure in Example 6.4.3.

170

6.5 Extension of execution models

In this section, we explain how these extended nets are evaluated. For this purpose, we

extend the execution model based on the standardised implementation model in the C

language. Next, we show correspondence of extended codes in LL0 with ones in the C

language. We also extend the byte-code machine to evaluate those extended nets.

6.5.1 Data-structures for agents, ports and attributes

Attributes, which are integer numbers, are held by agents. To manage attributes the same

as ports, thus to incorporate ports and integer numbers, we introduce VALUE type [6],

which is used in the implementation of Ruby [60]:

typedef unsigned long VALUE;

Thus, every object is managed by a pointer such as void*, which is assumed equivalent

to unsigned long, and referred by casting the pointer. To prepare a common method to

recognise which sort of a given VALUE object, the new Agent and Name structures have the

following Basic structure that has the original id value as the first element:

typedef struct {

int id;

} Basic;

Thus, the new data-structures for those nodes are written as follows:

typedef struct {

Basic basic;

VALUE port[MAX_PORT];

} Agent;

typedef struct {

Basic basic;

VALUE port;

} Name;

#define RBASIC(a) ((Basic *)(a))

#define RAGENT(a) ((Agent *)(a))

#define RNAME(a) ((Name *)(a))

171

For a given a1 of the VALUE type, the id can be referred by RBASIC(a1)->id, and according

to the id, other elements can be referred by RAGENT(a1) and RNAME(a1).

Integer numbers are embedded into values of pointers [25] by using arithmetic shift

operations, taking advantage of the alignment of pointers such as a 4-byte boundary. In

this implementation, we restrict integer numbers to 31-bits representation, called fixed

numbers, and we embed those into values of VALUE by using the lowest bit of pointers as

a tag of the fixed numbers [6]:

#define FIXNUM_FLAG 0x01

#define INT2FIX(i) ((VALUE)(((long)(i) << 1) | FIXNUM_FLAG))

#define FIX2INT(i) ((int)(i) >> 1)

#define IS_FIXNUM(i) ((VALUE)(i) & FIXNUM_FLAG)

By introducing the VALUE type, the following basic functions are also changed:

VALUE mkAgent(int id);

VALUE mkName();

VALUE mkInd();

void pushActive(VALUE a1, VALUE a1);

int popActive(VALUE *a1, VALUE *a1);

6.5.2 Execution model in the C language

In this section, we explain how these extended nets are evaluated, showing correspondence

of codes in LL0 with ones in the C language.

Instructions The correspondence of the extended instructions is as follows:

• x[p] = (int)e

The calculation result of the expression e is managed as a fixed number, and thus

this corresponds to the following code:

x->port[p-1]=INT2FIX(e);

• v = (int)e

The evaluation result of the expression e is assigned into v as a fixed number, and

thus this corresponds to the following code:

v=INT2FIX(e);

172

When the v occurs at first, then we add a declaration for the v:

VALUE v=INT2FIX(e);

Next, we show the correspondence of expressions:

• (int)L[p]

This refers the port x[p] of the left agent of the operated active pair as a fixed

number, and thus this corresponds to the following code:

FIX2INT(RAGENT(a1)->port[p− 1])

• (int)R[p]

The same as the case of (int)L[p], this corresponds to the following code:

FIX2INT(RAGENT(a2)->port[p− 1])

• (int)v

This also refers the value of the variable v as a fixed number, and thus this corres-

ponds to the following code:

FIX2INT(v)

• op e1, e1 op e2

We have the straightforward correspondences in those expressions since the C lan-

guage has almost the same operations, except for not, and, or that correspond to

!, &&, || respectively.

Rule procedures The extension of rule procedures is the if-statement that is written

as follows:

rule α β {

if (Cond1) {· · ·}

elif (Cond2) {· · ·}
...

elif (Condn) {· · ·}

else {· · ·}

}

173

Each expression Cond i is represented as an expression in the C language by applying

FIX2INT to variables and ports, and we call it Cond ′i. Then, the C language also has the

if-statement that works the same as the definition of the if-statement in LL0, and thus

the above rule procedure corresponds to the following function in the C language:

void α_β(VALUE a1, VALUE a2) {

if (Cond ′1) {· · ·}

elif (Cond ′2) {· · ·}
...

elif (Cond ′n) {· · ·}

else {· · ·}

}

The run-time function eval is also changed by using the type VALUE as follows:

void eval() {

VALUE a1, a2;

while (popActive(&a1, &a2)) {

if (RBASIC(a2)->id != ID_NAME) {

if (RBASIC(a1)->id != ID_NAME) {

R[RBASIC(a1)->id][RBASIC(a2)->id](a1,a2);

} /* The below is operations for x=t */
...

}

} else {

/* operations for t=y and x=y */
...

}

}

}

6.5.3 Execution model in the byte-code interpreter

To evaluate expressions and the extended rule procedures, we add codes into the set of

byte-codes as shown in Figure 6.1. The code JMPEQ0 is used to manage the program

counter according to evaluation results of conditional expressions, and the other codes are

used to operate on expressions.

174

Byte-code Description

MKVAL A B Reg(A):=INT2FIX(B)

MOVE A B Reg(A):=Reg(B)

ADD A B C Reg(A):=INT2FIX(FIX2INT(Reg(B))+FIX2INT(Reg(C)))

SUB A B C Reg(A):=INT2FIX(FIX2INT(Reg(B))-FIX2INT(Reg(C)))

MUL A B C Reg(A):=INT2FIX(FIX2INT(Reg(B))*FIX2INT(Reg(C)))

DIV A B C Reg(A):=INT2FIX(FIX2INT(Reg(B))/FIX2INT(Reg(C)))

MOD A B C Reg(A):=INT2FIX(FIX2INT(Reg(B))%FIX2INT(Reg(C)))

LT A B C Reg(A):=INT2FIX(FIX2INT(Reg(B))<FIX2INT(Reg(C)))

LE A B C Reg(A):=INT2FIX(FIX2INT(Reg(B))<=FIX2INT(Reg(C)))

EQ A B C Reg(A):=INT2FIX(FIX2INT(Reg(B))==FIX2INT(Reg(C)))

NOT A B Reg(A):=INT2FIX(not(FIX2INT(Reg(B))))

UNM A B Reg(A):=INT2FIX((-1)*FIX2INT(Reg(B)))

JMPEQ0 A B if FIX2INT(Reg(A))==0 then pc=pc+B

Figure 6.1: Extended instructions of a byte-code interpreter

Instructions Here, we explain how each extended instruction in LL0 corresponds to

the byte-codes. We assume that each variable x is assigned to a Register Reg(n), and

this correspondence is managed by toReg such as toReg(x) = n. In addition, we use a

function newReg() to obtain i such that Reg(i) is not used. To translate expressions into

byte-codes [7], we define the translation exprBytes(target , expr) that takes a target register

number target and an expression expr , and returns a sequence of byte-codes as shown in

Figure 6.2, where each sub-expression of the expression is rewritten before applying to the

translation exprBytes as follows:

e1 > e2 −→ e2 < e1

e1 >= e2 −→ e2 =< e1

e1 != e2 −→ not(e1 == e2)

e1 or e2 −→ e1 + e2

e1 and e2 −→ e1 * e2

(int)e1 −→ e1

By using the translation exprBytes, we explain how each extended instruction corres-

ponds to a byte-code sequence:

• x[p] = (int)e

175

exprBytes(target , i)
def
= MKVAL target i where i is an attribute

| exprBytes(target , x)
def
= MOVE target toReg(x)

| exprBytes(target , L[n])
def
= MOVE target n

| exprBytes(target , R[n])
def
= MOVE target m where m = MAX PORT + n

| exprBytes(target , op e1)

where op ∈ {-, not}

def
= let

reg1 = newReg(); code1 = exprBytes(reg1, e1);

inst = {(-, UNM), (not, NOT)}[op]

in

code1 inst target reg1

end

| exprBytes(target , e1 op e2)

where op ∈ {+, -, *, /, %,

<, <=, ==}

def
= let

reg1 = newReg(); code1 = exprBytes(reg1, e1);

reg2 = newReg(); code2 = exprBytes(reg2, e2);

inst = {(+, ADD), (-, SUB), (*, MUL), (/, DIV),

(%, MOD), (<, LT), (<=, LE), (==, EQ)}[op]

in

code1 code2 inst target reg1 reg2

end

Figure 6.2: The translation exprBytes from expressions into byte-code sequences

Assume a register number r = Reg() and a byte-code sequence code = exprBytes(r, e).

When x is assigned to Reg(i), then the instruction corresponds to the following byte-

code sequence:

code MOVEP i p r

• v = (int)e

The same as the case of x[p] = (int)e let a register number r = Reg() and a

byte-code sequence code = exprBytes(r, e). When v is assigned to Reg(i), then the

instruction corresponds to the following byte-code sequence:

code MOVE i r

The function evalCode to evaluate instructions is extended in the part of the case-

176

branch as follows:

case MKVAL:

Reg[code[pc+1]]=INT2FIX(code[pc+2]);

pc+=3;

break;

case MOVE:

Reg[code[pc+1]]=Reg[code[pc+2]];

pc+=3;

break;

case ADD:

Reg[code[pc+1]]=INT2FIX(FIX2INT(code[pc+2])+FIX2INT(code[pc+3]));

pc+=4;

break;
...

case UNM:

Reg[code[pc+1]]=INT2FIX(-1*FIX2INT(code[pc+2]));

pc+=4;

break;

case JMPEQ0:

if (!Reg[code[pc+1]])

pc+=FIX2INT(code[pc+2]);

pc+=3;

break;

Rule procedures The extension of rule procedures is the if-statement that is written

as follows:

rule α β {

if (Cond1) {· · ·}

elif (Cond2) {· · ·}
...

elif (Condn) {· · ·}

else {· · ·}

}

177

Let block i be a byte-code sequence for the if-block placed at the right of Cond i,

and block be one at the right of the else. In addition, let the length of the sequence

block1, block2, . . . , blockn be l1, l2, . . . , ln respectively. Then, the extended rule procedure

corresponds to the following byte-code sequence:

let

reg1 = newReg(); code1 = exprBytes(reg1,Cond1);
...

regn = newReg(); coden = exprBytes(regn,Condn);

in

code1

JMPEQ0 reg1 l1 + 1

block1

RETURN

code2

JMPEQ0 reg2 l2 + 1

block2

RETURN

...

coden

JMPEQ0 regn ln + 1

blockn

RETURN

block

RETURN

end

Runtime functions eval The run time function eval is changed by using the type

VALUE as follows:

void eval() {

VALUE a1, a2;

while (popActive(&a1, &a2)) {

if (RBASIC(a2)->id != ID_NAME) {

if (RBASIC(a1)->id != ID_NAME) {

int i;

for (i=0; i<Arities[RBASIC(a1)->id]; i++)

178

Reg[i]=RAGENT(a1)->port[i];

for (i=0; i<Arities[RBASIC(a2)->id]; i++)

Reg[MAX_PORT+i]=RAGENT(a2)->port[i];

evalCode(Code[RBASIC(a1)->id][RBASIC(a2)->id]);

freeAgent(a1); freeAgent(a2);

} /* The below is operations for x=t */
...

}

} else {

/* operations for t=y and x=y */
...

}

}

}

6.6 Summary

In this chapter we extended interaction nets so that they can be used as a programming

language. The first extension was nested pattern matching that is conservative, thus

those rules can be translated into rules in the original interaction nets. Next we intro-

duced agents that optionally have attributes, which are values of base type: integers, and

interaction rules with these attributes and conditions. Finally, we extended the execution

model to evaluate those extensions.

179

Chapter 7

Results and future work

In this chapter we implement a multi-threaded interpreter for interaction nets that uses

LL0 as bytecode. As a result we obtain an improved performance in both sequential and

parallel execution in comparison to existent interaction net evaluators as well as fully

fledged programming languages SML and Python. Finally, we introduce some possible

optimisations and extensions to enhance performance.

7.1 Interpreter for interaction nets with LL0

In this section we introduce a byte-code interpreter for interaction nets by using LL0 as

an intermediate language. We use the C language to obtain efficient computation, and

flex and bison to parse the syntax of interaction nets.

7.1.1 Sequential execution model

The implementation method of the sequential interpreter is similar to the standardised

implementation model introduced in Sections 5.4 and 6.5.3, save some extensions which

we discuss below. First, we introduce a virtual machine for executing our bytecodes while

we look ahead to facilitate parallel execution where bytecodes can be evaluated by each

thread locally.

Data-structure We represent agent nodes by using the same data-structure used in

the standardised model where we fix the number of ports and we pre-populate the heap

with these nodes. The fixed-size node representation has the disadvantage of using more

space than needed, but the advantage of being able to manage and reuse nodes in a

simpler way [35]. In comparison to Undirected encoding methods, Directed encoding

methods introduce more name and indirection nodes. In order to separate these (name

180

in2 Single Value Single/Value

F32 1.37 1.49 1.29 1.16

F33 2.29 2.49 2.12 1.17

F34 3.80 4.15 3.49 1.19

A(3, 10) 1.42 1.58 1.52 1.04

A(3, 11) 5.73 6.39 6.06 1.05

A(3, 11) 24.01 26.14 24.34 1.07

2 7 6 I I 0.71 1.28 1.18 1.08

2 7 7 I I 2.13 3.68 3.48 1.06

Table 7.1: The execution time in seconds on the standardised implementation model

and indirection) nodes from agent nodes, we prepare another heap and use the VALUE

type introduced in Section 6.5. This separation simplifies the management of attributes

and contributes to efficient computation.

Table 7.1 shows the execution time in minutes of running the benchmark programs

in the standardised sequential implementation model using the VALUE type (labelled as

VALUE). These were also compiled with gcc’s -O3 option. We see that this sequential

implementation runs about from 4% to 19% faster and executes faster than in2 in the case

of the Fibonacci number.

Virtual machine A virtual machine (VM) manages the following components:

• A register Reg,

• LIFO stack for equations,

• Heaps for agents and names.

We represent our virtual machine using the code fragment:

typedef struct {

Heap agentHeap, nameHeap; // heaps for agents and names

Active *eqStack; // equation stack

VALUE Reg[REG_SIZE]; // Register

} VirtualMachine;

Figure 7.1 illustrates the virtual machine in contrast to the net configuration of the

standardised implementation model (Figure 3.6).

Our virtual machine uses the following runtime functions:

181

G

EQ

. . .

.

.

.

VM

agentHeap

nameHeap

Γ

Figure 7.1: Virtual machine in the sequential execution model

VALUE mkAgent(VirtualMachine *vm, int id);

VALUE mkName(VirtualMachine *vm);

VALUE mkInd(VirtualMachine *vm);

void pushActive(VirtualMachine *vm, VALUE a1, VALUE a1);

int popActive(VirtualMachine *vm, VALUE *a1, VALUE *a1);

void evalCode(VirtualMachine *vm, int *code);

void eval(VirtualMachine *vm);

Memory management Taking account of parallel execution, we use a ring buffer for

heaps:

typedef struct {

VALUE *heap;

int lastAlloc;

unsigned int size;

} Heap;

0
1

2

size-1

lastAlloc

.

.

.

In the Heap structure, heap is assigned to a large array of either Agent or Name that

are cast by (VALUE *), lastAlloc is the last used index, and size is the size of the heap.

To show that a node of the heap is available to use, we use the last bit of the id as a

bit flag:

#define FLAG_AVAIL 0x01 << 31

#define IS_FLAG_AVAIL(a) ((a) & FLAG_AVAIL)

#define SET_FLAG_AVAIL(a) ((a) = ((a) | FLAG_AVAIL))

182

#define TOGGLE_FLAG_AVAIL(a) ((a) = ((a) ^ FLAG_AVAIL))

To allocate an agent node, we start to search an available node from lastAlloc and

change the bit flag of the returned node to 0. The id recovers the original meaning:

VALUE myallocAgent(Heap *hp) {

int idx = hp->lastAlloc;

int i;

for (i=0; i < hp->size; i++) {

if (IS_FLAG_AVAIL(((Agent *)hp->heap)[idx].basic.id)) {

TOGGLE_FLAG_AVAIL(((Agent *)hp->heap)[idx].basic.id);

hp->lastAlloc = idx;

return (VALUE)&(((Agent *)hp->heap)[idx]);

}

idx++;

if (idx >= hp->size)

idx -= hp->size;

}

puts("Critical ERROR");

exit(-1);

}

VALUE myallocName(Heap *hp) {
...

if (IS_FLAG_AVAIL(((Name *)hp->heap)[idx].basic.id)) {

TOGGLE_FLAG_AVAIL(((Name *)hp->heap)[idx].basic.id);

hp->lastAlloc = idx;

return (VALUE)&(((Name *)hp->heap)[idx]);

}
...

}

To dispose of an agent node, we set the bit flag for availability into 1 again:

void myfree(VALUE ptr) {

TOGGLE_FLAG_AVAIL(RBASIC(ptr)->id);

}

183

Execution of bytecodes In order to avoid inefficient switch-statements in our gener-

ated bytecodes, we use a method known as threaded code [11] which uses the goto construct

to jump execution to some labelled block of code. In the C language, threaded code is

written by replacing each case-branch with a label; a goto pointer to a label label is

obtained by &&label. Following this technique, we write our runtime bytecode evaluation

function evalCode as follows:

void evalCode(int *code) {

static const void *table[] = {

&&E_MKAGENT, &&E_MKNAME, &&E_MKIND, &&E_FREE, &&E_MOVEP,

&&E_CHGID, &&E_PUSH, &&E_RETURN};

int pc=0; // program counter

goto *table[code[pc]];

E_MKAGENT:

Reg[code[pc+1]]=mkAgent(code[pc+2]);

pc+=3; goto *table[code[pc]];

E_MKNAME:

Reg[code[pc+1]]=mkName();

pc+=2; goto *table[code[pc]];

E_MKIND:

Reg[code[pc+1]]=mkInd();

pc+=2; goto *table[code[pc]];
...

E_RETURN:

return;

}

7.1.2 Parallel execution model

In this section we discuss a multi-threaded parallel execution model of our bytecode in-

terpreter for shared memory multiprocessors.

This model has the following objects:

• Multiple virtual machines,

• A thread pool for those virtual machines,

184

• Global equation stack GlobalEQ ,

• Global array for the interface G.

We have multiple virtual machines that are managed in a thread pool. Each virtual

machine has heaps which store graph elements and the net is constructed by connecting

those elements. The global equation stack is used as a buffer to give and take equations

among those virtual machines. Figure 7.2 illustrates a configuration where the thread pool

has two virtual machines. Notice that a net may be distributed across the heaps of various

VMs and an equation stack EQ of one VM may contain a pointer into the heap of another

VM. In this figure, Γ represents the net and therefore it is composed of (initialised parts

of) the heaps of the two virtual machines.

VM2

agentHeap

nameHeap

VM1

agentHeap

nameHeap

G

. . .

GlobalEQ

.

.

.

EQ

VM1(active)

Thread pool Γ

EQ

VM2(active)

Figure 7.2: Configuration in the multi-threaded parallel execution model

Next, we explain the inter-relations between instance of virtual machines:

State of threads: A thread can be in either of two states: 1) active when its equation

stack is not empty and 2) sleep when its stack and GlobalEQ is empty. A thread in

sleep state switches to active only when it receives a signal notEmpty. Intuitively,

the notEmpty signal is broadcast, when the GlobalEQ is not empty, to all VMs that

have an empty local stack.

Evaluation of equation in stacks: Each virtual machine evaluates equations in its own

stack. When the stack becomes empty, the VM tries to get an equation from

GlobalEQ . When the GlobalEQ is also empty the state of the virtual machine

switched to sleep and it remains in the sleep state until it receives a notEmpty

signal. Figure 7.3 illustrates this behaviour.

Stacking equations: When equations are created by evalCode they are pushed onto

185

receive

notEmpty

EQ

VM(active)

GlobalEQ

emptyEQ

VM(active)

empty

EQ

VM(sleep)

empty

GlobalEQ

EQ

VM(active)

empty

GlobalEQ

EQ

VM(active)

Figure 7.3: Transition of states and equation stacks

VM’s local stack. If there exist some slept VMs, other equations can be pushed onto

the GlobalEQ and this will trigger the broadcast of the notEmpty signal. In any case,

at least one equation is pushed on the VM’s local stack if one or more equations are

created. Figure 7.4 illustrates this stacking mechanism.

All VMs are active

Some VMs sleep

notEmpty
send

EQ

VM(active)

EQ

VM(active)

GlobalEQ

EQ

VM(active)

Figure 7.4: Stacking active pairs according to the condition of slept virtual machines

Termination: The evaluation finishes when all virtual machines sleep.

Communication between the global stack GlobalEQ and virtual machines requires syn-

186

chronisation in addition to the signalling. In the rest of this section we will discuss the

synchronisation mechanism which we deploy:

Transitions of B.1 and B.2 In parallel execution the operations of the transitions

B.1 and B.2 given in Figure 4.2, which correspond to rules Var1 and Var2 in Simpler

textual calculus (Definition 4.4.3), have critical sections since names can be shared by

two active pairs. These are locked lightly by using an atomic operation like CAS, as

shown in Section 4.5.3. The ports of agents and names can be changed by many threads

simultaneously and thus the declaration of the port structures requires synchronisation

code. We use volatile modifier as follows:

typedef struct {

Basic basic;

volatile VALUE port;

} Name;

typedef struct {

Basic basic;

volatile VALUE port[MAX_PORT];

} Agent;

Global equation stack GlobalEQ The Global equation stack GlobalEQ can be accessed

by many threads and therefore it requires synchronisation so that it can be managed by

only one thread at a time. This is realised by locks such as Mutex.

Heaps in virtual machines The allocation of nodes in a VM’s heap is performed

within the same VM and therefore synchronisation is not required. On the other hand,

the disposing of those nodes is performed by other threads. Still, synchronisation is not

required since those nodes are managed by ring buffers and the disposing does not affect the

start index lastAlloc to check a ready-to-use node. When the value of the searching index

idx which starts from lastAlloc is overlapped by the node index disposed of, the node will

not be regarded as ready-to-use. This overlap can happen as many times as threads dispose

of nodes during the searching of the ready-to-use nodes, however these opportunities are

greatly less than the size of the heap. In order to obtain efficient computation, therefore,

we do not use any lock mechanism, and thus use wait-free algorithm [53], assuming that

each virtual machine has sufficiently large size heaps.

187

INET amLight Inpla Inpla1 Inpla2 Inpla3 Inpla4 Inpla5

F30 3.70 2.46 2.45 2.61 2.12 1.99 1.93 1.93

F31 -1 4.03 3.02 3.25 2.46 2.23 2.12 2.14

F32 -2 6.65 3.95 4.32 3.03 2.65 2.49 2.50

A(3, 9) 4.12 2.85 1.21 1.27 0.67 0.46 0.37 0.35

A(3, 10) 18.26 11.40 4.88 5.06 2.64 1.81 1.41 1.34

A(3, 11) 66.79 46.30 19.19 20.65 10.82 7.45 5.92 5.72

2 6 7 I I 1.60 1.49 1.51 1.57 1.27 1.23 1.33 1.23

2 7 6 I I -2 4.01 2.61 2.69 1.80 1.88 1.64 1.81

2 7 7 I I -2 11.96 6.07 6.19 3.77 2.88 2.90 2.80

1 Segmentation fault (core dumped)

2 Heap exceeds limit: <8388608>

Table 7.2: The execution time in seconds on interaction nets evaluators

7.1.3 Experimental results

We implemented a multi-threaded parallel interpreter of the bytecode, called Inpla, with

gcc 4.6.3 and the Posix-thread library. In this section, we compare the execution time

of Inpla with other evaluators and interpreters. First, in executions of the pure inter-

action nets, we take INET and amineLight and compare Inpla with those by using the

benchmark programs also used in Section 4.5.3 – Fibonacci number, Ackermann function

and application of Church numerals. Next, we compare Inpla with Standard ML of New

Jersey (SML) [54] and Python [61] in the extended framework of interaction nets given

in Chapter 6 which includes integer numbers and lists. SML is a functional programming

language and it has the eager evaluation strategy that is similar to the execution method

in interaction nets. Python is a widely-used interpreter, and thus the comparison with

Python gives a good indication on efficiency. Here we benchmark the Fibonacci number,

the Ackermann function on integer numbers, the Bubble Sort algorithm and the Quick

Sort algorithm.

The benchmark programs were run on a Linux PC (2.4GHz, Core i7, 16GB) and the

execution time was measured using the UNIX time command. The version of Python is

2.7.3, and SML is v110.74.

Pure interaction nets Table 7.2 shows execution time in seconds among interaction

nets evaluators: INET, amineLight and Inpla. In the table the subscript of Inpla gives

the number of threads in the thread pool, for instance Inpla3 means that it was executed

188

by using three threads. The ’-’ means no execution time due to some error.

We see that Inpla runs faster than INET since Inpla is a refined version of amineLight,

which is the fastest interaction nets evaluator [30].

In comparison to amineLight, Inpla compiles nets into bytecodes, whereas amineLight

interprets those directly. We see that in the case of 2 6 7 I I, amineLight executes faster

than Inpla; this is because Inpla compiles the program and this compilation contributes

towards obtaining efficient computation. For the same reason, the execution of F30 and 2

6 7 I I gives almost the same execution time. However, there is a significant increase in

the performance of Inpla when we increase the size of computation. For example, Inpla

runs 2.4 times faster than amineLight to execute A(3, 11).

Next, we discuss the parallel execution in Inpla. Figure 7.5 shows the average of

speedup as the ratio S(n) =
T (0)

T (n)
where T (0) is the best execution time in sequential

and T (i) is an execution time by i-threads. Generally, since Core i7 processor has four

cores, it tends to reach the peak in the four threads execution. In the case of Ackermann

function, those speedups have the best trends that are close to n-fold increasing to n-

threads executions. In the other cases, while the increasing trend is calm, the execution

becomes faster according to the number of threads in the pool. In contrast to the execution

of Ackermann function, these executions require quite a huge number of nodes in the

heaps. Actually the computations of Fibonacci number require 100,000,000 nodes as the

amount of the agent and the name heaps in each virtual machine, and the computations of

Applications of Church numerals require 60,000,000 nodes, whereas those of Ackermann

function are performed within 100,000 nodes, which is a normal setting in Inpla. Those

could induce a low hit of the cache memory and the speedup ratio would be calm.

Computation on integer numbers and lists Here we compare Inpla with SML and

Python. Table 7.3 shows execution time in seconds for SML, Python and Inpla in com-

putation on integer numbers and lists. Bubble Sort BS n and Quick Sort QS n sort lists

that have n-elements which are randomly generated. These programs use integer numbers,

whereas programs in Table 7.2 use unary natural numbers. In interaction nets these are

managed by using attributes discussed in Chapter 6.

First, we examine the computation results in the sequential execution. As shown in

the table, SML computes those arithmetic functions fastest. SML computes Fibonacci

number and Ackermann function around 19 times and 4.3 times faster at best than In-

pla, respectively. In the computation in Inpla, the functions and integer numbers are

represented by agents, and those agents are consumed and re-produced repeatedly dur-

189

 0

 1

 2

 3

 4

 5

 1 2 3 4 5

S
(n

)
(s

p
e
e
d
u
p
)

n (threads)

Fibonacci number
Ackermann function

Application of Church numerals

Figure 7.5: The speedup in the multi-threads executions

ing computation. Thus the execution time becomes slower eventually, compared to the

execution in SML that performs computation by function calls and managing stacked ar-

guments. This could be improved by re-using agents as discussed in Section 7.2.1. In

comparison with Python, Inpla computes those functions from about 17% faster at best

to about 6% faster at worst. This shows that Inpla can indeed be used in practical and

not only for theoretical investigation

The two sort algorithms are special cases in that interaction nets are efficient to imple-

ment the algorithms. We see that in the case of Bubble Sort, Inpla performs a little faster

than SML and 3.3 times faster than Python. In the case of Quick Sort, Inpla performs

around 31 times faster than Python. Although it performs around 2.6 times slower than

SML, this is improved in parallel execution: Inpla performs around 3.47 times faster at

best to around 1.04 times faster at worst.

Next we examine the parallel execution of Inpla. Table 7.6 shows the speedup in the

multi-threads executions. In the case of Fibonacci number, Bubble Sort and Quick Sort,

the speedup are also close to the n-fold increasing, which is the best performance in parallel

execution. Thus we expect parallel execution to obtain efficient computation.

On the other hand, the computations of Ackermann function becomes less efficient

with more number of threads execution. Figure 7.7 shows the trends on execution of those

benchmark programs in sequential and parallel where we assume unbounded resources

in terms of the number of processing elements available. In Ackermann function, there

190

SML Python Inpla Inpla1 Inpla2 Inpla3 Inpla4 Inpla5

F37 0.43 8.26 7.05 8.10 4.20 3.05 2.36 2.43

F38 0.67 13.33 11.45 13.12 6.81 4.73 3.67 3.50

F39 1.08 21.87 20.49 21.90 10.73 7.49 5.84 5.85

A(3, 6) 0.05 0.05 0.03 0.03 0.07 0.25 0.23 0.27

A(3, 7) 0.05 -1 0.07 0.08 0.18 0.73 0.72 1.16

A(3, 8) 0.06 -1 0.26 0.28 0.63 1.90 3.06 3.63

BS 20000 8.60 28.06 8.45 9.43 4.89 3.37 2.59 2.57

BS 30000 21.43 63.28 19.01 21.20 10.97 7.55 6.16 6.48

QS 400000 0.65 49.65 1.54 1.62 0.88 0.70 0.62 0.76

QS 500000 0.91 77.56 2.53 2.68 1.25 0.99 0.79 0.94

1 RuntimeError: maximum recursion depth exceeded

Table 7.3: The execution time in seconds on interpreters

is no significant difference in sequential and parallel execution. This is one reason why

the parallel execution does not have good performance. In addition, this is caused by

the realisation of the computation for A(m− 1, A(m,n− 1)), which is a one step part of

Ackermann function, represented as the following two equations as shown in Example 6.3.7:

A(w, r) = (m′), A((n′), w) = (m) where m′ = m-1 n′ = n-1

The first equation A(w, r) = (m′) takes the computation result of the second equation,

which is corresponding to A(m,n − 1), via the name w. Actually the first equation

is reduced to A2((m′), r) = w, and then it waits the w. As for the second equation

A((n′), w) = (m), it reaches to the step of A(m− 1, A(m, (n− 1)− 1)) again unless m or

n− 1 is 0, and thus the two equations are produced that one waits the computation result

of the other. In the implementation of Inpla, this means that, when two equations are

produced by an active thread, then the thread would sleep while waking up another slept

thread. After that, the waked-up thread would produce the two equations again, and it

would sleep while waking up another thread. This is repeated until all of the computation

are finished, causing the overhead. This vicious repeat could not occur, when a large scale

computation is performed at once, because each thread could have huge numbers of active

pairs and there is not so many opportunities of the sleep.

191

 0

 1

 2

 3

 4

 5

 1 2 3 4 5

S
(n

)
(s

p
e
e
d
u
p
)

n (threads)

Fibonacci number
Ackermann function

Bubble Sort
Quick Sort

Figure 7.6: The speedup in the multi-threads executions using attributes

7.2 Future work

In this section we introduce other possible optimisations and extensions in terms of efficient

computation that we leave for future work.

7.2.1 Reuse optimisation

Once a net is compiled into an instruction list of LL0, operations such as producing, dis-

posing and connecting ports of agents is done at the level of execution of those instructions.

Here, we take an interaction rule between Add and S as an example:

• Add(x1, x2) = S(y)⇒ x2 = S(w), Add(x1, w) = y.

This compilation is illustrated in Example 5.2.5, and it is obtained as shown in Figure 7.8

(a). In the RHS of this rule, the same agents to the active pair occur. Thus, instead of

producing new those agents, it is possible to reuse active pair agents as the new ones.

Figure 7.8 (b) shows the rewritten lists by reusing the active pair agents. The number of

instructions decreases, and thus faster execution is expected.

In our language, moreover, an id of an agent node a is referred to a[0], and thanks

to their fixed arity number it is also possible to reuse an agent as another one. Therefore

this method works as optimisation for rule procedures.

In the standardised implementation model, the index of the equation stack is managed

by functions pushActive and popActive, and the instruction stackFree() is ignored.

192

 0

 500

 1000

 1500

 2000

 2500

 0 2 4 6 8 10 12 14

s
te

p
s

n

Fib n

sequential
parallel

 0

 10000000

 20000000

 30000000

 40000000

 50000000

 60000000

 70000000

 80000000

 90000000

0 2 4 6 8 10

s
te

p
s

n

Ack(3,n)

sequential
parallel

 0

 500

 1000

 1500

 2000

 2500

 3000

 10 20 30 40 50 60 70

s
te

p
s

n

BS n

sequential
parallel

 0

 200

 400

 600

 800

 1000

 1200

 10 20 30 40 50 60 70

s
te

p
s

n

QS n

sequential
parallel

Figure 7.7: Execution steps on benchmark programs in sequential and parallel

(a) Instruction list

rule Add S {

stackFree()

w=mkName()

aS=mkAgent(S)

aS[1]=w

push(L[2],aS)

aAdd=mkAgent(Add)

aAdd[1]=L[1]

aAdd[2]=w

push(aAdd,R[1])

free(L)

free(R)

}

(b) Optimised one by the reuse method

rule Add S {

w=mkName()

x2=StackL[2]

tmpR=StackR

StackR=tmpR[1]

tmpR[1]=w

push(x2,tmpR)

}

Figure 7.8: Rule procedures for the rule between Add and S

193

Here, we modify this implementation model to manage the top element of the stack ex-

plicitly.

Explicitly managed equation stack To make explicit operations for the stack, the

following are introduced:

#define stackFree() Ptr_APS--

#define StackL ActivePairs[Ptr_APS].a1

#define StackR ActivePairs[Ptr_APS].a2

The macro stackFree() reduces the index of the equation stack. The StackL and StackR

are replaced with elements on the current top of the stack. The pop stack function is not

required since the elements in the top of the stack are referred by StackL and StackR.

In addition, each function for interaction rules does not require arguments Agent *a1

and Agent *a2 since those can be referred by StackL and StackR. The runtime function

eval is also changed as follows:

void eval() {

while (Ptr_APS >= 0) {

if (StackR->id != ID_NAME) {

if (StackL->id != ID_NAME) {

R[StackL->id][StackR->id]();

} else if (StackL->id == ID_INDIRECTION) {

/* C.1 */

Agent *tmpL = StackL;

StackL = StackL->port[0];

freeAgent(tmpL);

} else {

/* B.1 */

StackL->port[0] = StackR;

StackL->id = ID_INDIRECTION;

stackFree();

}

} else if (StackR->id == ID_INDIRECTION) {

/* C.2 */

Agent *tmpR = StackR;

StackR = StackR->port[0];

194

Single Reuse Single/Reuse

F32 1.49 0.80 1.86

F33 2.49 1.31 1.90

F34 4.15 2.14 1.94

A(3, 10) 1.58 1.24 1.27

A(3, 11) 6.39 4.97 1.29

A(3, 11) 26.14 21.21 1.23

2 7 6 I I 1.28 1.23 1.04

2 7 7 I I 3.68 3.63 1.01

Table 7.4: The execution time in seconds on the single encoding method and the reuse

method

freeAgent(tmpR);

} else {

/* B.2 */

StackR->port[0] = StackL;

StackR->id = ID_INDIRECTION;

stackFree();

}

}

}

Experimental results Table 7.4 shows execution time in seconds of programs that are

written manually in order to apply this method. Those are compiled with the -O3 option.

The speedup in the case of Fibonacci number, Ackermann function and Application

of Church numerals are about 1.9 times, 1.27 times and 1.02 times respectively. Although

there is fluctuation in the effect, this method can improve the computation efficiency.

Automatically applying this reuse optimisation is a future work.

7.2.2 Parallelism

In this section, we look where there is parallelism in interaction nets.

We introduced two rule sets for addition: one is in Figure 2.1 and alternative one is

in Figure 2.3. First, we take the alternative one that is regarded as a sequential version

of addition because the rules do not produce any active pairs. Actually, as shown in

Figure 7.9, the computation of add(m,n) has no scope for parallelism.

195

2

n

�→

2+1

S

Z

Add

S

S

Z

S

S

Z

Add

S

S

Z
S

�→

S

Z

Add

S

Z

S

S

�→

S

S

Z

S

S

Figure 7.9: add(2̄, n̄) in a sequential version of addition

Add

m

Add

n

p

add(add(m, n), p)

Add

m

Add

n
p

add(m, add(n, p))(a) (b)

Figure 7.10: add(add(m,n), p) and add(m, add(n, p)) in the alternative rules

Next we consider the cost of rewritings as the number of interactions. The net cor-

responding to add(m,n) requires m+ 1 interactions (Figure 7.9) regardless of the size of

the net n̄. Thus, the net corresponding to add(add(m,n), p) in Figure 7.10 (a) requires

(m+1)+(m+n+1) = 2m+n+2 interactions. This net is still sequential, and in parallel

execution the cost is the same (thus 2m + n + 2). If we use, however, the associative

property of addition, now the net is corresponding to add(m, add(n, p)) in Figure 7.10 (b),

then the situation changes significantly. The cost becomes (m+ 1) + (n+ 1) = m+n+ 2.

Moreover, in parallel execution, it is max(m+ 1, n+ 1). By applying the associative prop-

erty of addition, not only it becomes more efficient sequentially, but also it becomes able

to benefit from parallel evaluation.

196

2

n

�→

2+1

Add

S

Z

S

S

Z

S

Add S

Z
�→

Add Z

�→
S S

S

S

S

S

Z

S

S

Z

S

S

Z

S

Figure 7.11: add(2̄, n̄) in a parallel version of addition

On the other hand, in the rule set in Figure 2.1, the net corresponding to add(m,n)

also requires m+ 1 interactions (Figure 7.11), however we call the set a parallel version of

addition because it is possible to produce an active pair when the free port is connected

to a principal port of an agent. For instance, the net corresponding to add(add(m,n), p)

requires (m+ 1) + (m+ n+ 1) = 2m+ n+ 2 interactions the same as the alternative rule

set, however in parallel execution, as shown in Figure 7.12, the cost is (m+ 1) + (n+ 1) =

m+n+ 2. In the case of add(m, add(n, p)), the cost is the same as the alternative version

because the produced S by the rule is placed to the auxiliary port of another Add agent

and it does not contribute to parallel execution.

Next we consider how those two versions of addition work in Fibonacci number. Fig-

ure 7.13 shows the cost that is required to obtain the calculation result in sequential and

parallel versions of addition. In this graph, we assume unbounded resources in terms of the

number of processing elements available. The cost in the parallel version is significantly

less than the sequential version.

On the other hand, Table 7.5 shows the execution time in seconds by Inpla. In both

cases the execution becomes faster by using several threads, however the parallel version

is slower than the sequential one. This is because there are more active pairs for the

parallel execution. Moreover produced active pairs by the rules have the same vicious

repeat problem mentioned in Section 7.1.3.

We summarise this topic:

• some nets can use properties of the system (in this case associativity of addition) to

get better sequential and parallel behaviours;

197

2

�→

2+1

Add S

Z

S

Add S

Z
�→

Add Z

S S

S

Add

para

Add Add

�→
para

S

Add

S

S S S S

n�

p�

n�

p�

n� n�

p�

add(add(2, n), p)

Figure 7.12: Parallel execution of add(add(2, n̄), p̄)

 0

 200

 400

 600

 800

 1000

 1200

 0 2 4 6 8 10 12 14

s
te

p
s

n

fib n

sequential add
parallel add

Figure 7.13: Behaviour of sequential and parallel versions of addition on Fibonacci function

• some systems can have modified rules that are more efficient, and also more appro-

priate to exploit parallelism.

Thus, we can choose rules to get better sequential and parallel behaviour, however the

criteria which we should choose is one of future work.

198

F30 Inpla1 Inpla2 Inpla3 Inpla4 Inpla5

Sequential ver. 2.61 2.12 1.99 1.93 1.93

Parallel ver. 2.87 2.29 2.12 2.05 2.06

F31 Inpla1 Inpla2 Inpla3 Inpla4 Inpla5

Sequential ver. 3.25 2.46 2.23 2.12 2.14

Parallel ver. 3.70 2.73 2.45 2.34 2.34

F32 Inpla1 Inpla2 Inpla3 Inpla4 Inpla5

Sequential ver. 4.32 3.03 2.65 2.49 2.50

Parallel ver. 5.06 3.47 2.99 2.81 2.82

Table 7.5: Execution time in the multi-thread execution

7.2.3 Algebraic datatypes and sharing

In this section, as another possible optimisation, we discuss sharing given nets defined by

algebraic datatypes.

An algebraic datatype with n constructors C1, . . . , Cn can be represented by using

n agents Ai where each agent Ai has the same arity of Ci. For instance, unary natural

numbers are defined as the following algebraic datatype Nat:

datatype Nat = Z | S of Nat;

and those are represented nets by using the agent Z and S. Those net are constituted only

by connection between auxiliary ports and principal ports, thus those have no names.

Therefore, it is possible to share pointers to those nets safely if we do not erase any of

those contents. The following are rules for duplication and erasing:

SDup ⇒

S S

Dup Dup ⇒Z
Z Z

Del
⇒

S Del Del
⇒

Z

Functions for those rules could be written by the pointer sharing:

void Dup_S(Agent *a1, Agent *a2) {

pushActive(a1->port[0],a2);

199

pushActive(a1->port[1],a2);

freeAgent(a1);

}

void Dup_Z(Agent *a1, Agent *a2) {

pushActive(a1->port[0],a2);

pushActive(a1->port[1],a2);

freeAgent(a1);

}

void Del_S(Agent *a1, Agent *a2) {

// no operation

}

void Del_Z(Agent *a1, Agent *a2) {

// no operation

}

Garbage nodes, thus unerased and unnecessary agents, are managed by a garbage

collector. The garbage can be found with Mark-and-sweep method by recursively tree-

walking on the interface (and active pair stacks if those are not empty). By using this

method, the computation could be improved efficiently.

7.3 Summary

In this chapter, we implemented a multi-threaded interpreter of interaction nets that uses

LL0 as bytecode, and we showed how our method improved the performance in sequential

and parallel execution. We also introduced some possible optimisations and extensions in

terms of efficient computation.

With respect to another improvement with LL0, we note the correspondence of LL0 to

the standardised implementation written in the C language as mentioned in Sections 5.3

and 6.5.2. PIN [28], which is a bytecode interpreter, led to INET [29], which is a compiler

to the C language. In the same way, a new compiler for interaction nets based on the LL0

language will be developed, followed by our interpreter Inpla.

200

Chapter 8

Conclusion

Interaction nets have been expected to give a new, alternative, theoretical foundation of

sequential and parallel computation since they were proposed in 1990, particularly with

respect to efficiency. To demonstrate this ideal, it is important to show that ideas work

efficiently not only in theory but also in practice. This thesis has contributed to this

research effort by providing more effective and simpler methods in the development of

implementations of interaction nets. Our main contributions can be summarised as:

• We introduced a standardised implementation model. There are so many implement-

ations of interaction nets, and they cannot be compared or analysed in a uniform

way. Having a standard model for evaluation allows us to start to develop tools

and techniques to reason about implementations. Of course, there are alternative

implementation models waiting to be developed. However, we see this work as an

important step to push forward the idea of a standard model—even if other models

are developed later, the techniques provide an important start to this work.

• By using this model, we examined a number of interaction net evaluators that have

been developed to date, and have demonstrated the necessity of our new method.

• In terms of sequential evaluation, our method is not necessarily the most efficient—

however, it is simpler (in some cases significantly) than extant evaluators. Having

a simple—perhaps the simplest—model allows us to see the essential structure of

interaction, and moreover it is possible to perform evaluation in parallel naturally.

The motivation to give a simple model is analogous to something like the Krivine

machine for the λ-calculus for example (this machine is not the most efficient way to

implement the λ-calculus, but it is important in the understanding of β-reduction).

201

• We introduced a new textual calculus that mirrors the implementation method.

This is useful to investigate properties of an implementation from a theoretical

perspective—it provides an interface between the theory and practice.

• We also introduced a bytecode execution model, which is called LL0. This offers not

only efficient implementation, but also parallel implementation.

• We implemented a parallel evaluator, called Inpla. This is the fastest evaluator for

interaction nets known to date. In comparison with Python, it is also faster. In

comparison with SML, it tends not to be faster, but it can be faster if we use a

specific, efficient, encoding of the algorithm.

• Finally, in the future works we gave significant evidence that using this model allows

us to reason about and develop optimisations, such as the reuse optimisation of

memory cells. This is another advantage to use LL0.

We hope that the methods proposed in this thesis could help push forward the devel-

opment of interaction based evaluators, and inspire new work on parallel implementations

of interaction nets and as a consequence parallel implementations of other programming

languages through translation.

202

Bibliography

[1] Samson Abramsky. Computational interpretations of linear logic. Theoretical Com-

puter Science, 111:3–57, 1993. 74

[2] Vladimir Alexiev. Non-deterministic interaction nets. PhD thesis, University of

Alberta, 1999. Adviser-Jia You. 7, 148

[3] José Bacelar Almeida, Jorge Sousa Pinto, and Miguel Vilaça. A tool for programming

with interaction nets. Electr. Notes Theor. Comput. Sci., 219:83–96, 2008. 4, 30

[4] Sandra Alves, Maribel Fernández, Mário Florido, and Ian Mackie. Gödel’s system T

revisited. Theor. Comput. Sci., 411(11-13):1484–1500, 2010. 23

[5] Oana Andrei, Maribel Fernández, Hélène Kirchner, Guy Melançon, Olivier Namet,

and Bruno Pinaud. PORGY: strategy-driven interactive transformation of graphs. In

Rachid Echahed, editor, Proceedings 6th International Workshop on Computing with

Terms and Graphs, TERMGRAPH 2011, Saarbrücken, Germany, 2nd April 2011.,

volume 48 of EPTCS, pages 54–68, 2011. 6

[6] Minero Aoki. Ruby source code: A full description. http://i.loveruby.net/ja/

rhg/book/, 2004. Accessed: 12 August 2014. English translation: The Ruby Hacker’s

Guide [12]. 170, 171

[7] Andrew W. Appel. Modern Compiler Implementation in ML: Basic Techniques. Cam-

bridge University Press, New York, NY, USA, 1997. 174

[8] Andrea Asperti and Stefano Guerrini. The Optimal Implementation of Functional

Programming Languages, volume 45 of Cambridge Tracts in Theoretical Computer

Science. Cambridge University Press, 1998. 4, 5

[9] Alan Bawden. Connection graphs. In Proceedings of ACM Conference on Lisp and

Functional Programming, pages 258–265, 1986. 3

http://i.loveruby.net/ja/rhg/book/
http://i.loveruby.net/ja/rhg/book/

203

[10] Denis Bechet. Partial evaluation of interaction nets. In M. Billaud, P. Castéran,

M. M. Corsini, K. Musumbu, and A. Rauzyand, editors, Proceedings of the Second

Workshop on Static Analysis WSA’92, volume 81-82 of Bigre Journal, pages 331–338,

1992. 149

[11] James R. Bell. Threaded code. Commun. ACM, 16(6):370–372, 1973. 183

[12] Clifford Escobar Caoile, Robert Gravina, Vincent Isambart, and C.E. Thronton. The

ruby hacker’s guide. http://edwinmeyer.com/Integrated_RHG.html. Accessed: 12

August 2014. 202

[13] Alain Colmerauer and Philippe Roussel. The birth of prolog. In The Second ACM

SIGPLAN Conference on History of Programming Languages, HOPL-II, pages 37–52,

New York, NY, USA, 1993. ACM. 5

[14] Maribel Fernández. Type assignment and termination of interaction nets. Mathem-

atical Structures in Computer Science, 8(6):593–636, 1998. 7

[15] Maribel Fernández and Ian Mackie. From term rewriting to generalised interaction

nets. In H. Kuchen and S. D. Swierstra, editors, Proceedings of the 8th Interna-

tional Symposium on Programming Languages, Implementations, Logics and Pro-

grams (PLILP’96), number 1140 in Lecture Notes in Computer Science, pages 319–

333. Springer-Verlag, September 1996. 137

[16] Maribel Fernández and Ian Mackie. Interaction nets and term rewriting systems.

Theoretical Computer Science, 190(1):3–39, January 1998. 5

[17] Maribel Fernández and Ian Mackie. A calculus for interaction nets. In G. Nadathur,

editor, Proceedings of the International Conference on Principles and Practice of De-

clarative Programming (PPDP’99), number 1702 in LNCS, pages 170–187. Springer-

Verlag, September 1999. 6, 7, 11, 13, 18, 29, 30, 31, 40

[18] Maribel Fernández and Ian Mackie. Operational equivalence for interaction nets.

Theoretical Computer Science, 297(1–3):157–181, February 2003. 7

[19] Maribel Fernández, Ian Mackie, and Jorge Sousa Pinto. Combining interaction nets

with externally defined programs,. In Electronic proceedings of the APPIA-GULP-

PRODE Joint Conference on Declarative Programming, 2001. http://hdl.handle.

net/1822/776. 149

http://edwinmeyer.com/Integrated_RHG.html
http://hdl.handle.net/1822/776
http://hdl.handle.net/1822/776

204

[20] S. J. Gay. Interaction nets. Diploma in computer science, University of Cambridge

Computer Laboratory, 1991. 7, 30

[21] Jean-Yves Girard. Linear Logic. Theoretical Computer Science, 50(1):1–102, 1987. 1

[22] Jean-Yves Girard. Linear logic : its syntax and semantics. In Jean-Yves Girard,

Yves Lafont, and Laurent Regnier, editors, Advances in Linear Logic, number 222 in

London Mathematical Society Lecture Note Series, pages 1–42. Cambridge University

Press, 1995. 2

[23] Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and Types, volume 7 of

Cambridge Tracts in Theoretical Computer Science. Cambridge University Press,

1989. 22

[24] Georges Gonthier, Mart́ın Abadi, and Jean-Jacques Lévy. The geometry of optimal

lambda reduction. In Proceedings of the 19th ACM Symposium on Principles of

Programming Languages (POPL’92), pages 15–26. ACM Press, January 1992. 5

[25] David Gudeman. Representing type information in dynamically typed languages.

Technical Report TR 93-27, Department of Computer Science. University of Arizona,

1993. 171

[26] Abubakar Hassan. Interaction Nets: Language Design and Implementation. PhD

thesis, University of Sussex, 2009. 7

[27] Abubakar Hassan, Eugen Jiresch, and Shinya Sato. An implementation of nested

pattern matching in interaction nets. In Ian Mackie and Anamaria Martins Moreira,

editors, RULE, volume 21 of EPTCS, pages 13–25, 2009. 10

[28] Abubakar Hassan, Ian Mackie, and Shinya Sato. Interaction nets: programming

language design and implementation. ECEASST, 10, 2008. 9, 30, 31, 32, 199

[29] Abubakar Hassan, Ian Mackie, and Shinya Sato. Compilation of interaction nets.

Electr. Notes Theor. Comput. Sci., 253(4):73–90, 2009. 7, 9, 30, 31, 32, 199

[30] Abubakar Hassan, Ian Mackie, and Shinya Sato. A lightweight abstract machine for

interaction nets. ECEASST, 29, 2010. 9, 30, 31, 40, 50, 62, 188

[31] Abubakar Hassan, Ian Mackie, and Shinya Sato. An implementation model for in-

teraction nets. In Aart Middeldorp and Femke van Raamsdonk, editors, Proceedings

205

8th International Workshop on Computing with Terms and Graphs, TERMGRAPH

2015, Vienna, Austria, July 13, 2014., volume 183 of EPTCS, pages 66–80, 2015. 10

[32] Abubakar Hassan and Shinya Sato. Interaction nets with nested pattern matching.

Electr. Notes Theor. Comput. Sci., 203(1):79–92, 2008. 10

[33] Roberto Ierusalimschy, Luiz Henrique de Figueiredo, and Waldemar Celes. The im-

plementation of lua 5.0. Journal of Universal Computer Science, 11(7):1159–1176,

July 2005. http://www.jucs.org/jucs_11_7/the_implementation_of_lua. 130

[34] Eugen Jiresch. Towards a gpu-based implementation of interaction nets. In Benedikt

Löwe and Glynn Winskel, editors, DCM, volume 143 of EPTCS, pages 41–53, 2014.

7, 30, 31, 40

[35] S.L. Peyton Jones. The Implementatiion of Functional Programming Languages.

Prentice-Hall International, 1987. 179

[36] Yves Lafont. Interaction nets. In Seventeenth Annual Symposium on Principles of

Programming Languages, pages 95–108, San Francisco, California, 1990. ACM Press.

3, 5, 11, 12, 13, 16, 29, 30, 31

[37] P. J. Landin. The mechanical evaluation of expressions. Computer Journal, 6:308–320,

January 1964. 51, 76

[38] Sylvain Lippi. in2 : A graphical interpreter for interaction nets. In Sophie Tison,

editor, RTA, volume 2378 of Lecture Notes in Computer Science, pages 380–386.

Springer, 2002. 6, 30, 31, 32

[39] Sylvain Lippi. Théorie et pratique des réseaux d’interaction. PhD thesis, Université

de la méditerranée, 2002. 5, 7

[40] Sylvain Lippi. The graphical krivine machine. Higher-Order and Symbolic Computa-

tion, 20(3):295–318, 2007. 5, 6

[41] Ian Mackie. The Geometry of Implementation. PhD thesis, Department of Comput-

ing, Imperial College of Science, Technology and Medicine, September 1994. 5

[42] Ian Mackie. Linear logic with boxes. In Proceedings of the 13th Annual IEEE Sym-

posium on Logic in Computer Science (LICS’98), pages 309–320. IEEE Computer

Society Press, June 1998. 4

http://www.jucs.org/jucs_11_7/the_implementation_of_lua

206

[43] Ian Mackie. YALE: Yet another lambda evaluator based on interaction nets. In Pro-

ceedings of the 3rd International Conference on Functional Programming (ICFP’98),

pages 117–128. ACM Press, 1998. 5, 19, 64

[44] Ian Mackie. Interaction nets for linear logic. Theoretical Computer Science, 247(1):83–

140, September 2000. 4

[45] Ian Mackie. Towards a programming language for interaction nets. Electronic Journal

in Theoretical Computer Science, 127(5):133–151, May 2005. 4, 6, 7

[46] Ian Mackie. Encoding strategies in the lambda calculus with interaction nets. In An-

drew Butterfield, editor, Proceedings of the 17th International Workshop on Imple-

mentation and Application of Functional Languages (IFL’05), volume 4015 of Lecture

Notes in Computer Science. Springer-Verlag, 2006. 4, 5

[47] Ian Mackie. A rewriting paradigm for program and algorithm animation. In IEEE

Symposium on Visual Languages and Human-Centric Computing, VL/HCC 2009,

Corvallis, OR, USA, 20-24 September 2009, Proceedings, pages 170–173. IEEE Com-

puter Society, 2009. 6

[48] Ian Mackie. A visual model of computation. In J. Kratochvil et al., editor, Theory

and Applications of Models of Computation, 7th Annual Conference, TAMC 2010,

Prague, Czech Republic, volume 6108 of Lecture Notes in Computer Science, pages

350–360. Springer-Verlag, June 2010. 6

[49] Ian Mackie and Shinya Sato. A calculus for interaction nets based on the linear

chemical abstract machine. Electr. Notes Theor. Comput. Sci., 192(3):59–70, 2008.

14, 69

[50] Ian Mackie and Shinya Sato. An interaction net encoding of Gödel’s System T. In

Pre-Proceedings of the Fifth International Workshop on Graph Computation Models,

to appear. 9

[51] Ian Mackie and Shinya Sato. Some observations for the parallel implementation of

interaction nets. In Pre-Proceedings of the 10th International Workshop on Develop-

ments in Computational Models, to appear. 10

[52] Damiano Mazza. Interaction Nets: Semantics and Concurrent Extensions. Ph.D.

thesis, Université de la Méditerranée/Università degli Studi Roma Tre, 2006. 7

207

[53] Maged M. Michael and Michael L. Scott. Simple, fast, and practical non-blocking and

blocking concurrent queue algorithms. In Proceedings of the Fifteenth Annual ACM

Symposium on Principles of Distributed Computing, PODC ’96, pages 267–275, New

York, NY, USA, 1996. ACM. 186

[54] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Definition of

Standard ML (Revised). MIT Press, 1997. 7, 187

[55] Simon Peyton Jones. Haskell 98 Language and Libraries. Cambridge University Press,

2003. 7

[56] B. C. Pierce and D. N. Turner. Pict: A programming language based on the pi-

calculus. Technical Report 476, Indiana, 1997. 7

[57] Jorge Sousa Pinto. Sequential and Concurrent Abstract Machines for Interaction

Nets. In Jerzy Tiuryn, editor, Proceedings of Foundations of Software Science and

Computation Structures (FOSSACS), number 1784 in Lecture Notes in Computer

Science, pages 267–282. Springer-Verlag, 2000. 7, 30, 40, 49, 50, 72

[58] Jorge Sousa Pinto. Parallel Implementation with Linear Logic. PhD thesis, École

Polytechnique, February 2001. 4, 6, 7

[59] François-Régis Sinot and Ian Mackie. Macros for interaction nets: A conservative

extension of interaction nets. Electr. Notes Theor. Comput. Sci., 127(5):153–169,

2005. 7, 148

[60] Dave Thomas, Chad Fowler, and Andy Hunt. Programming Ruby 1.9: The Pragmatic

Programmers’ Guide. Pragmatic Bookshelf, 3rd edition, 2009. 170

[61] Guido van Rossum and Fred L. Drake. The Python Language Reference Manual.

Network Theory Ltd., 2011. 187

208

Appendix A

Programs in related works

A.1 amineLight: runtime functions

void eval() {

Agent *a1, *a2;

while (popActive(&a1, &a2)) {

if (a2->id != ID_NAME) {

if (a1->id != ID_NAME) {

R[a1][a2](a1, a2);

} else {

/* operations for x=Alpha(x1,...,xn) */

if (a1->port[0] == NULL) {

/* II.0 */

a1->port[0] = a2;

} else if ((a1->port[0])->id != ID_NAME) {

/* II.e */

Agent *a1p0 = a1->port[0];

freeAgent(a1);

a1=a1p0;

pushActive(a1,a2);

} else {

/* II.c */

(a1->port[0])->port[0] = a2;

freeAgent(a1);

}

209

}

} else {

/* operations for Alpha(x1,...,xn)=y and x=y */

if (a1->id != ID_NAME) {

/* II.- */

if (a2->port[0] == NULL) {

a2->port[0] = a1;

} else if ((a2->port[0])->id != ID_NAME) {

Agent *a2p0 = a2->port[0];

freeAgent(a2);

a2=a2p0;

pushActive(a1,a2);

} else {

(a2->port[0])->port[0] = a1;

freeAgent(a2);

}

} else {

if (a1->port[0] == NULL) {

if (a2->port[0] == NULL) {

/* III.0_0 */

a1->port[0] = a2;

a2->port[0] = a1;

} else if ((a2->port[0])->id != ID_NAME) {

/* III.0_e */

a1->port[0] = a2->port[0];

freeAgent(a2);

} else {

/* III.0_c */

a1->port[0] = a2->port[0];

(a2->port[0])->port[0] = a1;

freeAgent(a2);

}

} else if ((a1->port[0])->id != ID_NAME) {

if (a2->port[0] == NULL) {

210

/* III.e_0 */

a2->port[0] = a1->port[0];

freeAgent(a1);

} else if ((a2->port[0])->id != ID_NAME) {

/* III.e_e */

Agent *a1p0=a1->port[0];

freeAgent(a1);

Agent *a2p0=a2->port[0];

freeAgent(a2);

a1=a1p0;

a2=a2p0;

pushActive(a1,a2);

} else {

/* III.e_c */

(a2->port[0])->port[0] = a1->port[0];

freeAgent(a1);

freeAgent(a2);

}

} else {

if (a2->port[0] == NULL) {

/* III.c_0 */

(a1->port[0])->port[0] = a2;

a2->port[0] = a1->port[0];

freeAgent(a1);

} else if ((a2->port[0])->id != ID_NAME) {

/* III.c_e */

(a1->port[0])->port[0] = a2->port[0];

freeAgent(a1);

freeAgent(a2);

} else {

/* III.c_c */

(a2->port[0])->port[0] = a1->port[0];

(a1->port[0])->port[0] = a2->port[0];

freeAgent(a1);

211

freeAgent(a2);

}

}

}

}

}

}

212

Appendix B

Benchmark programs

In this chapter, we show the souce files of benchmark programs on interger numbers and

lists in SML, Python and Inpla.

B.1 Ackermann function

SML

fun ack 0 n = n+1

| ack m 0 = ack (m-1) 1

| ack m n = ack (m-1) (ack m (n-1));

ack 3 9;

Python

def ack(m,n):

if m==0:

return n+1

elif n==0:

return ack(m-1, 1)

else:

return ack(m-1, ack(m, n-1))

print ack(3,9)

Inpla

213

A(n,r) >< (int m)

| m==0 => Addn(1,r)~n

| _ => A2(m, r)~n;

A2(int m,r) >< (int n)

| n==0 => A((1),r)~(m1) where m1=m-1

| _ => A(w,r)~(m1), A((n1),w)~(m) where n1=n-1 m1=m-1;

Addn(int n, r) >< (int m)=> r~(i) where i=n+m;

A((9),r)~(3);

r;

B.2 Fibonacci number

SML

fun fib 0 = 1

| fib 1 = 1

| fib n = (fib (n-1)) + (fib (n-2));

fib 39;

Python

def fib(n):

if n == 0:

return 1

elif n == 1:

return 1

else:

return fib(n-1) + fib(n-2)

print fib(39)

Inpla

214

Fib(r) >< (int a)

| a == 0 => r~(1)

| a == 1 => r~(1)

| _ => Fib(n1)~(b),Fib(n2)~(c), Add(n2,r)~n1

where b=a-1 c=a-2;

Add(n2,r) >< (int i)

=> Add2(i, r) ~ n2;

Add2(int i, r) >< (int j)

=> r~(a) where a=i+j;

Fib(r)~(39);

r;

B.3 Bubble sort

SML

http://rosettacode.org/wiki/Sorting_algorithms/Bubble_sort#OCaml

local

fun bsortsub (x::x2::xs) =

if x > x2 then x2::(bsortsub (x::xs))

else x::(bsortsub(x2::xs))

| bsortsub x = x;

in

fun bsort x =

let

val s = bsortsub x;

in

if x=s then x else bsort s

end

end;

(* mkRandList *)

local

http://rosettacode.org/wiki/Sorting_algorithms/Bubble_sort#OCaml

215

val nextInt = Random.randRange(1,10000);

val r = Random.rand(1,1);

in

fun mkRandList 0 = []

| mkRandList n = (nextInt r)::(mkRandList (n-1))

end;

bsort (mkRandList 20000);

Python

http://www.geekviewpoint.com/python/sorting/bubblesort

import random

def mkRandList (n):

a=[]

for i in range(1,n+1):

a.insert(0, random.randint(0,10000))

return a

def bubblesort(A):

for i in range(len(A)):

for k in range(len(A) - 1, i, -1):

if (A[k] < A[k - 1]):

tmp = A[k]

A[k] = A[k-1]

A[k-1] = tmp

a = mkRandList(20000)

bubblesort(a)

Inpla

BS(r) >< [] => r~[];

BS(r) >< [x | xs] => B(x, BS(r))~xs;

BS(r) >< M(w) => r~w;

http://www.geekviewpoint.com/python/sorting/bubblesort

216

B(int x,r) >< [] => r~M([x]);

B(int x,r) >< M(w) => r~M([x | w]);

B(int x,r) >< [int y | ys]

| x<y => r~[x|w], B(y,w)~ys

| _ => r~[y|w], B(x,w)~ys;

MkRandList(r) >< (int n)

| n>0 => r~[rd|r1], MkRandList(r1)~(n1)

where n1=n-1 rd=rand(10000)

| _ => r~[];

MkRandList(r)~(20000), BS(r1)~r;

r1;

B.4 Quicksort

SML

http://www.webber-labs.com/mpl/source%20code/Chapter%20Twelve/quicksort.sml.txt

fun quicksort nil = nil

| quicksort (pivot :: rest) =

let

fun split(nil) = (nil,nil)

| split(x :: xs) =

let

val (below, above) = split(xs)

in

if x < pivot then (x :: below, above)

else (below, x :: above)

end;

val (below, above) = split(rest)

in

quicksort below @ [pivot] @ quicksort above

end;

http://www.webber-labs.com/mpl/source%20code/Chapter%20Twelve/quicksort.sml.txt

217

(* mkRandList *)

local

val nextInt = Random.randRange(1,10000);

val r = Random.rand(1,1);

in

fun mkRandList 0 = []

| mkRandList n = (nextInt r)::(mkRandList (n-1))

end;

quicksort (mkRandList 500000);

Python

http://rosettacode.org/wiki/Sorting_algorithms/Quicksort#Python

import random

def quickSort(arr):

less = []

pivotList = []

more = []

if len(arr) <= 1:

return arr

else:

pivot = arr[0]

for i in arr:

if i < pivot:

less.append(i)

elif i > pivot:

more.append(i)

else:

pivotList.append(i)

less = quickSort(less)

more = quickSort(more)

return less + pivotList + more

http://rosettacode.org/wiki/Sorting_algorithms/Quicksort#Python

218

def mkRandList (n):

a=[]

for i in range(1,n+1):

a.insert(0, random.randint(0,10000))

return a

a = mkRandList(500000)

quickSort(a)

Inpla

QS(r) >< [] => r~[];

QS(r) >< [int x|xs] => Part(x, QS(w), QS(App([x|w], r)))~xs;

App(a,b) >< [] => a~b;

App(a,b) >< [x|xs] => b~[x|w], xs~App(a,w);

Part(int x, a, b) >< [] => a~[], b~[];

Part(int x, a,b) >< [int y|ys]

| y<x => ys~Part(x, a, w), b~[y|w]

| _ => ys~Part(x, w, b), a~[y|w];

MkRandList(r) >< (int n)

| n>0 => r~[rd|r1], MkRandList(r1)~(n1)

where n1=n-1 rd=rand(10000)

| _ => r~[];

MkRandList(r)~(500000), QS(r1)~r;

r1;

