University of Sussex
Browse
1307.4995.pdf (459.39 kB)

Primordial black holes in non-Gaussian regimes

Download (459.39 kB)
journal contribution
posted on 2023-06-08, 17:25 authored by Sam Young, Christian ByrnesChristian Byrnes
Primordial black holes (PBHs) can form in the early Universe from the collapse of rare, large density fluctuations. They have never been observed, but this fact is enough to constrain the amplitude of fluctuations on very small scales which cannot be otherwise probed. Because PBHs form only in very rare large fluctuations, the number of PBHs formed is extremely sensitive to changes in the shape of the tail of the fluctuation distribution - which depends on the amount of non-Gaussianity present. We first study how local non-Gaussianity of arbitrary size up to fifth order affects the abundance and constraints from PBHs, finding that they depend strongly on even small amounts of non-Gaussianity and the upper bound on the allowed amplitude of the power spectrum can vary by several orders of magnitude. The sign of the non-linearity parameters (f_{NL}, g_{NL}, etc) are particularly important. We also study the abundance and constraints from PBHs in the curvaton scenario, in which case the complete non-linear probability distribution is known, and find that truncating to any given order (i.e. to order f_{NL} or g_{NL}, etc) does not give accurate results.

History

Publication status

  • Published

File Version

  • Accepted version

Journal

Journal of Cosmology and Astroparticle Physics

ISSN

1475-7516

Publisher

IOP Publishing

Issue

52

Volume

08

Page range

1-16

Department affiliated with

  • Physics and Astronomy Publications

Full text available

  • Yes

Peer reviewed?

  • Yes

Legacy Posted Date

2014-05-27

First Open Access (FOA) Date

2014-05-27

First Compliant Deposit (FCD) Date

2014-05-27

Usage metrics

    University of Sussex (Publications)

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC