Ferrando, R and Scalas, E (1993) Self-diffusion in a 2D lattice gas with lateral interactions. Surface Science, 281 (1-2). pp. 178-190. ISSN 0039-6028
Full text not available from this repository.Abstract
The self-diffusion coefficient DS, is studied for submonolayer adsorbates on a square lattice; lateral interactions are taken into account. The theoretical framework is that of the Mori projection operator technique for a 2D interacting lattice gas with Kawasaki dynamics. The limit of small lateral interactions is considered and memory effects are taken into account up to high orders in the Mori continued fraction expansion. A formula for DS is obtained which contains the static pair correlation function. The theory is then applied to a 2D lattice gas with nearest-neighbour attractive or repulsive interactions and the static correlations are calculated according to the mean spherical approximation. DS is computed as a function of the coverage for different interaction strengths and the results are compared with a Kawasaki Monte Carlo simulation. At low coverages (θ ⩽ 0.25), the agreement between the theory and the simulations is fairly good for a wide range of the interaction strength; at medium and high coverages a good agreement is obtained at small lateral interactions. The theoretical results given by different choices of the jump dynamics are shown and briefly discussed.
Item Type: | Article |
---|---|
Schools and Departments: | School of Mathematical and Physical Sciences > Mathematics |
Subjects: | Q Science > QA Mathematics > QA0273 Probabilities. Mathematical statistics Q Science > QC Physics > QC0170 Atomic physics. Constitution and properties of matter Including molecular physics, relativity, quantum theory, and solid state physics |
Depositing User: | Enrico Scalas |
Date Deposited: | 03 Oct 2014 13:49 |
Last Modified: | 03 Oct 2014 13:49 |
URI: | http://sro.sussex.ac.uk/id/eprint/50337 |