University of Sussex
Browse

File(s) not publicly available

F-actin capping (CapZ) and other contractile saphenous vein smooth muscle proteins are altered by hemodynamic stress: a proteomic approach

journal contribution
posted on 2023-06-08, 19:45 authored by Emma McGregor, Lee Kempster, Robin Wait, Martin Gosling, Michael J Dunn, Janet T Powell
Increased force generation and smooth muscle remodeling follow the implantation of saphenous vein as an arterial bypass graft. Previously, we characterized and mapped 129 proteins in human saphenous vein medial smooth muscle using two-dimensional (2-D) PAGE and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Here, we focus on actin filament remodeling in response to simulated arterial flow. Human saphenous vein was exposed to simulated venous or arterial flow for 90 min in vitro, and the contractile medial smooth muscle was dissected out and subjected to 2-D gel electrophoresis using a non-linear immobilized pH 3-10 gradient in the first dimension. Proteins were analyzed quantitatively using PDQuest 2-D software. The actin polymerization inhibitor cytochalasin B (1 µm) prevented increases in force generation after 90 min of simulated arterial flow. At this time point, there were several consistent changes in actin filament-associated protein expression (seven paired vein samples). The heat shock protein HSP27, identified as a three-spot charge train, showed a 1.6-fold increase in abundance (p = 0.01), but with reduced representation of the phosphorylated Ser82 and Ser15Ser82 isoforms (p = 0.018). The abundance of actin-capping protein a2 subunit CapZ had decreased 3-fold, p = 0.04. A 19-kDa proteolytic fragment of actin increased 2-fold, p = 0.04. For the four-spot charge train of gelsolin, there was reduced representation of the more acidic isoforms, p = 0.022. The abundance of other proteins associated with actin filaments, including cofilin and destrin, remained unchanged after arterial flow. Actin filament remodeling with differential expression and/or post-translational modification of proteins involved in capping the barbed end of actin filaments, HSP27 and CapZ, is an early response of contractile saphenous vein smooth muscle cells to hemodynamic stress. The observed changes would favor the generation of contractile stress fibers. © 2004 by The American Society for Biochemistry and Molecular Biology, Inc.

History

Publication status

  • Published

Journal

Molecular and Cellular Proteomics

ISSN

1535-9476

Publisher

American Society for Biochemistry and Molecular Biology

Issue

2

Volume

3

Page range

115-124

Department affiliated with

  • Chemistry Publications

Full text available

  • No

Peer reviewed?

  • Yes

Legacy Posted Date

2015-01-28

Usage metrics

    University of Sussex (Publications)

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC