Spatial distribution of podoconiosis in relation to environmental factors in Ethiopia: a historical review

This version is available from Sussex Research Online: http://sro.sussex.ac.uk/id/eprint/48354/

This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher's version. Please see the URL above for details on accessing the published version.

Copyright and reuse:
Sussex Research Online is a digital repository of the research output of the University.

Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available.

Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.
Spatial Distribution of Podoconiosis in Relation to Environmental Factors in Ethiopia: A Historical Review

Kebede Deribe1,2*, Simon J. Brooker3,4, Rachel L. Pullan4, Asrat Hailu5, Fikre Enquselassie2, Richard Reithinger4,6, Melanie Newport1, Gail Davey1

1 Brighton and Sussex Medical School, Falmer, Brighton, United Kingdom, 2School of Public Health, Addis Ababa University, Addis Ababa, Ethiopia, 3Kenya Medical Research Institute-Wellcome Trust Research Programme, Nairobi, Kenya, 4Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom, 5School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia, 6International Development Group, Research Triangle Institute, Washington, D. C., United States of America

Abstract

Background: An up-to-date and reliable map of podoconiosis is needed to design geographically targeted and cost-effective intervention in Ethiopia. Identifying the ecological correlates of the distribution of podoconiosis is the first step for distribution and risk maps. The objective of this study was to investigate the spatial distribution and ecological correlates of podoconiosis using historical and contemporary survey data.

Methods: Data on the observed prevalence of podoconiosis were abstracted from published and unpublished literature into a standardized database, according to strict inclusion and exclusion criteria. In total, 10 studies conducted between 1969 and 2012 were included, and data were available for 401,674 individuals older than 15 years of age from 229 locations. A range of high resolution environmental factors were investigated to determine their association with podoconiosis prevalence, using logistic regression.

Results: The prevalence of podoconiosis in Ethiopia was estimated at 3.4% (95% CI 3.3%–3.4%) with marked regional variation. We identified significant associations between mean annual Land Surface Temperature (LST), mean annual precipitation, topography of the land and fine soil texture and high prevalence of podoconiosis. The derived maps indicate both widespread occurrence of podoconiosis and a marked variability in prevalence of podoconiosis, with prevalence typically highest at altitudes >1500 m above sea level (masl), with >1500 mm annual rainfall and mean annual LST of 19–21°C. No (or very little) podoconiosis occurred at altitudes <1225 masl, with annual rainfall <900 mm, and mean annual LST of >24°C.

Conclusion: Podoconiosis remains a public health problem in Ethiopia over considerable areas of the country, but exhibits marked geographical variation associated in part with key environmental factors. This work is in progress and the results presented here will be refined in future work.

Editor: Abdisalan Mohamed Noor, Kenya Medical Research Institute - Wellcome Trust Research Programme, Kenya

Received January 23, 2013; Accepted May 28, 2013; Published July 9, 2013

Copyright: © 2013 Deribe et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The authors would like to acknowledge the work of EW Price in mapping podoconiosis, which is the basis for this work. KD was supported by TOMS Shoes for preparatory work of mapping podoconiosis in Ethiopia during the writing of the manuscript, currently is supported by the Wellcome Trust through Research Training Fellowship in Public Health and Tropical Medicine. RLP is supported by grants from the Bill & Melinda Gates Foundation, SJB is funded by a Research Career Development Fellowship (081673) from the Wellcome Trust. GD is supported by a Wellcome Trust University award to do work in podoconiosis. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: KD was supported by TOMS Shoes for preparatory work of mapping podoconiosis in Ethiopia during the writing of the manuscript. This does not alter the authors’ adherence to all the PLOS ONE policies on sharing data and materials.

* E-mail: Kebededeka@yahoo.com

Introduction

Podoconiosis (endemic non-filarial elephantiasis) is a non-infectious geochemical disease arising in barefoot subsistence farmers who are in long-term contact with irritant red clay soil of volcanic origins. The disease causes progressive bilateral swelling of the lower legs. Mineral particles absorbed through the skin are taken up into macrophages into the lymphatic system and result in an inflammatory process leading to fibrosis and obstruction of the vessels. This leads initially to swelling of the foot and the lower leg, which may with time progress to elephantiasis: gross lymphoedema with mossy and nodular changes of the skin [1,2,3]. Due to its symptomatology, podoconiosis has a significant economic impact on affected populations: productivity loss for a patient can amount to 45% of total working days per year, with significant associated loss of income [4] In addition, the disease is known to cause considerable social stigmatization [5]. (Figure S1).

Podoconiosis is widely distributed in three continents; Africa, Central America and Asia particularly India [6,7]. In Africa, at least 10 countries with the disease have been identified including: Ethiopia, Kenya, Tanzania, Uganda, Rwanda, Burundi, Sudan, Equatorial Guinea, Cameroon, Sao Tome and Principe, and the Cape Verde islands [2,8,9,10,11,12]. Historically, the disease is
thought to have been prevalent in Northern Africa (Algeria, Tunisia, Morocco and the Canary Islands) and Europe (France, Ireland and Scotland); however, due to widespread use of shoes, the disease is no longer found in these areas [6]. Previous studies have documented the association of the disease with irritant red clay soils, which are generated in areas at >1500 metres above sea level (masl), with >1000 mm annual rainfall, and maximum temperatures of >20°C [1]. Across tropical Africa, the majority of affected individuals are farmers, who have long term contact with the red clay soil [13]. (Figure S2).

The prevalence of the disease varies from country to country. Earlier nationwide surveys documented an average prevalence of 1% (range: 0% to 2.07%) in Burundi [14] and 0.6% (range: 0.1% to 1.7%) in Rwanda [14]. In Ethiopia, prevalence estimates from 56 market counts ranged from 0.4% to 3.7% [15]; these rates are probably underestimates attributable to reduced mobility of patients and stigma. More recent studies in Ethiopia estimated a prevalence of 5.5% in Southern Ethiopia [16], 5.2% in western Ethiopia [17], 7.4% in central Ethiopia [18] and 3.3% in northern Ethiopia [19]. The presence of significant geographical variation in the prevalence of podoconiosis in Ethiopia and other tropical African countries suggests the existence of spatial patterns to disease distribution.

Without doubt, podoconiosis is one of the neglected tropical diseases (NTDs) with the greatest potential for elimination as a public health problem [20,21]; it is preventable if shoes are consistently worn, and early stages can be successfully treated using a simple lymphoedema regimen [22]. While one million people are estimated to be affected with podoconiosis in Ethiopia [7], and a further 11 million to be at risk [23], control efforts are hampered by a lack of information on geographical distribution. Aside from isolated studies [16,17,18,19,21,24,25,26], the only previous mapping of this disease was based on market and school surveys in the 1970s [15,26,27]. Except for a few observational studies conducted in the early 1970s, there have been no systematic studies to identify the environmental correlates of podoconiosis [1,2].

However, various relevant environmental observations have been made. In 1984, Price noted that non-filarial elephantiasis occurred in areas where soil originated from volcanic rocks (including basalt) at altitudes greater than 1000 masl [2], and that the prevalence of podoconiosis decreased significantly at the limit of the red soil, declining to almost zero 25 km from the edge of these soils [28]. Meanwhile, Frommel et al. described high concentrations of the trace elements zirconium and beryllium in high prevalence areas of southwest Ethiopia [29].

In recent years, robust and practical approaches to mapping have been developed for a range of diseases [30,31,32,33,34]. Mapping the distribution of NTDs such as onchocerciasis, lymphatic filariasis, schistosomiasis and soil transmitted helminthiasis has led to successful targeting of control measures to areas of greatest need [30,31,32,33,34,35]. With the recent availability of new technologies such as remote sensing and geographic information systems along with advances in spatial and temporal statistics, the theories of landscape ecology can be used analytically [36,37]. In relation to podoconiosis, the presence of certain environmental factors conducive to the production of irritant soil may be mapped and used to predict the extent of podoconiosis. If interventions for the treatment and prevention of podoconiosis are to be scaled up, information on the distribution and extent of the disease must be available to decision makers. The objective of this study was therefore to investigate the spatial distribution and ecological correlates of podoconiosis using historical and contemporary survey data.

Methods

Data Source and Abstraction

<table>
<thead>
<tr>
<th>Publication year</th>
<th>Place of study</th>
<th>Number of individuals sampled (prevalence)</th>
<th>Data points</th>
<th>Type of survey</th>
</tr>
</thead>
<tbody>
<tr>
<td>1969 [15]</td>
<td>Multiple sites</td>
<td>247,908 (2.72%)</td>
<td>56</td>
<td>Market survey (visible leg swelling)</td>
</tr>
<tr>
<td>1973 [26]</td>
<td>Multiple sites</td>
<td>13,138 (2.77%)</td>
<td>25</td>
<td>School enquiry</td>
</tr>
<tr>
<td>1987 [25]</td>
<td>Ocholo, Southwest Ethiopia</td>
<td>2689 (5.4%)</td>
<td>1</td>
<td>Community based (physical examination)</td>
</tr>
<tr>
<td>1992 [21]</td>
<td>Gera & Didedessa, Western Ethiopia</td>
<td>416 (7.5%)</td>
<td>2</td>
<td>Community based (physical examination)</td>
</tr>
<tr>
<td>1997 [24]</td>
<td>Pawe Northwest Ethiopia</td>
<td>1900 (7%)</td>
<td>1</td>
<td>Community based (physical examination and microscopic examination of midnight sample)</td>
</tr>
<tr>
<td>2003 [16]</td>
<td>Wolita zone, Southern Ethiopia</td>
<td>33,678 (5.46%)</td>
<td>7</td>
<td>Community based (physical examination)</td>
</tr>
<tr>
<td>2011 [17]</td>
<td>Gulliso west Ethiopia</td>
<td>38,420 (5.0%)</td>
<td>1</td>
<td>Community based (physical examination)</td>
</tr>
<tr>
<td>2012 [18]</td>
<td>Midakegan</td>
<td>1,656 (7.4%)</td>
<td>1</td>
<td>Community based (physical examination)</td>
</tr>
<tr>
<td>2012 [19]</td>
<td>Debre Elias and Dembecha Northern Ethiopia</td>
<td>50,620 (3.3%)</td>
<td>2</td>
<td>Community based (physical examination)</td>
</tr>
<tr>
<td>2012 [43]</td>
<td>Western Ethiopia in 112 Woredas</td>
<td>11,249 (4.6%)</td>
<td>133</td>
<td>Community based (ICT card)</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>401,674 (3.4%)</td>
<td>229</td>
<td></td>
</tr>
</tbody>
</table>

doi:10.1371/journal.pone.0068330.t001
For identification of publications on podoconiosis, the following Medical Subject Headings (MeSHs) were used to identify relevant studies published between 1960 and 2012: podoconiosis, non-filarial elephantiasis and Ethiopia. Abstracts of studies presenting prevalence were reviewed and full texts retrieved if they contained relevant information. References from articles and key reviews were screened for additional studies. Finally, leading researchers in the area and authors of key papers were contacted to ask about unpublished or un-indexed data, and this yielded a number of additional datasets. Archives of Ethiopian national journals were hand searched and articles related to the subject were included.

Cross-sectional studies were included, but health facility based surveys were excluded. If in a given area, multiple surveys had been conducted at different times, each was included in the analysis. From each study, the design, study population, method of diagnosis, date and location of survey, age range of sampled individuals, and number of individuals examined and diagnosed with podoconiosis were abstracted. Longitude and latitude of the survey locations were identified through a range of methods, including online search with GeoNames (www.geonames.org) or Wikipedia (www.wikipedia.org). For recent data from lymphatic

![Geographical distribution of podoconiosis in Ethiopia, results from historical maps and recent surveys conducted on podoconiosis.](image)

In total 229 locations were identified with podoconiosis prevalence figures, and were geo-referenced. Circles indicate prevalence in villages and markets surveyed. Grey areas indicate areas where either altitude is below 1225 meters above sea level or mean annual rainfall is <900 mm or annual mean land surface temperature >24°C.

doi:10.1371/journal.pone.0068330.g001

<table>
<thead>
<tr>
<th>SN Region</th>
<th>Number of survey points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Tigray</td>
<td>7</td>
</tr>
<tr>
<td>2 Afar</td>
<td>1</td>
</tr>
<tr>
<td>3 Amhara</td>
<td>24</td>
</tr>
<tr>
<td>4 Oromia</td>
<td>101</td>
</tr>
<tr>
<td>5 Somali</td>
<td>0</td>
</tr>
<tr>
<td>6 SNNPR</td>
<td>50</td>
</tr>
<tr>
<td>7 Dire Dawa</td>
<td>1</td>
</tr>
<tr>
<td>8 Addis Ababa</td>
<td>0</td>
</tr>
<tr>
<td>9 Benishangul Gumuz</td>
<td>22</td>
</tr>
<tr>
<td>10 Harari</td>
<td>2</td>
</tr>
<tr>
<td>11 Gambella</td>
<td>21</td>
</tr>
<tr>
<td>Total</td>
<td>229</td>
</tr>
</tbody>
</table>

doi:10.1371/journal.pone.0068330.t002
filariasis mapping, the geographical positioning system (GPS) information relating to each location was obtained from the investigators.

Satellite Driven Data

Previous studies suggest the importance of temperature, altitude and annual rainfall in the formation of irritant clay soil [2]. The Normalized Difference Vegetation Index (NDVI) is also considered to be associated with weathering of soil. Among other environmental characteristics, two were used: texture of the soil (classified as coarse, medium or fine), and the topography of the land. The topography of the land was obtained from University of Bern Centre for Development and Environment thorough the Ethiopian GIS society (http://www.cde.unibe.ch/Pages/Publication/1431/Default.aspx). The altitude, mean Land Surface Temperature (LST) and precipitation at 30-arcsecond (1 km) resolution were downloaded from the WorldClim website for the period 1950–2000 at 1 km spatial resolution [38]. Monthly average precipitation data at 1 km resolution for the period 1950–2000 and the mean annual precipitation was obtained. These climate variables were produced from global weather station temperature records gathered from a variety of sources for the period 1950–2000 and interpolated using a thin-plate smoothing spline algorithm [39]. The digital soil map of the world (Land and Water Development Division, FAO, Rome) at a nominal scale of 1:5,000,000 was downloaded from the GeoNetwork website [40].

Data Analysis

The prevalence and GPS data were entered using a Microsoft Excel 2007 spreadsheet and exported into STATA 11.0 (Stata Corporation, College Station, TX, USA). Point prevalence maps were developed in ArcGIS 10. Data for each location were extracted from the raster maps of each of the environmental variables.

Associations between prevalence of podoconiosis and individual environmental variables were investigated using the non-parametric Spearman’s rank correlation. The association between environmental variables and prevalence was further assessed using binomial logistic regression. Variables contributing to the model based on the log likelihood ratio test were retained in the final model. P-values, <0.05 were considered significant. Statistical analyses were performed using STATA. All variables except topography (slope) and NDVI were treated as categorical variables. We have explored for linearity of the variables and in most cases non-linearity was observed which lead to categorizing them. The categories were based on expert opinion and previous observations in east Africa, where some cut-off points were indicated.

A multivariate regression model allowing for clustering was fitted using STATA 11 to assess the potential predictors of podoconiosis prevalence. The associations between podoconiosis prevalence, slope of the land (as surrogate for topography), altitude, mean annual LST, annual precipitation, mean annual rainfall, standard deviation of NDVI, and soil texture were examined. For each predictor, the Odds Ratio (OR), 95% confidence interval (CI), and p-values were recorded. Co-linearity was checked between all possible pairs of potential environmental variables; altitude and mean LST had a correlation coefficient of 0.9, and since the mean LST has more to do with weathering of soil, altitude was excluded from the final model. All other variables were entered into the model adjusted for each other.

Results

Characteristics of the Survey Data

Ten studies conducted between 1969 and 2012 included data for 401,674 individuals older than 15 years of age from 229 locations (data points) in 9 of the 11 regional states of Ethiopia. Most (101, 44.1%) of the data points were from Oromia, the largest regional state in the country in terms of geographical area.

<table>
<thead>
<tr>
<th>Region</th>
<th>Number of woredas by prevalence of podoconiosis</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Afar</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Amhara</td>
<td>3</td>
<td>14</td>
</tr>
<tr>
<td>Benishangul Gumuz</td>
<td>13</td>
<td>3</td>
</tr>
<tr>
<td>Gambella</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>Harari</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Dire Dawa</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Oromia</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>SNNPR</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>Tigray</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>39</td>
<td>17</td>
</tr>
</tbody>
</table>

Table 3. Prevalence distribution of podoconiosis by woreda and region.

<table>
<thead>
<tr>
<th>Environmental variable</th>
<th>Prevalence classification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.0% 0.1%–5.0% 5.1%–10% >10.0%</td>
</tr>
<tr>
<td>Mean altitude (masl)</td>
<td>1055.2 1820.6 1804.8 1685.3</td>
</tr>
<tr>
<td>Mean annual rainfall (mm)</td>
<td>1292.9 1407.7 1592.6 1638.5</td>
</tr>
<tr>
<td>Mean slope of the land (%)</td>
<td>2.1 2.1 2.9 1.8</td>
</tr>
<tr>
<td>Mean annual temperature (°C)</td>
<td>23.8 19.3 19.4 20.2</td>
</tr>
<tr>
<td>Mean annual precipitation (mm)</td>
<td>107.7 117.2 132.0 136.0</td>
</tr>
</tbody>
</table>

Table 4. Environmental characteristics of different categories of prevalence of podoconiosis.
and population, 50 (21.8%) were from Southern Nations Nationalities and Peoples Region (SNNPR), and 24 (10.5%) from Amhara. There was no information for Addis Ababa or Somali (Table 1). The 229 data points were from 190 woredas (districts), of which 90 (43.1%) were within Oromia and 47 (24.7%) within SNNPR. Based on these results, the average prevalence of podoconiosis in Ethiopia was estimated to be 3.4% (95% CI: 3.3 to 3.4). The prevalence of podoconiosis varied by region: 4.8% in SNNPR, 4.4% in Harari, 3.0% in Amhara, 2.5% in Oromia, 1.6% in Tigray, 0.6% in Gambella, 0.4% in Benishangul Gumuz and 0.4% in Dire Dawa.

Geographical Distribution of Podoconiosis

Figure 1 shows the geographical distribution of podoconiosis. There was wide geographical variation of prevalence from 0.0% to 48.0%. High prevalence of podoconiosis occurred in the southwest and southern parts of the country. The highest prevalence was recorded in Kelem Welega and Illubabor zones of Oromia. The prevalence of podoconiosis was generally lower in the far western part of the country, such as Gambella. Except for one location (with zero prevalence) no information was available about the occurrence of the disease in Afar and Somali (Table 2).

Based on the analysis of 190 woredas included in the 9 regional states, 39 woredas had zero prevalence, 104 a prevalence of 0.01–5.0%, 32 a prevalence of 5.1–10.0%, and 15 a prevalence of ≥10.0%. Of those woredas with a prevalence >5.0%, 27 (57.4%) were in Oromia and 16 (34.0%) in SNNPR; almost all (13 out of 15) woredas with a prevalence >10.0% were in Oromia (Table 3).

Environmental Variables Associated with Podoconiosis

Areas with zero prevalence were characterized by a mean altitude of 1055 masl, mean annual rainfall of 1293 mm, topography of 2.1 degrees and temperature of 24°C. High prevalence areas (>5%) were characterized by mean altitude >1600 masl, temperature between <20.5°C, mean annual rainfall >1500 mm and mean annual precipitation >130 mm (Table 4).

Correlation of the observed geographical distribution of podoconiosis with selected large-scale environmental variables was investigated. Absence or very low prevalence of podoconiosis was observed in areas with annual total rainfall <900 mm (p = 0.36, p < 0.001), and in areas with annual mean LST >24°C (p = −0.35, p < 0.001). Although difficult to indicate a clear cutoff, there was a positive correlation between annual mean precipitation and prevalence (p = 0.36, p < 0.001).

Possible associations of environmental variables previously documented to be associated with podoconiosis were identified and associations were checked using box plots (Figure 2). There
Table 5. Output of binomial logistic regression of environmental variables and prevalence of podoconiosis, 229 locations in Ethiopia.

| Variable | Category | Unadjusted Odds Ratio | AOR 95% Conf. Interval | P>|z| |
|---------------------------------------|----------|-----------------------|------------------------|-----|
| Precipitation (mm) | ≤50 | 1.00 | 1.00 | |
| | >50 | 8.25 (5.97 to11.39) | 8.11 (5.85 to 11.25) | <0.001 |
| Mean annual Land Surface Temperature (°C) | ≤24 | 1.00 | 1.00 | |
| | >24 | 0.40 (0.34 to 0.47) | 0.48 (0.41 to 0.57) | <0.001 |
| Mean annual rainfall (mm) | ≤1000 | 1.00 | 1.00 | |
| | >1000 | 1.21 (1.14 to 1.27) | 0.97 (0.92 to 1.03) | 0.436 |
| Altitude (masl) € | ≤1225 | 1.00 | | |
| | >1225 | 3.06 (2.60 to 3.59) | | |
| Soil texture | Fine | 1.08 (1.02 to 1.15) | 1.09 (1.03 to 1.16) | 0.002 |
| | Medium | 1.00 | | |
| Topography of the land(°) | | 1.17 (1.15 to 1.18) | 1.16 (1.15 to 1.17) | <0.001 |
| SD of NDVI* | | 1.00 (0.99 to 1.00) | 0.99 (0.99 to 1.03) | 0.192 |

*SD = standard deviation, NDVI = Normalized Difference Vegetation Index, masl = Meters above sea level, mm = millimeter, € Co-linearity was checked between all possible pairs of potential environmental variables: altitude and mean LST had a correlation coefficient >0.9, and since the mean LST has more to do with weathering of soil, altitude was excluded from the final model.

doi:10.1371/journal.pone.0068330.t005

was a clear trend of increasing prevalence as altitude and rainfall increased. The possible association of environmental variables and prevalence of podoconiosis was modelled. The final model showed that a one-unit increase in slope was associated with an increase of approximately 16% increase in the podoconiosis prevalence (OR = 1.16; 95% CI = 1.15 to 1.17; p<0.001). Compared to points with annual precipitation ≤50 mm, those areas with precipitation >50 mm had higher odds of high prevalence podoconiosis (OR = 8.11, 95% CI = 5.85 to 11.25; p<0.001). Compared to areas with mean annual LST =24°C, those areas with mean annual LST >24°C had lower odds of high prevalence podoconiosis (OR = 0.48, 95% CI = 0.41 to 0.57). Compared to medium size soil texture, areas with fine texture had higher odds of high prevalence podoconiosis (OR = 1.09, 95% CI = 1.03 to 1.16) (Table 5).

Discussion

Podoconiosis is gradually attracting global attention [41,42], and as the profile of the disease increases, understanding the geographical distribution and environmental factors affecting this distribution will become important. Identifying the environmental correlates of disease distribution is the first step to producing risk and distribution maps to guide decision making for interventions. Although podoconiosis has been described in Ethiopia for four decades [26,27], the current disease burden and geographical distribution is not known. Here we summarize its distribution based on historical and contemporary data, and identify environmental variables associated with the distribution of the disease. (Figure S3).

The prevalence of podoconiosis in Ethiopia was found to be 3.4%, which is higher than the 2.7% reported by Ooman in 1969 [15] in his market-based survey of 56 sites or the 2.8% reported by Price from school-based surveys conducted in 1974 [26]. It is also higher than the prevalence documented in Burundi (1.0%) and in Rwanda (0.6%) in the 1970s [14]. More recent studies included in the current analysis have indicated prevalences of 5.5% in Wolaita, southern Ethiopia [16], 5.4% in Ocholo [25], southwestern Ethiopia, 7.0% in Pave [24], 7.5% in Gera and Didesa [21] and 5.2% in Guliso [17], western Ethiopia, and 7.4% in central Ethiopia [18]. Absence of information from Addis Ababa, Afar and Somali regions and the diagnostic methods used reduces the precision of the estimate. In addition, one of the largest surveys included in this review was based on purposive sampling covering areas that were thought to be endemic for podoconiosis, which might result in over estimation of the prevalence.

There was significant geographical variation within Ethiopia; high regional prevalences were recorded in SNNPR, Oromia and Amhara. These are consistent with findings from individual studies and environmental characteristics studied. All of the areas with prevalence >10% were found to be non-endemic for LF (ICT positivity of 0%) [13]. These districts are located in Illubabor and Kelem Welega zones of Oromia, and these areas were already identified by civil society organizations as endemic for podoconiosis.

In this analysis, we found associations between prevalence and temperature, altitude, rainfall, precipitation, topography of the land and soil texture. Previous studies have documented association of temperature, altitude and rainfall with occurrence of podoconiosis in East Africa [2]. High prevalence of podoconiosis was documented in areas with altitude of >1500 masl, mean annual rainfall of >1300 mm and mean annual LST of 19–21°C. Altitude governs temperature and rainfall, and these affect weathering; hot and humid environments increasing weathering and type of soil produced. In arid regions, the lack of precipitation inhibits chemical weathering, leading to coarse textured soil
The absence of podoconiosis in areas at
average of the lower and upper boundaries was taken. The studies
locations do not have precise estimates of prevalence, so the
with community based censuses, and demonstrated good agree-
However, the investigators validated the surveys by comparing
to use market count and school enquiry
across the studies was inconsistent. The two largest surveys
used different methods, and the case definition of podoconiosis
environmental features associated with zero prevalence.
One of the limitations of the analysis is that most of the surveys did not
use a diagnostic test, relying on observations or physical diagnosis.
Only three used any biomedical test to enable differential
diagnoses of conditions with a similar symptomatology to
podoconiosis (e.g. lymphatic filariasis). Nonetheless most of the
studies were conducted in areas potentially endemic for podocon-
iosis based on geographical parameters. In addition we have used
data from recent LF mapping to exclude areas endemic for LF
from the analysis. Rapid diagnostic tests for lymphatic filariasis are
now available, and will decrease misclassification in areas where
these two diseases overlap. The lack of information from three
regional states of Ethiopia is also another limitation, nonetheless
only 12% of the population lives in these three regional states. In
addition, Addis Ababa is the capital city, and shoe-wearing is
almost universal. The upcoming mapping projects will address the
above mentioned limitations and will generate more reliable
estimates.

Conclusion
Our analysis sheds light on the ecology of podoconiosis in
Ethiopia, and shows that podoconiosis only represents a public
health problem of major concern under certain environmental
conditions, presumably those conditions favourable for the
weathering of rock to produce specific types of soil. The disease
is highly prevalent in the highlands of Ethiopia particularly in the
southern and south central areas. Climatic conditions, primarily
altitude, rainfall, precipitation and temperature, influence the
weathering of rocks and determine the type of soil generated,
which in turn probably influences the distribution of podoconiosis.
High prevalence areas are characterized by mean altitude
>1500 masl, temperature between 19–21°C, mean annual rainfall
>1500 mm and mean annual precipitation >130 mm. Identifying
other variables influencing prevalence might be achieved through
inclusion of high resolution geological and soil maps in
future analyses. Deciding on a threshold for classification of
districts as ‘endemic’ or ‘non-endemic’ for podoconiosis will be
a priority in targeting intervention to where the disease is prevalent.
Finally, this is work in progress and the results presented here will
be refined in future work.

Supporting Information

Figure S1 Podoconiosis at different stages in four approximately
50 year old women, from Ethiopia, (Picture by Gail Davey).
(TIF)

Figure S2 A barefooted farmer ploughing a red clay soil field
using the traditional method pulled by two oxen (Picture by Gail
Davey).
(TIF)

Figure S3 Women in northern Ethiopia walking barefoot
(Picture by Kora Image, Abate Damte).
(TIF)

Author Contributions
Conceived and designed the experiments: KD SJB GD. Performed the
experiments: KD SJB RLP GD. Analyzed the data: KD SJB RLP GD.
Contributed reagents/materials/analysis tools: SJB RLP. Wrote the paper:
KD SJB RLP AH FE RR MN GD.
References