Predicting the stability of atom-like and molecule-like unit-charge Coulomb three-particle systems

This version is available from Sussex Research Online: http://sro.sussex.ac.uk/id/eprint/53889/

This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher’s version. Please see the URL above for details on accessing the published version.

Copyright and reuse:
Sussex Research Online is a digital repository of the research output of the University.

Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available.

Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.
Predicting the stability of atom-like and molecule-like unit-charge Coulomb three-particle systems

Andrew W. King, Patrick E. Herlihy, and Hazel Cox

Citation: The Journal of Chemical Physics 141, 044120 (2014); doi: 10.1063/1.4890658
View online: http://dx.doi.org/10.1063/1.4890658
View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/141/4?ver=pdftcov
Published by the AIP Publishing

Articles you may be interested in
Effect of geometrical orientation on the charge-transfer energetics of supramolecular (tetraphenyl)-porphyrin/C60 dyads

Finite-temperature electronic simulations without the Born-Oppenheimer constraint

A probability generating function method for stochastic reaction networks

Stability of three unit charges: Necessary conditions

Bound state properties and astrophysical applications of negatively charged hydrogen ions
Predicting the stability of atom-like and molecule-like unit-charge Coulomb three-particle systems

Andrew W. King, Patrick E. Herlihy, and Hazel Cox

Department of Chemistry, University of Sussex, Falmer, Brighton BN1 9QJ, United Kingdom

(Received 29 May 2014; accepted 9 July 2014; published online 28 July 2014)

Non-relativistic quantum chemical calculations of the particle mass, \(m_1 \pm \), corresponding to the dissociation threshold in a range of Coulomb three-particle systems of the form \(\{ m_1^\pm, m_2^\pm, m_3^\pm \} \), are performed variationally using a series solution method with a Laguerre-based wavefunction. These masses are used to calculate an accurate stability boundary, i.e., the line that separates the stability domain from the instability domains, in a reciprocal mass fraction ternary diagram. This result is compared to a lower bound to the stability domain derived from symmetric systems and reveals the importance of the asymmetric (mass-symmetry breaking) terms in the Hamiltonian at dissociation. A functional fit to the stability boundary data provides a simple analytical expression for calculating the minimum mass of a third particle required for stable binding to a two-particle system, i.e., for predicting the bound state stability of any unit-charge three-particle system. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4890658]

INTRODUCTION

Helium and the hydrogen molecule and its ions have been the “laboratory” of quantum chemistry for over 80 years, driving attempts to accurately model the correlated motion of electrons and the chemical bond. Yet much of popular modern day quantum chemistry is built on hydrogenic wavefunctions, and electron correlation is dealt with through various increasingly sophisticated schemes. Popelier recently brought together ideas and methods not prevalent in current mainstream quantum chemistry in his inspiring book “Solving The Schrödinger Equation: Has Everything Been Tried?” In this vein, one such method is the series solution method, which obviates the need for integration. This paper is concerned with solving the “the mother equation of chemistry,” namely the time-independent Schrödinger equation, for three-particle Coulomb systems. It is solved here using a series solution method developed by Pekeris for helium and extended by Cox and others to (i) include the finite mass of all particles present, and (ii) unify the accuracy of the treatment of atomic and molecular three-particle systems. In these high accuracy quantum chemical calculations, all particles are treated equivalently, and a coordinate system is used that includes the \(r_{12} \) term, i.e., the distance between like-charged particles. Thus this methodology not only allows for the possibility of treating electron correlation directly and is without recourse to the Born-Oppenheimer (B-O) approximation, it also allows for a treatment where all the particles are of similar mass (e.g., the positronium or muonium negative ion).

In our recent paper, henceforth referred to as I, a lower bound to the stability of unit-charge three-particle systems was presented. It was shown that by treating all particle masses as finite and using a Laguerre-based wavefunction with two nonlinear parameters, and by taking advantage of charge conjugation invariance, it was possible to move smoothly from electron-correlated atomic systems (such as \(\text{H}^- \)) to non-B-O molecular systems (such as \(\text{H}_2^+ \)). Bound state stability is fundamental to a large part of chemistry and physics. It enables, for example, an understanding of the chemical reactivity and spectroscopy of atoms and molecules. Therefore, it would be extremely useful to be able to determine, \(a \ priori \), the bound state stability of a particular system, without detailed calculation. This is the aim of the present paper.

Reported here is the calculation of an “exact” stability bound for unit-charge three-particle Coulomb systems. This uses a novel variational approach formulated by Rebane and Kuzminskii for calculating the threshold mass of the detached particle at dissociation of an atomic-molecular system and is performed with a Laguerre-based wavefunction in symmetric coordinates. The results are presented on a reciprocal mass ternary diagram and compared to the lower bound stability boundary recently calculated in I, to consider the topology of the stability domain due to mass-symmetry breaking. Finally a simple algorithm is provided for predicting the stability of a given system.

BOUND STATE STABILITY

In this work, a system is defined as stable if it has at least one bound state below the lowest continuum threshold. In the case of a three-particle system such as \(\{ m_1^\pm, m_2^\pm, m_3^\pm \} \), the lowest continuum threshold corresponds to dissociation into the heavier bound pair and an isolated particle at rest at infinity. Thus, the energy of the lowest dissociation threshold coincides with the ground-state energy of the two-particle heavier mass pair. In the case of three unit charges \(\{ m_1^\pm, m_2^\pm, m_3^\pm \} \), if we assume that \(m_1 \geq m_2 \), then the threshold energy, \(E_{th} \), is simply the ground state energy of the hydrogen-like atom consisting...
of particles 1 and 3, i.e.,

\[E_{ih} = E(m_1, m_3) = -\frac{1}{2} \mu_{13} = -\frac{1}{2} \frac{m_1 m_3}{m_1 + m_3} \]

\[= -\frac{1}{2} \frac{1}{m_1^{-1} + m_3^{-1}}. \quad (1) \]

Here, and throughout, atomic units are used. The critical mass of a third particle, \(m_2 \), sufficient to bind to a two-particle system, has been investigated in a number of ways. Assuming \(m_1 \geq m_2 \) the following schemes have been employed:

(i) Repeated energy calculations. For a given mass pair \(\{m_1^3 m_3^3\} \) the mass of \(m_2 \) can be varied until \(E_0 \), the three-particle energy, coincides with \(E_{ih} \). Several authors have successfully used this method. However, it requires numerous variational energy calculations for a range of \(m_2 \) values for each given mass pair.

(ii) Mass-symmetry breaking. It is known that all symmetric systems (i.e., \(m_1 = m_2 \)) are stable to dissociation.\(^9\) Therefore, the Hamiltonian for an arbitrary system is written as a sum of symmetric (under 1 ↔ 2 exchange) and anti-symmetric terms, i.e., \(\hat{H} = \hat{H}_S + \hat{H}_A \). The variational principle is used to derive the ground state energy of the asymmetric system using the symmetric ground-state wavefunction, \(\psi_S \), of \(\hat{H}_S \), as trial wavefunction. Using the relative excess binding energy of the symmetric three-particle system, \((E_0 - E_{ih})/E_{ih} \), as a function of the uniquely charged particle, Richard and co-workers\(^10,11\) derived an explicit expression for the lower bound to stability, i.e., the boundary between stable and unstable unit-charge three-particle systems.

(iii) Variational method for mass. Rebane and Kuzminskii\(^8\) have shown that it is possible to solve for the mass of \(m_2 \) directly using a variational method.\(^8\) Given that the energy is known at the boundary, i.e., \(E_0 = E_{ih} \), this can be substituted into the Schrödinger equation. The Schrödinger equation can then be rearranged and solved as a generalised eigenvalue problem. This allows direct calculation of the threshold value of particle mass \(m_2^2 \) via a single calculation for a given mass pair \(\{m_1^3 m_3^3\} \).

In this work, scheme (ii) is used to calculate an accurate lower bound to stability using high accuracy non-relativistic symmetric energies. In this work, scheme (iii) is used to determine the mass \(m_2 \) for a series of mass pairs \(\{m_1^3 m_3^3\} \).

A beautiful property of Coulomb Hamiltonians is the mass-scaling rule: scaling the masses by a factor \(x \) is equivalent to scaling the energy (and shrinking the length) by the same factor. The dissociation stability (or instability) remains unchanged. This means that a system containing \(N \) particles depends, at most, on \((N - 1) \) mass ratios.\(^11\) Furthermore, Martin et al.\(^10\) have shown that all possible unit-charge three-particle systems can be represented on a ternary diagram in terms of the normalized reciprocal mass fraction coordinates:

\[a_i = \frac{1/m_i}{1/m_1 + 1/m_2 + 1/m_3}, \quad i = 1, 2, \text{ or } 3, \]

\[\text{such that } \quad a_1 + a_2 + a_3 = 1. \quad (2) \]

METHOD

The non-relativistic Schrödinger equation for the S-states of unit charge, three-particle, Coulomb systems of the form \(\{m_1^3 m_2^3 m_3^3\}, m_1 \geq m_2 \) is considered. Rebane and Kuzminskii\(^8\) formulated a method for the direct calculation of the threshold mass, \(m_2 \), by deriving the generalised eigenvalue equation (4) using the calculus of variations,

\[L\psi_j = \lambda_j M\psi_j, \quad j = 0, 1, 2, \ldots, \quad (4) \]

where \(L \) is a self-consistent operator bounded from below, \(M \) is a positive, definite, self-conjugate operator, and the eigenvalues \(\lambda \) are extremal values resulting from the vanishing of the first variation. They showed that a particular case of (4) can be used to determine the threshold mass \(m_2 \), where the operators are defined as

\[L = -\frac{\nabla^2_1}{2m_1} - \frac{\nabla^2_3}{2m_3} + \frac{1}{r_{12}} - \frac{1}{r_{13}} - \frac{1}{r_{23}} - E_{ih}(m_1, m_3), \]

\[M = -\frac{\nabla^2_3}{2}, \quad (5) \]

and the smallest eigenvalue \(\lambda \) corresponds to the threshold mass of particle 2, i.e.,

\[m_2 = -\frac{1}{\lambda}. \quad (6) \]

where this is the minimum mass of particle 2 for which the three-particle system is still stable.

This method is used in the present work to calculate the threshold value of \(m_2 \) for a range of mass ratios \(m_1/m_3 \). As in I, the centre of mass motion is separated off and the translation-free coordinates are chosen to be the inter-particle distances \(r_{12} \) and \(r_{13} \) corresponding to the inter-particle distances 3-1, 3-2, and 1-2, with the origin at the third particle. The resulting equation of motion involves two (pseudo-)particles with reduced masses and a mass polarization interaction coupling the momenta of the particles at the origin of the coordinates. The equation is rearranged to the form (4) by factoring out the reciprocal mass of \(m_2 \). The problem is then recast in perimetric coordinates, defined as \(z_i = r_j + r_k - r_i \), where \(i, j, \text{ and } k \) denote cyclic permutation of 1, 2, and 3.

The resulting generalised eigenvalue equation is solved using a series solution method by expanding the wavefunction in a triple orthogonal set of Laguerre functions in scaled perimetric coordinates:

\[\psi(z_1, z_2, z_3) = e^{-\frac{1}{2}(\alpha z_1 + \beta z_2 + \gamma z_3)} \times \sum_{l,m,n=0}^{\infty} A(l, m, n) L_l(\alpha z_1) L_m(\beta z_2) L_n(\gamma z_3). \quad (7) \]

This results in a 57-term recursion relation between the coefficients, which is used to form a sparse secular determinant that is solved in truncated form to give the eigenvalues as a function of basis set size \(N \). For symmetric systems with fermionic exchange it was necessary to impose the constraint \(\alpha = \beta \) on the nonlinear variational parameters to take advantage of the useful quasi-orthogonal character of the wavefunction. However, no such constraint is necessary in this work.
with non-identical like-charged particles, and all three non-linear parameters (α, β, γ) are varied. The parameters are optimised to minimize the mass using a conjugate gradients routine. As in I, the mass of the lightest particle was set to 1, and the threshold energies were calculated using the most recent CODATA masses (in units of m_e) for the muon, tauon, proton, deuteron, and triton, i.e., $m_\mu = 206.768$ 284 3, $m_\tau = 3477.15$, $m_p = 1836.152$ 672 45, $m_d = 3670.482$ 965 2 and $m_t = 5496.921$ 526 7.

RESULTS AND DISCUSSION

Variational mass

The minimum mass of a third particle required to bind to selected two-particle atomic systems is given in Table I in electron atomic units. The masses presented are considered accurate to 2 significant figures (s.f.) and were calculated using a 3654-term basis; the rate of convergence, even for similar systems, is not uniform. Selected calculations were also performed using a 5456-term wavefunction but did not lower the mass significantly. The accuracy is several orders of magnitude less than that achieved for the energy using the same methodology with much smaller matrices. Rebane and Kuzminskii had slightly greater success and reported mass values to 3 s.f. with a significantly smaller and more flexible exponential basis with 60 nonlinear parameters. However, it is still quite efficient to use large Laguerre-based wavefunctions as given the quasi-orthogonality, the non-diagonal elements of the Hamiltonian and overlap matrices are zero in most cases, and the accuracy reported is adequate for the purposes of the present paper.

Stability boundary

A stability boundary is determined using the values in Table I and plotted on a reciprocal mass ternary diagram (Figure 1, green/solid line). This is referred to here as the “exact” stability boundary, as it is calculated using the exact threshold energy, with a precision determined by the accuracy of the threshold mass calculated variationally. It is to be compared with the lower bound stability calculated using the wavefunction of the symmetric systems (Figure 1, blue/dashed line). The proofs provided by Richard and

TABLE I

<table>
<thead>
<tr>
<th>m_1</th>
<th>m_3</th>
<th>m_1/m_3</th>
<th>m_2 threshold</th>
<th>a_3</th>
<th>$a_2 - a_1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>e</td>
<td>5496.9215267</td>
<td>2.2(19)</td>
<td>0.689299</td>
<td>0.310450</td>
</tr>
<tr>
<td>d</td>
<td>e</td>
<td>3670.4829652</td>
<td>2.2(17)/2.2(12)</td>
<td>0.689022</td>
<td>0.310602</td>
</tr>
<tr>
<td>τ</td>
<td>e</td>
<td>3477.15</td>
<td>2.2(15)/2.2(12)</td>
<td>0.68846</td>
<td>0.310758</td>
</tr>
<tr>
<td>p</td>
<td>e</td>
<td>1836.15267245</td>
<td>2.2(15)/2.2(11)</td>
<td>0.688699</td>
<td>0.310550</td>
</tr>
<tr>
<td>μ</td>
<td>e</td>
<td>206.7682843</td>
<td>2.2(06)</td>
<td>0.685787</td>
<td>0.307580</td>
</tr>
<tr>
<td>t</td>
<td>μ</td>
<td>5496.9215267</td>
<td>43(9.0)</td>
<td>0.662837</td>
<td>0.287298</td>
</tr>
<tr>
<td>d</td>
<td>μ</td>
<td>3670.4829652</td>
<td>42(8.8)</td>
<td>0.649983</td>
<td>0.26786</td>
</tr>
<tr>
<td>τ</td>
<td>μ</td>
<td>3477.15</td>
<td>42(7.1)</td>
<td>0.647837</td>
<td>0.257116</td>
</tr>
<tr>
<td>p</td>
<td>μ</td>
<td>1836.15267245</td>
<td>39(7.7)</td>
<td>0.612589</td>
<td>0.249445</td>
</tr>
<tr>
<td>t</td>
<td>p</td>
<td>5496.9215267</td>
<td>25(87)</td>
<td>0.489268</td>
<td>0.183686</td>
</tr>
<tr>
<td>d</td>
<td>p</td>
<td>3670.4829652</td>
<td>20(94)</td>
<td>0.420686</td>
<td>0.158419</td>
</tr>
<tr>
<td>τ</td>
<td>p</td>
<td>3477.15</td>
<td>20(27)</td>
<td>0.410850</td>
<td>0.155242</td>
</tr>
<tr>
<td>t</td>
<td>τ</td>
<td>5496.9215267</td>
<td>34(17)</td>
<td>0.377345</td>
<td>0.145266</td>
</tr>
<tr>
<td>d</td>
<td>τ</td>
<td>5496.9215267</td>
<td>34(75)</td>
<td>0.367097</td>
<td>0.142657</td>
</tr>
<tr>
<td>e</td>
<td>τ</td>
<td>3670.4829652</td>
<td>25(40)</td>
<td>0.301559</td>
<td>0.127091</td>
</tr>
<tr>
<td>e</td>
<td>μ</td>
<td>1</td>
<td>0.69(96)/0.69(87)</td>
<td>0.291542</td>
<td>0.125375</td>
</tr>
<tr>
<td>e</td>
<td>d</td>
<td>3477.15</td>
<td>24(59)</td>
<td>0.281830</td>
<td>0.123169</td>
</tr>
<tr>
<td>e</td>
<td>t</td>
<td>3670.4829652</td>
<td>27(37)</td>
<td>0.221925</td>
<td>0.113365</td>
</tr>
<tr>
<td>e</td>
<td>τ</td>
<td>3477.15</td>
<td>26(03)</td>
<td>0.213107</td>
<td>0.113103</td>
</tr>
<tr>
<td>e</td>
<td>p</td>
<td>1836.15267245</td>
<td>14(00)</td>
<td>0.185976</td>
<td>0.109653</td>
</tr>
<tr>
<td>e</td>
<td>d</td>
<td>1836.15267245</td>
<td>14(04)</td>
<td>0.178161</td>
<td>0.109548</td>
</tr>
<tr>
<td>e</td>
<td>t</td>
<td>1836.15267245</td>
<td>14(36)</td>
<td>0.127852</td>
<td>0.106646</td>
</tr>
<tr>
<td>μ</td>
<td>p</td>
<td>206.7682843</td>
<td>164(8)/164(6)</td>
<td>0.0475714</td>
<td>0.107537</td>
</tr>
<tr>
<td>μ</td>
<td>τ</td>
<td>206.7682843</td>
<td>164(9)</td>
<td>0.0257035</td>
<td>0.09802</td>
</tr>
<tr>
<td>μ</td>
<td>d</td>
<td>206.7682843</td>
<td>164(9)</td>
<td>0.0224383</td>
<td>0.09909</td>
</tr>
<tr>
<td>μ</td>
<td>t</td>
<td>206.7682843</td>
<td>164(9)</td>
<td>0.0164142</td>
<td>0.110845</td>
</tr>
<tr>
<td>e</td>
<td>μ</td>
<td>1</td>
<td>0.79(93)</td>
<td>0.000214394</td>
<td>0.11257</td>
</tr>
<tr>
<td>e</td>
<td>τ</td>
<td>0.79(70)/0.79(63)</td>
<td>0.000241490</td>
<td>0.112932</td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>d</td>
<td>0.79(68)</td>
<td>0.000126197</td>
<td>0.12264</td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>t</td>
<td>0.79(68)</td>
<td>8.06709 × 10^{-5}</td>
<td>0.113037</td>
<td></td>
</tr>
</tbody>
</table>
co-workers regarding the topology of the stability domain remain valid; therefore all systems enclosed within the green boundary (shaded green) are stable to dissociation.

Prevalent species in chemical physics, such as H⁻, H₂⁺, their isotopes and their muonic variants are found to cluster around the apex of the ternary diagram for atomic systems, i.e., molecular-like systems, thus screening the lighter particle, thus the stability depends primarily on the sum of the inverse masses, summarized as

\[E(m_1, m_2, m_3) \geq \frac{E(m_1, m_1, m_3) + E(m_2, m_2, m_3)}{2}. \] (8)

In the case where \(m_1, m_2 \ll m_3 \), the atomic-like regime, system stability is provided by the mass difference; however, with only small differences in the masses, the heavier of the two light like-charged particles binds tightly to the uniquely charged particle, thus screening the lighter particle, \(m_3 \), from the opposite charge of \(m_3 \). For example, in the case of \(\{e, m_3, p\} \) and \(\{\mu, m_2, p\} \), the mass \(m_3 \) varies greatly: 0.797 and 164, respectively, yet in both cases the ratio of \(m_3/m_1 \approx 0.79 \), essentially the particle becomes “too light” relative to the heavier like-charged particle. Thus the stability depends primarily on the symmetry-breaking term, not on the sum of the inverse masses, i.e.,

\[E(m_1, m_2, m_3) < \frac{E(m_1, m_1, m_3) + E(m_2, m_2, m_3)}{2}. \] (9)

This explains the shape of the stability boundary but not the increase in stability compared to the lower bound prediction.

To understand this observation we consider the Hamiltonian used to predict the lower bound to stability. In normalized reciprocal masses:

\[\tilde{H}(a_1, a_2, a_3) = \tilde{H}_S + \tilde{H}_A = \left[\frac{a_1 + a_3}{2} (p_1^2 + p_3^2) + a_3 p_3^2 + \hat{V} \right] + \left[\frac{a_1 - a_3}{2} (p_1^2 - p_3^2) \right]. \] (10)

The variational principle is used to derive the ground state energy of the asymmetric system using the symmetric state energy of the symmetric \((m_1 = m_2) \) Hamiltonian has its energy lowered if a symmetry-breaking term \((m_1 \neq m_2) \) is added. When applying the variational principle to the asymmetric Hamiltonian with the symmetric ground state as trial wavefunction, the energy lowering of the symmetry breaking term is proportional to \((m_2^{-1} - m_1^{-1}) \); the difference being of second order in \((m_2^{-1} - m_1^{-1})/2 \). Therefore, for fixed \(m_1 \) and \(m_3 \), as \(m_2 \) gets lighter, the difference becomes greater and the stabilization from the symmetry breaking increases.

Korobov and Richard have analysed mass-symmetry breaking in three-particle systems by estimating the first- and second-order perturbation terms calculated with the wavefunction of a symmetric configuration. They conclude that the symmetric terms dominate for molecular-type systems, while the asymmetric terms win for atomic-like systems. This is illustrated nicely in the data presented in Table I. For example, in the case where \(m_1, m_2 \gg m_3 \), the molecular type systems \(\{d, m_2, e\}, \{p, m_2, e\} \), and even \(\{\mu, m_2, e\} \), the mass \(m_2 \) is fairly insensitive to the mass difference and the stability is controlled by the concavity. In these cases the Born-Oppenheimer approximation applies, with the consequence that decreasing the mass of one of the positive charges, i.e., \(m_2 \), does not ruin stability as the heavy particles experience an effective two-body potential. Thus the stability depends primarily on the sum of the inverse masses, summarized as

\[E(m_1, m_2, m_3) \geq \frac{E(m_1, m_1, m_3) + E(m_2, m_2, m_3)}{2}. \] (8)
ground-state wavefunction, ψ_S of \hat{H}_S, as trial wavefunction, i.e.,

$$E_0(a_1, a_2, a_3) \leq \langle \psi_S | \hat{H} | a_1, a_2, a_3 \rangle \langle \psi_S \rangle$$

$$= E_0 \left(\frac{1}{2}(a_1 + a_2), \frac{1}{2}(a_1 + a_2), a_3 \right). \quad (11)$$

The symmetric energy is expressed in terms of the relative excess binding energy due to the addition of a third particle m_3 to $\{m_1, m_2\}$ as a function of the reciprocal mass of the uniquely charged particle, a_3. It is then recast in terms of the symmetry breaking term $a_1 - a_2$ by taking the ratio of the symmetric threshold energy to the actual threshold energy. This term can then be used to derive the width of the stability band in terms of the symmetric systems by elimination. However, explicit consideration of the anti-symmetric terms in the Hamiltonian is not included in this treatment and gives rise to the additional width of the stability band at all values of a_1. In terms of a perturbative treatment around the stable symmetric bound state, the anti-symmetric term enters at second order and is sufficient for systems where the mass difference is small (e.g., in the atomic-like systems) but underestimates the full contribution at larger differences as occurs for molecular-like systems.

Stability prediction

Predicting the stability of a particular three-particle system simply requires the calculation of its position in the ternary diagram, using the definitions of the reciprocal masses given in (2). If it falls within the stability domain it is stable to dissociation. Given that the critical masses used to define the stability boundary are converged to 2 s.f., the error on the boundary is at best ±0.005 in scaled units.

However, even within this limited accuracy, it would be useful to be able to determine the threshold mass for stability of the third particle with any particle pair. In order to do this it is necessary to calculate the crossing point of the stability boundary with the line of constant mass ratio for the two-particle system. The coordinates in the ternary diagram, are $x = (a_3 - a_1)/\sqrt{3}$ and $y = a_3$. Following I, it is possible to fit the boundary to a function of a_3, the reciprocal mass of the uniquely charged particle, and express the line of constant mass ratio a_1/a_3 in these coordinates, and solve simultaneously. However, a much simpler method is to use the coordinate system, $y = m_3/(m_1 + m_3)$ and $x = m_3/(m_2 + m_3)$ as this eliminates m_3 from the independent variable. Using this coordinate system, the stability boundary is fitted to a function of the form used in I, i.e.,

$$y = f(x) = \sum_{i=0}^{5} c_i x^i. \quad (12)$$

This results in an excellent fit with an R^2 value of 0.999 999 83. The optimised values for this fit are: $c_0 = 0.310672$ 03, $c_1 = 0.677 996 13 \times 10^{-2}$, $c_2 = 0.195 965 44$, $c_3 = -0.609 288 42 \times 10^{-1}$, $c_4 = 1.359 881 3$, $c_5 = -0.812377$ 64. Substituting $x = m_3/(m_1 + m_3)$ into $y = f(x)$ for a given mass pair m_1 and m_3 provides the lightest m_3 mass possible for binding to the two-particle system.

CONCLUSIONS

The smallest like-charge particle mass for which a three-particle system remains stable has been used to calculate an “exact” stability boundary. The upper bound of the particle mass corresponding to the exact threshold energy for a given two-particle system was calculated using the variational principle. The generalised eigenvalue equation was solved using a series solution method for the three-particle system in translation-free internal coordinates using a wave function expanded in a triple orthogonal set of Laguerre functions with three nonlinear parameters. This work demonstrates the utility of the series solution method, but indicates that the wavefunction, so successful in energy calculations, does not adequately capture the physics of the variational mass problem resulting in very slow convergence. The “exact” stability bound, with limited precision of 2 s.f., was used to compare with the lower bound to stability recently calculated in I. The shape and increased region of stability was discussed and the latter attributed to the important anti-symmetric terms in the Hamiltonian. Finally, a functional fit to the data in a judicious choice of mass coordinates provided a simple analytical expression for the calculation of the critical mass of a third particle required for binding to any two-particle system.

ACKNOWLEDGMENTS

The authors would like to thank Professor J.-M. Richard and Professor E. A. G. Armour for a helpful communication regarding their excellent review, and Professor B. T. Sutcliffe and Professor A. J. McCaffery for valuable comments on the paper.