Synthesis and characterization of a mercury-containing metalloborylene

This version is available from Sussex Research Online: http://sro.sussex.ac.uk/id/eprint/48094/

This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher’s version. Please see the URL above for details on accessing the published version.

Copyright and reuse:
Sussex Research Online is a digital repository of the research output of the University.

Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available.

Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.
Synthesis and characterization of a mercury-containing trimetalloboride†

Rüdiger Bertermann, a Holger Braunschweig,*a William C. Ewing, a Thomas Kramer, a Ashwini K. Phukan, b Alfredo Vargas c and Christine Werner a

The reaction of phenylmercuric chloride with an anionic dimanganese borylene \((\text{Li}[\text{Cp}_2(\text{CO})_4\text{Mn}_2\text{B}])^-\) led to the formation of a trimetalloboride featuring the first reported bond between mercury and a non-cluster boron atom. Examination by \(^{199}\text{Hg}\) NMR indicated \(^{11}\text{B}-^{199}\text{Hg}\) scalar coupling. Theoretical calculations indicated the nature of bonding to be \(\sigma\)-donation from a \(\text{B}–\text{Mn}\) \(\pi\)-orbital to \(\text{Hg}\), in conjunction with weak \(\text{Hg}_d \rightarrow \pi^*\) back-donation.

Save for one very recent report,\(^1\) covalent interactions between mercury and boron have been limited to systems containing borane clusters. Early instances of \(\text{Hg}–\text{B}\) bonding featured the insertion of \(\text{Hg}\) into the open face of decaborane (\(\text{nido-B}_{10}\text{H}_{14}\)), bound either via tetrahapto-coordination to 4-boron atoms in the 1:1 complex \([\text{B}_{10}\text{H}_{12}\text{HgMe}]^-\) or sandwiched between the open faces of two decaborane molecules in the 2:1 species \([\text{B}_{10}\text{H}_{12}]\text{Hg}^2\)^. Structural assignments of these two compounds were proposed solely on the basis of NMR or IR data, without the aid of X-ray crystallography. A handful of crystal structures were subsequently reported describing the binding of \(\text{Hg}\) to boron vertices of borane or carborane clusters as exopolyhedral substituents on individual boron atoms,\(^4\) or as bridging moieties between two or more boron vertices.\(^5\)

For some time, we have been interested in the addition of low-valent members of the late d-block to metal–borylene bonds. To date, work in this area has yielded a number of new compounds with interesting bonding motifs.\(^6\) The addition of base-stabilized group 11 metals across the central \(\text{Mn}–\text{B}–\text{Mn}\) unit of anionic dimanganese borylene \(^1\) has recently been shown to give addition products \(2\)a–c with the elimination of \(\text{LiCl}\) (Scheme 1).\(^6\) In compounds \(2\)a and \(2\)b, \(\text{Au}\) and \(\text{Ag}\) inserted asymmetrically across one of the two \(\text{B}–\text{Mn}\) bonds, elongating the proximate borylene bond with respect to the unaffected bond on the opposite side of the molecule. In \(2\)c, \(\text{Au}\) occupied a symmetric position equidistant from each \(\text{Mn}\), forming \(\text{Mn}–\text{B}–\text{Cu}\) angles near \(90^\circ\). Computational investigation indicated diffuse delocalized bonding between \(\text{Au}, \text{B}\) and the proximate \(\text{Mn}\) in \(2\)a, while in \(2\)c the interaction of \([\text{ITol}]\text{Cu}^+\) and the borylene anion was primarily electrostatic.

The isoelectronic nature of the closed-shell \(d^{10}\text{Au}^+\) and \(\text{Hg}^{2+}\) cations, as well as their shared relativistic behavior and propensity toward the formation of linear 14-electron species,\(^8\) suggested the reactivity of \(\text{Hg}^{2+}\) complexes with \(1\) similar to the addition of \([\text{ITol}]\text{Au}^+\)^. In the formation of \(2\)a. When \(1\) was treated with \(\text{PhHgCl}\) in toluene, the emergence of a bright red color was accompanied by the precipitation of a colorless solid. Examination of the reaction mixture by \(^{11}\text{B}\) NMR indicated the growth of a low-field resonance at 208 ppm, coincident with the disappearance of a peak at 199 ppm characteristic of \(1\). After filtration and concentration of the filtrate, the product \((3)\) was crystallized at \(-35^\circ\)C. Though stable at \(-35^\circ\)C, slow decomposition of \(3\) was evident at room temperature.

The solid-state structure of \(3\), determined by single crystal X-ray crystallography (Fig. 1), bears a striking resemblance to \(2\)a.

\(^a\) Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany. E-mail: h.braunschweig@uni-wuerzburg.de

\(^b\) Tezpur University, Napaam 784028, Assam, India

\(^c\) University of Sussex, Brighton BN1 9QJ, Sussex, UK

† Electronic supplementary information (ESI) available: Full experimental and spectroscopic description of the work described herein, as well as relevant computational details and Fig. S1–S5. CCDC 975393. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c4cc01246a

Scheme 1. Syntheses of trimetalloborides \(2\) and \(3\). \(2\)a. \(M = \text{Au}\); \(2\)b. \(M = \text{Ag}\); \(2\)c. \(M = \text{Cu}\). \(\text{ITol} = N,N’-\text{bis}(4\text{-methylphenyl})\text{imidazol}-2\text{-ylidene}.\)
The Hg atom resides between B and Mn2 ([Hg–B, 2.2915 Å; Hg–Mn2, 2.655 Å (avg.)]. Whereas the Mn–B–Mn unit in 1 is symmetric, with B–Mn bonds measuring 1.8812(14) Å and 1.8809(14) Å, the addition of mercury substantially elongates the B–Mn2 bond (1.9555 Å (avg.)), while inducing a slight contraction of the B–Mn1 bond (1.860 Å (avg.)). The Mn–B–Mn angle is nearly linear both before and after addition (1, 176.11°; 3, 173.5° (avg.)), while the Mn2–Hg–Cphenyl angle is slightly bent toward boron (165.27° (avg.)), reminiscent of the Mn–Au–C angle in 2a (160.29°[7]), indicating a more complicated bonding environment than a pure π-interaction between Mn and Hg.

The 1H and 13C{1H} NMR spectra of 3 in solution each show only one set of signals for the Cp-moiety at 4.17 ppm (1H) and 82.6 ppm (13C). Furthermore, the 13C{1H} NMR spectrum shows only one signal for the four CO groups (226 ppm), suggesting fluxional behavior in solution. Low-temperature 1H NMR failed only one signal for the four CO groups (226 ppm), suggesting fluxional behavior in solution. Low-temperature 1H NMR failed to induce separation of the Cp-resonances at temperatures as low as −90 °C. Spectroscopic inquiry at a faster time-scale (FT-IR) demonstrated the asymmetry of the ground state structure through excellent agreement between the room temperature solution-state FT-IR spectrum of 3 and a DFT-simulated IR spectrum based on an optimized structure of C1-symmetry, closely resembling the solid-state structure of 3 (Fig. S1, ESI†).

Covalent bonding between Hg and B was confirmed by 199Hg NMR spectroscopy. Fig. 2 compares the 11B-coupled (Fig. 2a) and 11B-decoupled (Fig. 2b) 199Hg{1H} NMR spectra of 3. The broad, slightly structured peak located at 83.9 ppm (FWHH = 460 Hz, Fig. 2a) was observed to substantially narrow with application of 11B decoupling (FWHH = 33 Hz, Fig. 2b). The existence of well resolved 199Hg satellites in the 500 MHz 1H NMR spectrum of the ortho- and meta-protons (FWHH ≈ 7 Hz) of the PhHg moiety indicated that relaxation via chemical shift anisotropy (CSA) was negligible for the 199Hg nucleus in solution. A line-width comparison of the 199Hg{1H} NMR signal at 53.8 MHz (300 MHz NMR spectrometer) and the signal at 89.6 MHz (500 MHz NMR spectrometer) showed no difference, indicating that the observed line-width of the 199Hg{1H} resonance (460 Hz) arises from a combination of scalar coupling due to the neighboring boron (11B and 13B) and motional narrowing due to fluxionality in solution. As scalar coupling (J) is indicative of covalent interactions between nuclei, the narrowing upon decoupling confirms the existence of bonding interactions between B and Hg. A 11B-coupled 199Hg NMR spectrum obtained at higher sensitivity (500 MHz) gave better resolution, showing a rough quartet of sufficient detail to allow the determination of JHg–B (103 Hz) through fitting of a simulated spectrum (Fig. S2, ESI†).

To examine the role mercury plays in the bonding of 3, we performed theoretical calculations at the OLYP/TZP, QZ4P level of density functional theory using the ADF program. The optimized geometry is in good agreement with the observed structure (Fig. S3, ESI†). The asymmetric interaction of [PhHg] with the [CpMn(CO)2B] fragment replicates the observed difference in Mn–B bond lengths (Mn2–B, 1.930 Å; Mn1–B, 1.824 Å). The Mayer Bond Order (MBO) of the shorter of the two Mn–B bonds is more than double that of the longer (Mn2–B, 0.566; Mn1–B, 1.168), further indicating diminished bonding between Mn2–B relative to Mn1–B. The MBO values obtained for the Hg–Mn2 (0.373) and Hg–B (0.471) bonds suggest both interactions to be weaker than true single bonds. A very weak interaction was observed between the distant Mn1 and Hg, with a MBO value of 0.134. Though this interaction is insignificant in the solid state, it may enable facile conversion between the two enantiomeric forms of 3 via transfer of the [HgPh] between the two B–Mn bonds in solution, explaining the fluxionality observed by 1H NMR spectroscopy.

Extended Transition State-Natural Orbitals for Chemical Valence (ETS-NOCV) calculations are useful tools for the identification and quantification of orbital interactions involved in the bonding between molecular fragments. The two pairs of complementary NOCV determined to be relevant for bonding between the [PhHg] and [Mn–B–Mn] fragments are a σ-interaction of a π-orbital between Mn2 and B with [PhHg] (Fig. 3a) and back-donation from a mercury d-orbital to an orbital of π*-symmetry between B and Mn2 (Fig. 3b). The deformation densities (Δρ) depict the stabilization attributed to each interaction, quantified by their respective ∆E values (σ, −73.7 kcal mol−1; π, −5.7 kcal mol−1), indicating that the primary contributor to bonding is the σ-interaction. The transferred charge in this interaction, indicated by Δρσ, is evenly spread across both Mn and B, explaining both
the non-linearity of the Mn2–Hg–Cphenyl angle and the comparatively small value of $J_{\text{Hg}-3}$ measured by 199Hg NMR. This bonding arrangement is similar to analysis of 2a, describing a diffuse interaction between B, Mn, and Au, and analysis of 3 by QTAIM (Fig. S4, ESI†) showed a bond path between B and Hg curved toward Mn2, indicative of delocalized bonding. ETS-NOCV analysis of model compound 2aMe (Fig. S5a, ESI†) showed a comparable σ-interaction between [IMe]Au+ and [Mn–B–Mn] (Fig. S5a, ESI†).

The $d \rightarrow \pi^*$ back-donation depicted in Fig. 3b represents a much smaller energetic influence; however, its existence is notable. Despite its residence in the d-block of the periodic table, mercury has smaller energetic influence; however, its existence is notable. Despite diffuse interaction between B, Mn, and Au, 8 2aHg$^{2+}$ is thought to be unable to participate in the types of orbital bonding, though a few studies have cast doubt on this classification. Previous computational work has hinted the possibility of very weak back-donation from filled d-orbitals on Hg to π^*-accepting moieties. 23 If this back-donation is present in 3, it should be even more prevalent in the geometrically-similar 2a, since Au$^+$ is both in a lower oxidation state and is thought to more readily employ its d-orbitals in bonding. 22 The classification of Au$^+$ as a transition metal is not in question, and recent analysis has attributed significant strength to Au$^d \rightarrow \pi^*$ interactions with alkenes.26 ETS-NOCV analysis of 2aMe (Fig. S2b, ESI†) indicates very similar $d \rightarrow \pi^*$ back-donation to that seen in the analysis of 3. As expected, the back-donation in the model compound 2aMe ($AE_p = 15.1 \text{ kcal mol}^{-1}$) is stronger than in 3, comprising ~23% of the combined bonding interactions, whereas the Hg$^{2+}$ $\rightarrow \pi^*$ back-donation is only ~7% of the calculated total.

The similarities between the back-donation interactions of an accepted transition metal (Au) and a “controversial” transition metal (Hg) placed in the same system suggest the capability of Hg to function akin to its neighbors to its left, though the small magnitude of the interaction indicates a reluctance to do so in this system. Ongoing work on engineering related bonding environments with this capability in mind will no doubt provide further experimental evidence for, or against, the transition-metal nature of Hg.

Financial support in the form of an advanced grant from the European Research Council is gratefully acknowledged.

Notes and references

12 The TZP basis set was used for the main group elements and the QZ4P basis set was used for the Mn and Hg atoms. Dispersion corrections were incorporated using Grimme’s DFT-D3-BJ-DAMP term. S. Grimme, S. Ehrlich and L. Goerigk, J. Comput. Chem., 2011, 32, 1456.
16 Known examples of scalar coupling between boron and mercury have substantially larger J_{Hg-B} values, ranging from ~ 1000–3000 Hz. For example see ref. 4c and d.