Strauss, Michael (2010) Spectral estimates and basis properties for self-adjoint block operator matrices. Integral Equations and Operator Theory, 67 (2). pp. 257-277. ISSN 0378-620X
Full text not available from this repository. (Request a copy)Abstract
In the first part of this manuscript a relationship between the spectrum of self-adjoint operator matrices and the spectra of their diagonal entries is found. This leads to enclosures for spectral points and in particular, enclosures for eigenvalues. We also consider graph invariant subspaces, and their corresponding angular operators. The existence of a bounded angular operator leads to basis properties of the first component of eigenvectors of operator matrices for which the corresponding eigenvalues lie in a half line. The results are applied to an example from magnetohydrodynamics.
Item Type: | Article |
---|---|
Schools and Departments: | School of Mathematical and Physical Sciences > Mathematics |
Subjects: | Q Science > QA Mathematics > QA0299 Analysis. Including analytical methods connected with physical problems |
Depositing User: | Michael Strauss |
Date Deposited: | 22 Oct 2014 09:59 |
Last Modified: | 22 Oct 2014 09:59 |
URI: | http://sro.sussex.ac.uk/id/eprint/50683 |