University of Sussex
Browse

File(s) not publicly available

Insights into the biosynthesis of the Vibrio cholerae major autoinducer CAI-1 from the crystal structure of the PLP-dependent enzyme CqsA

journal contribution
posted on 2023-06-08, 20:42 authored by Nasrin Jahan, Jane A Potter, Md Arif Sheikh, Catherine H Botting, Sally L Shirran, Nicholas J Westwood, Garry L Taylor
CqsA is an enzyme involved in the biosynthesis of cholerae autoinducer-1 (CAI-1), the major Vibrio cholerae autoinducer engaged in quorum sensing. The amino acid sequence of CqsA suggests that it belongs to the family of a-oxoamine synthases that catalyse the condensation of an amino acid to an acyl-CoA substrate. Here we present the apo- and PLP-bound crystal structures of CqsA and confirm that it shares structural homology with the dimeric a-oxoamine synthases, including a conserved PLP-binding site. The chemical structure of CAI-1 suggests that decanoyl-CoA may be one substrate of CqsA and that another substrate may be l-threonine or l-2-aminobutyric acid. A crystal structure of CqsA at 1.9-Å resolution obtained in the presence of PLP and l-threonine reveals an external aldimine that has lost the l-threonine side chain. Similarly, a 1.9-Å-resolution crystal structure of CqsA in the presence of PLP, l-threonine, and decanoyl-CoA shows a trapped external aldimine intermediate, suggesting that the condensation and decarboxylation steps have occurred, again with loss of the l-threonine side chain. It is suggested that this side-chain loss, an observation supported by mass spectrometry, is due to a retro-aldol reaction. Although no structural data have been obtained on CqsA using l-2-aminobutyric acid and decanoyl-CoA as substrates, mass spectrometry confirms the expected product of the enzyme reaction. It is proposed that a region of structure that is disordered in the apo structure is involved in the release of product. While not confirming if CqsA alone is able to synthesize CAI-1, these results suggest possible synthetic routes.

History

Publication status

  • Published

Journal

Journal of Molecular Biology

ISSN

0022-2836

Publisher

Elsevier

Issue

3

Volume

392

Page range

763-773

Department affiliated with

  • Sussex Centre for Genome Damage Stability Publications

Full text available

  • No

Peer reviewed?

  • Yes

Legacy Posted Date

2015-05-07

Usage metrics

    University of Sussex (Publications)

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC