Peripheral inflammation acutely impairs human spatial memory via actions on medial temporal lobe glucose metabolism

Harrison, Neil A, Doeller, Christian F, Voon, Valerie, Burgess, Neil and Critchley, Hugo D (2014) Peripheral inflammation acutely impairs human spatial memory via actions on medial temporal lobe glucose metabolism. Biological Psychiatry, 76 (7). pp. 585-593. ISSN 0006-3223

PDF - Accepted Version
Available under License Creative Commons Attribution.

Download (3MB) | Preview



Inflammation impairs cognitive performance and is implicated in the progression of neurodegenerative disorders. Rodent studies demonstrated key roles for inflammatory mediators in many processes critical to memory, including long-term potentiation, synaptic plasticity, and neurogenesis. They also demonstrated functional impairment of medial temporal lobe (MTL) structures by systemic inflammation. However, human data to support this position are limited.


Sequential fluorodeoxyglucose positron emission tomography together with experimentally induced inflammation was used to investigate effects of a systemic inflammatory challenge on human MTL function. Fluorodeoxyglucose positron emission tomography scanning was performed in 20 healthy participants before and after typhoid vaccination and saline control injection. After each scanning session, participants performed a virtual reality spatial memory task analogous to the Morris water maze and a mirror-tracing procedural memory control task.


Fluorodeoxyglucose positron emission tomography data demonstrated an acute reduction in human MTL glucose metabolism after inflammation. The inflammatory challenge also selectively compromised human spatial, but not procedural, memory; this effect that was independent of actions on motivation or psychomotor response. Effects of inflammation on parahippocampal and rhinal glucose metabolism directly mediated actions of inflammation on spatial memory.


These data demonstrate acute sensitivity of human MTL to mild peripheral inflammation, giving rise to associated functional impairment in the form of reduced spatial memory performance. Our findings suggest a mechanism for the observed epidemiologic link between inflammation and risk of age-related cognitive decline and progression of neurodegenerative disorders including Alzheimer's disease.

Item Type: Article
Keywords: Alzheimer’s disease, PET, imaging, inflammation, memory, parahippocampus
Schools and Departments: Brighton and Sussex Medical School > Clinical and Experimental Medicine
Brighton and Sussex Medical School > Neuroscience
Subjects: B Philosophy. Psychology. Religion > BF Psychology > BF0311 Consciousness. Cognition
R Medicine > RC Internal medicine > RC0321 Neurosciences. Biological psychiatry. Neuropsychiatry
Related URLs:
Depositing User: louisa Brooks
Date Deposited: 07 May 2014 07:35
Last Modified: 24 Nov 2020 15:01

View download statistics for this item

📧 Request an update
Project NameSussex Project NumberFunderFunder Ref
UnsetUnsetThe Wellcome TrustUnset